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Abstract

We consider the trace reconstruction problem on a tree (TRPT): a binary
sequence is broadcast through a tree channel where we allow substitutions,
deletions, and insertions; we seek to reconstruct the original sequence from
the sequences received at the leaves. The TRPT is motivated by the multiple
sequence alignment problem in computational biology. We give a simple
recursive procedure giving strong reconstruction guarantees at low mutation
rates. To our knowledge, this is the first rigorous trace reconstruction result
on a tree in the presence of indels.

Keywords: Markov models on trees, branching processes, phylogenetic
inference

1. Introduction

Trace reconstruction on a star. In the “trace reconstruction problem” (TRP) [1,
2, 3, 4, 5, 6], a random binary string X of length k generates an i.i.d. collec-
tion of traces Y1, . . . ,Yn that are identical to X except for random mutations
which consist in indels, that is, the deletion of an old site or the insertion of
a new site between existing sites, and substitutions, that is, the flipping of
the state at an existing site. We refer to the positions of a string as sites.
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The goal is to reconstruct efficiently the original string with high probability
from as few random traces as possible.

An important motivation for this problem is the reconstruction of an-
cestral DNA sequences in computation biology [3, 4]. One can think of X
as a gene in an (extinct) ancestor species 0. Through speciation, the an-
cestor 0 gives rise to a large number of descendants 1, . . . , n and gene X
evolves independently through mutations to sequences Y1, . . . ,Yn respec-
tively. Inferring the sequence X of an ancient gene from extant descendant
copies Y1, . . . ,Yn is a standard problem in evolutionary biology [7]. The
inference of X typically requires the solution of an auxiliary problem, the
multiple sequence alignment problem which is an important problem in its
own right in computational biology: site ti of sequence Yi and site tj of se-
quence Yj are said to be homologous (in this simplified TRP setting) if they
descend from a common site t of X only through substitutions ; in the mul-
tiple sequence alignment problem, we seek roughly to uncover the homology
relation between Y1, . . . ,Yn. Once homologous sites have been identified,
it is straightforward to estimate the original sequence X (minus the sites
that were deleted in all descendant sequences), for instance, by performing a
majority vote.

However, the TRP as defined above is an idealized version of the ances-
tral sequence reconstruction problem in one important aspect. It ignores the
actual phylogenetic relationship between species 1, . . . , n. A phylogeny is a
(typically, binary) tree relating a group of species. The leaves of the tree
correspond to extant species. Internal nodes can be thought of as extinct
ancestors. In particular the root of the tree represents the most recent com-
mon ancestor of all species in the tree. Following paths from the root to the
leaves, each bifurcation indicates a speciation event whereby a new species
is created from a parent. An excellent introduction to phylogenetics is [8].

A standard assumption in computational phylogenetics is that genetic
information evolves from the root to the leaves according to a Markov model
on the tree. Hence, the stochastic model used in trace reconstruction can
be seen as a special case where the phylogeny is star-shaped. It may seem
that a star is a good first approximation for the evolution of DNA sequences.
However extensive work on the so-called reconstruction problem in theoret-
ical computer science and statistical physics has highlighted the importance
of taking into account the full tree model in analyzing the reconstruction
of ancestral sequences. See below for references. We first discuss the re-
construction problem on a tree without indels. The substitution-only model
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itself is known in biology as the Cavender-Farris-Neyman (CFN) [9, 10, 11]
model.

The reconstruction problem. In the reconstruction problem (RP) on a tree,
we have a single site which evolves through substitutions only from the root
to the leaves of a tree. In the most basic setup which we will consider
here, the tree is a complete d-ary tree and each edge is an independent
symmetric indel-free channel where the probability of a substitution is a
constant ps > 0. The goal is to reconstruct the state at the root given the
vector of states at the leaves. More generally, one can consider a sequence of
length k at the root where each site evolves independently according to the
Markov process above. Denote by n the number of leaves in the tree. The
RP has attracted much attention in the probability theory and theoretical
computer science literatures due to its deep connections to computational
phylogenetics [12, 13, 14, 15, 16] and statistical physics [17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29]. See e.g. [30, 31] for background.

Unlike the star case, the RP on a tree exhibits an interesting threshold-
ing effect: on the one hand, information is lost at an exponential rate along
each path from the root; on the other hand, the number of paths grows
exponentially with the number of levels. When the substitution probabil-
ity is low, the latter “wins” and vice versa. This “phase transition” has
been thoroughly analyzed in the theoretical computer science and mathe-
matical physics literature—although much remains to be understood. More
formally, we say that the RP is solvable when the correlation between the
root and the leaves persists no matter how large the tree is. Note that, un-
like the TRP case, we do not require high-probability reconstruction as it
is not information-theoretically achievable for d constant. Indeed, consider
the information lost on the first level below the root. Moreover the “number
of traces” is irrelevant here as it is governed by the depth of the tree and
the solvability notion implies nontrivial correlation for any depth. When the
RP is unsolvable, the correlation decays to 0 for large trees. The results
of [32, 18, 33, 23, 21, 24] show that for the CFN (that is, the substitution-
only two-state symmetric) model, if ps < p∗, then the RP is solvable, where
d(1 − 2p∗)2 = 1. This is the so-called Kesten-Stigum bound [34]. If, on the
other hand, ps > p∗, then the RP is unsolvable. Moreover in this case, the
correlation between the root state and any function of the states at the leaves
decays as n−Ω(1). The positive result above is obtained by taking a majority
vote over the leaf states.
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Results on the RP have been used in previous work to advance the state of
the art in rigorous phylogenetic tree reconstruction methods [13, 14, 35, 15].
A central component in these methods is to solve the RP on a partially
reconstructed phylogeny to obtain sequence information that is “close” to the
evolutionary past; then this sequence information is used to obtain further
structural information about the phylogeny. The whole phylogeny is built
by alternating these steps.

Our results. However the RP is only an idealized version of the ancestral
sequence reconstruction problem in that it ignores the presence of indels. In
particular, the RP becomes relevant after homologous sites in extant species
have been perfectly identified, that is, assuming that the multiple sequence
alignment problem has been solved perfectly. This is in fact a long-standing
assumption in evolutionary biology where one typically preprocesses sequence
data by running it through a multiple sequence alignment heuristic and then
one only has to model the substitution process. This simplification has been
criticized in the biology literature, where it has been argued that alignment
procedures often create systematic biases that affect analysis [36, 37]. Much
empirical work has been devoted to the proper joint estimation of alignments
and phylogenies [38, 39, 40, 41, 42, 43, 36, 44].

We make progress in this direction by analyzing the RP in the presence
of indels which we also refer to as the TRP on a tree (TRPT). We consider
a d-ary tree where each edge is an independent channel with substitution
probability ps, deletion probability pd, and insertion probability pi. The root
sequence has length k and is assumed to be uniform in {0, 1}k. See Section 1.1
for a precise statement of the model. For the same reasons that applied
to the RP problem on a tree, we drop the requirement of high-probability
reconstruction and seek instead a reconstructed sequence that exhibits a
correlation with the true root sequence bounded away from 0 uniformly in
the depth.

We give an efficient recursive procedure which solves the TRPT for ps > 0
a small enough constant (strictly below, albeit close, to the Kesten-Stigum
bound) and pd, pi = O(k−2/3 log−1 n). As a by-product of our analysis we
also obtain a partial alignment of the sequences at the leaves. Our method
provides a framework for separating the indel process from the substitu-
tion process by identifying well-preserved subsequences which then serve as
markers for alignment and reconstruction. See Section 1.2 for a high-level
description of our techniques. As far as we are aware, our results are the
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first rigorous results for this problem. Our method also sets up a framework
for extending rigorous phylogenetic tree reconstruction techniques beyond
substitution-only models.

The results presented here were announced without proof in [45].

Related work. Much work has been devoted to the TRP on a star [1, 2,
3, 4, 5, 6]. In particular, in [5], it was shown that, when there are only
deletions, it is possible to tolerate a small constant deletion rate using n =
poly(k) traces. For a different range of parameters, Viswanathan and Swami-
nathan [6] showed that, under constant substitution probability andO(1/ log k)
indel probability, O(log k) traces suffice. Both results assume that the root
sequence X is uniformly random.

The multiple sequence alignment problem as a combinatorial optimization
problem (finding the best alignment under a pairwise scoring function) is
known to be NP-hard [46, 47]. Most heuristics used in practice, such as
CLUSTAL [48], T-Coffee [49], MAFFT [50], and MUSCLE [51], use the idea
of a guide tree, that is, they first construct a very rough phylogenetic tree
from the data (using edit distance as a measure of evolutionary distance),
and then recursively “align the alignments.” Our work can be thought as an
attempt to analyze rigorously this type of procedure. Note that the Steiner
version of the multiple sequence alignment problem on a fixed phylogeny,
the so-called tree alignment problem, is known to admit a polynomial-time
approximation scheme [52, 53].

Our work is tangentially related to the study of edit distance. Edit dis-
tance and pattern matching in random environments has been studied, e.g.,
by [54, 55, 56].

More recently, following the current work, two of the authors provided a
phylogenetic tree reconstruction algorithm using poly-logarithmic sequence
lengths under a similar indel model [57].

1.1. Definitions

We now define our basic model of sequence evolution.

Definition 1.1 (Model of sequence evolution). Let T
(d)
H be the d-ary tree

with H levels and n = dH leaves. For simplicity, we assume throughout that
d is odd. We consider the following model of evolution on T

(d)
H . The se-

quence at the root of T
(d)
H has length k and is drawn uniformly at random

over {0, 1}k. Along each edge of the tree, each site (or position) undergoes
the following mutations independently of the other sites:

5



• Substitution. The site state is flipped with probability ps > 0.

• Deletion. The site is deleted with probability pd > 0.

• Insertion. A new site is created to the right of the current site with
probability pi > 0. The state of this new site is uniform on {0, 1}.

These operations occur independently of each other. The last two are called
indels. We let pid = pi + pd and θs = 1− 2ps. The parameters ps, pd, pi may
depend on k and n.

Remark 1.2. For convenience, our model of mutation is intentionally sim-
plistic. In the biology literature, continuous-time Markov models on the al-
phabet {A, G, C, T} are often used for this type of process [38, 39, 40, 41, 43,
58]. We expect that it should be straightforward to extend our results to such
models by proper modifications to the algorithm.

1.2. Results

Statement of results. Our main result is the following. Denote by X =
X1, . . . , Xk a binary uniform sequence of length k. Run the evolutionary
process on T

(d)
H with root sequence X and let Y1, . . . ,Yn be the sequences

obtained at the leaves, where Yi = Y i
1 , . . . , Y

i
ki

.

Theorem 1.3 (Main result). For all χ > 0, there is Φ,Φ′,Φ′′ > 0 and
d′′ > 0 such that the following holds for d ≥ d′′ and β = d−1. There is a
polynomial-time algorithm A with access to Y1, . . . ,Yn such that for all

(1− 2ps)
2 >

Φ log d

d
,

pi + pd <
Φ′

k2/3 log n
,

Φ′′ log3 n < k < poly(n),

the algorithm A outputs a binary sequence X̂ which satisfies the following
with probability at least 1− χ:

1. X̂ = X̂1, . . . , X̂k has length k.

2. For all j = 1, . . . , k, P[X̂j = Xj] > 1− β.
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Remark 1.4. Notice that we assume, for simplicity, that the sequence length
of the root is known.

Remark 1.5. In fact, we prove a stronger result which shows that the agree-
ment between X̂ and X stochastically dominates an i.i.d. Bernoulli sequence
with success probability 1− β.

Proof sketch. We give a brief proof sketch. The full proof is detailed in
Sections 3 to 5. As discussed previously, in the presence of indels the recon-
struction of ancestral sequences requires the solution of the multiple sequence
alignment problem. In addition to being computationally intractable, the
standard global alignment approach through the optimization of a pairwise
scoring function may create biases and correlations that are hard to quantify.
We introduce a more probabilistic approach. From a purely information-
theoretic point of view the pairwise alignment of sequences that are far apart
in the tree is difficult. A natural solution to this problem is instead to align
sequences that are close by in the tree, perform ancestral reconstructions of
these sequences, and recurse our way up the tree.

This recursive approach raises its own set of issues. Consider a parent
node and its d children. It may be easy to align the children’s sequences and
derive a good approximation to the parent sequence (for example, through
site-wise majority). Note however that, to allow a recursion of this procedure
all the way to the root, we have to provide strong guarantees about the
probabilistic behavior of our level-wise ancestral reconstruction. A careless
alignment procedure creates biases and correlations that are hard to control.
For instance, it is tempting to treat misaligned sites as independent unbiased
noise but this idea presents difficulties:

Consider a site j of the parent sequence and suppose that for this
site we have succeeded in aligning all but two of the children,
say 1 and 2. Let X i

ji
denote the site in the i’th child which was

used to estimate the j’th site. By the independence assumption
on the root sequence and the inserted sites, X1

j1
and X2

j2
are

uniform and independent of (X i
ji

)di=3. However, X1
j1

and X2
j2

may
originate from the same neighboring site of the parent sequence
and therefore are themselves correlated.

Quantifying the effect of this type of correlation appears to be nontrivial.
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Instead, we use an adversarial approach to ancestral reconstruction. That
is, we treat the misaligned sites as being controlled by an adversary who seeks
to flip the reconstructed value. This comes at a cost: it produces an asym-
metry in our ancestral reconstruction. Although the RP is well-studied in
the symmetric noise case, much remains to be understood in the asymmetric
case. In particular, obtaining tight results in terms of substitution proba-
bility here may not be possible as the critical threshold of the RP may be
hard to identify. We do however provide a tailored analysis of the particular
instance of the RP by recursive majority obtained through this adversarial
approach and we obtain results that are close to the known threshold for
the symmetric case. Unlike the standard RP, the reconstruction error is not
i.i.d. but we show instead that it “dominates” an i.i.d. noise. (See Section 4.2
for a definition.) This turns out to be enough for a well-controlled recursion.
We first define a level-wise alignment procedure which has a good success
probability (independent of n). However, applying this alignment procedure
multiple times in the tree is bound to fail sometimes. We therefore prove
that the reconstruction procedure is somewhat robust in the sense that even
if one of the d inputs to the reconstruction procedure is faulty, it still has a
good probability of success.

As for our level-wise alignment procedure, we adopt an anchor approach.
Anchors were also used by [4, 5]—although in a quite different way. We
imagine a partition of every node’s sequence into islands of length O(k1/3).
(The precise choice of the island length comes from a trade-off between the
length and the number of islands in bounding the “bad” events below.) At
the beginning of each island we have an anchor of length O(log n). Through
this partition of the sequences in islands and anchors we aim to guarantee
the following. Given a specific father node v, with fair probability 1) all
the anchors in the children nodes are indel-free; and 2) for all parent is-
lands, almost all of the corresponding children islands have no indel at all
and, moreover, at most one child island may have a single indel. The “bad”
children islands—those that do not satisfy these properties—are treated as
controlled by an adversary. We show that Conditions 1) and 2) are suffi-
cient to guarantee that: the anchors of all islands can be aligned with high
probability and single indel events between anchors can be identified. This
allows an alignment of all islands with at most one “bad” child per island
and is enough to perform a successful adversarial recursive majority vote as
described above. The bound on the maximum indel probability sustained
by our reconstruction algorithm comes from satisfying Conditions 1) and 2)
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above.

Notation. For a sequence X = X1, . . . , Xk, we let X[i : j] = Xi, . . . , Xj. We
use the expression “with high probability (w.h.p.)” to mean “with prob-
ability at least 1 − 1/poly(n)” where the polynomial in n can be made of
arbitrarily high degree by choosing the appropriate constants large enough.
We denote by Bin(n, p) a random variable with binomial distribution of pa-
rameters n, p. For two random variables X, Y we denote by X ∼ Y the
equality in distribution.

2. Description of the Algorithm

In this section we describe our algorithm for TRPT. Our algorithm is
recursive, proceeding from the leaves of the tree to the root. We describe the
recursive step applied to a non-leaf node of the tree.

Recursive Setup—Our Goal. For our discussion in this section, let us consider
a non-leaf node v with d children, denoted ui for i ∈ [d]. For notational
convenience, we drop the index u and denote its children by 1, . . . , d. Our goal
for the recursive step of the algorithm is to reconstruct the sequence at the
node v given the sequences of the children. Denote the sites of the father by
X0 = X0

1 , . . . , X
0
k0

, and the sites of the i’th child by Xi = X i
1, . . . , X

i
ki

. During
the reconstruction process, we do not have access to the children’s sequences,
but rather to reconstructed sequences denoted by X̂i = X̂ i

1, . . . X̂
i
k̂i

.

Let us consider the following partition of the sequence of v into sub-
sequences, called islands. Of course our algorithm does not have access
to the sequence at v during the recursive step of the algorithm. We de-
fine the partition as a means to describe our algorithm: The sites of v are
partitioned into islands of length ` = k1/3 (except for the last one which
is possibly shorter). Denote by N0 = dk0/`e the number of islands in v.
Each island starts with an anchor of a bits. That is, the islands are the
bitstrings X0[1 : `], X0[` + 1 : 2`], . . . and the anchors are the bitstrings
X0[1 : a], X0[`+ 1 : `+ a], . . ..

Our algorithm tries to identify, for each island X0[(i − 1)` + 1 : i`], the
substrings of each of the d children that correspond to this island (that is,
contain the sites of the island), called “child islands” and then performs
ancestral reconstruction on the aligned child islands by site-wise majority.
This task is not straightforward because of the shifts produced by indels.
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We proceed iteratively for i = 1 . . . N0. We use the islands that have been
identified as indel-free for ancestral reconstruction.

Some islands do have indels however. This leads to two “modes of failure”:
one invalidates the entire (parent) node, and the other invalidates only an
island of a child. More specifically, a parent node becomes invalidated (that
is, useless) when indels are not evenly distributed, that is: when an indel
occured in an anchor, or two (or more) indels occured in a specific island
over all d children. This is a rare event. Barring this event, each island
suffers only at most one indel over all children. The island (of a child) that
has exactly one indel is invalidated (second mode of failure), and is thus
deemed useless for reconstruction purposes. As long as the parent node is
not invalidated, each island will have at least d− 2 non-invalidated children
islands with high probability (one additional island is potentially lost to a
child node that may have been invalidated at an earlier stage; see Section 3.2).

Even when the algorithm identifies that a child island has an indel some-
where, the island is not ignored. The algorithm still needs to compute the
length of the island in order to know the start of the next island in this child.
For this purpose, we use the anchor of the next island and match it to the
corresponding anchors of the other (non-invalidated) child islands. In fact
the same procedure lets us detect which of the child islands are invalidated.

More formally, we define d functions fi : {1, . . . , k0} → {1, . . . , ki} ∪ {†},
where fi takes a site of v to the corresponding site of the i’th child or to
the special symbol † if the site was deleted. Note that for each i, fi is
monotone, when ignoring sites which are mapped to †. For t = `r, let
si(r) = fi(t+ 1)− (t+ 1) denote the displacement in the ith child of the site
corresponding to the (t + 1)st site of the parent, that is, the starting site of
the (r+1)’th island. (We leave si(r) undefined if fi(t+1) = †. Below, we will
only be interested in a subtree where this does not happen. See Section 3.2.)
By convention, we take si(0) = 0. If there is no indel between t = `r and
t′ = `r′ then si(r) = si(r

′) (assuming si(r) and si(r
′) are well-defined). Note

that, in the specific case of one indel operation in the r-th island, we have
that |si(r − 1)− si(r)| = 1 (assuming si(r − 1) and si(r) are well-defined).

Algorithm. Our algorithm estimates the values of si(r) and uses these esti-
mates to match the starting positions of the islands in the children. The
full algorithm is given in Figure 1. We use the following additional nota-
tion. For x ∈ {0, 1}, we let 〈x〉 = 2x − 1. Then, for two {0, 1}m-sequences
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Y = y1, . . . , ym and Z = z1, . . . , zm, we define their (empirical) correlation as

Corr(Y, Z) =
1

m

m∑
j=1

〈yj〉〈zj〉.

Note that y 7→ 〈y〉 maps 1 to 1 and 0 to −1. One can think of Corr(Y, Z)
as a form of normalized centered Hamming distance between Y and Z. In
particular, a large value of Corr(Y, Z) implies that Y and Z tend to agree.
We will use the following threshold (which will be justified in Section 5.1)

γ = ((1− δ)(1− 2ps)
2 − 4β),

where δ is chosen so that

(1− δ)(1− 2ps)
2 − 8β > δ + 8β,

where again β = d−1 and d is large enough.

3. Analyzing the Indel Process

We define a ≥ C log n and α ≤ ε/d < 1, for constants C, ε to be de-
termined later. We require a < k1/3 < poly(n). We assume that the indel
probability per site satisfies

pid =
α

4dk2/3a
= O

(
1

k2/3 log n

)
.

Throughout, we denote the tree by T = (V,E).

3.1. Bound on the Sequence Length

As the indel probability is defined per site, longer sequences suffer more
indel operations than shorter ones. We begin by bounding the effect of this
process. We claim that with high probability the lengths of all sequences are
roughly equal.

Lemma 3.1 (Bound on sequence length). For all ζ > 0 (small), there
exists C ′ > 0 (large) so that for all u in V , we have

kv ∈ [k, k̄] ≡ [(1− ζ)k, (1 + ζ)k],

with high probability given k ≥ C ′ log3 n. We denote this event by L.
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Proof of Lemma 3.1: We prove the upper bound by assuming there is
no deletion. The lower bound can be proved similarly. The proof goes by
induction. Let v be a node at graph distance i from the root. We show that
there is C ′′ > 0 independent of i such that

kv ≤ k + i
√
C ′′k log n.

Since the depth of T is O(log n), this implies the main claim as long as√
C ′′k log n log n ≤ ζk,

which follows from our assumption for C ′ > 0 large enough.
The base case of the induction is satisfied trivially. Assume the induction

claim holds for v, the parent of u. It suffices to show that the number
of new insertions is at most

√
C ′′k log n. By our induction hypothesis, the

number of insertions is bounded above by a binomial Z with parameters
k + (i − 1)

√
C ′′k log n ≤ (1 + ζ)k and pid w.h.p. By Hoeffding’s inequality,

taking

η =

√
C ′′′ log n

(1 + ζ)k
,

we have

P[Z > (1 + ζ)kpid + (1 + ζ)kη] < exp(−2((1 + ζ)kη)2/[(1 + ζ)k])

= 1/poly(n).

By our assumption on pid, we have

(1 + ζ)kpid = O

(
αk1/3

log n

)
,

so that choosing C ′′ large enough gives

(1 + ζ)kpid + (1 + ζ)kη ≤
√
C ′′k log n.

This proves the claim. �

3.2. Existence of a Dense Stable Subtree

We claim that with probability close to 1 there exists a dense subtree
of T with a “good indel structure,” as defined below. Our algorithm will
try to identify this subtree and perform reconstruction on it, as described in
Section 4.
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Indel structure of a node. Recall that ` = k1/3.

Definition 3.2 (Indel structure). For a node (parent) v, we say that v is
radioactive if one of the following events happen:

1. Event B1: Node v has a child u such that when evolving from v to u an
indel operation occurred in at least one of the sites which are located in
an anchor.

2. Event B2: There is an island I and two children u, u′, such that an
indel occurred in I in the transition from v to u and in the transition
from v to u′.

3. Event B3: There is an island I and a child u, such that two indel
operations (or more) happened in I in the transition from v to u.

Otherwise the node v is stable. By definition, the leaves of T are stable. A
subtree of T is stable if all of its nodes are stable.

Lemma 3.3 (Bound on radioactivity). For all 0 < α ≤ 1, there exists
a choice of ζ > 0 small enough in Lemma 3.1 such that conditioning on the
event L occuring: any vertex v is radioactive with probability at most α.

Proof of Lemma 3.3: According to Lemma 3.1, the length of the sequence
at v is in [k, k̄] w.h.p. We denote that event by Lv. We bound the probability
of events B1,B2,B3 separately.

Let N = k̄/` = (1 + ζ)k2/3. Conditioned on Lv, there are at most N
anchors, each of length a. By a union bound, the probability that at least
one of the sites in the anchors has an indel operation in any child is upper
bounded by

P[B1] = P[B1 | Lv]P[Lv] + P[B1 | Lcv]P[Lcv]
≤ Nadpid + 1/poly(n)

=
αadN

4k2/3ad
+ 1/poly(n)

=
(1 + ζ)k2/3

k2/3
· α

4
+ 1/poly(n)

< α(1/3− 1/poly(n)),

where we choose ζ small enough. The quantity we want to estimate is in fact
P[B1 | L] (which is not the same as conditioning on Lv only). But notice that

P[B1] = P[B1 | L]P[L] + P[B1 | Lc]P[Lc] ≥ P[B1 | L]P[L],
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which implies

P[B1 | L] ≤ α(1/3− 1/poly(n))

1− 1/poly(n)
< α/3.

(This argument shows that it suffices to condition on Lv. We apply the same
trick below.)

To bound the probability of the second event, consider an island I and a
son u. The probability that there is an indel when evolving from v to u is at
most

pid` =
α

4k2/3ad
k1/3 =

α

4k1/3ad
.

Thus, the probability that more than one child of v experiences an indel in
I is at most

d∑
i=2

(
d

i

)( α

4k1/3ad

)i
≤

d∑
i=2

di

i!

( α

4k1/3ad

)i
≤

d∑
i=2

1

i!

( α

4k1/3a

)i
≤ e

( α

4k1/3a

)2

=
eα2

16k2/3a2
,

where we used that the expression in parenthesis on the second line is < 1.
Taking a union bound over all islands, the probability that at least two
children experience an indel in the same island is at most

P[B2 | L] ≤ N · eα2

16k2/3a2

=
(1 + ζ)eα2

16a2

<
α

3
,

where we used that α < 1.
For the third event, consider again an island I and a child u. The prob-

ability that at least two indel operations occur in I when evolving from v to
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u is at most

2∑̀
i=2

(
2`

i

)( α

4adk2/3

)i
≤

2∑̀
i=2

1

i!

(
2`α

4adk2/3

)i
≤

2∑̀
i=2

1

i!

( α

2adk1/3

)i
≤ e

( α

2adk1/3

)2

≤ eα2

4a2d2k2/3
.

(We use 2` to account for insertions and deletions.) Taking a union bound
over all islands and children, the probability that there are two indel opera-
tions in the same child in the same island is bounded by

P[B3 | L] ≤ dN
eα2

4a2d2k2/3

≤ (1 + ζ)eα2

4a2d
< α/3.

Taking a union bound over the three ways in which a site can become ra-
dioactive proves the lemma. �

Lemma 3.4 (Existence of a dense stable subtree). For all 0 < χ < 1,
there is a choice of ζ > 0 small enough in Lemma 3.1 such that, conditioning
on the event L occuring, with probability at least 1 − χ, the root of T is the
father of a (d− 1)-ary stable subtree of T . We denote this event by S.

Proof of Lemma 3.4: We follow a proof of [19]. Let v be a node at
distance r from the leaves. We let νr be the probability that v is the root of
a (d− 1)-ary stable subtree conditioned on L. Let

g(ν) = νd + dνd−1(1− ν).

We argue as in Lemma 3.3. Let ν ′r (respectively ν ′r−1) be the probability that
v (respectively one of its children) is the root of a (d− 1)-ary stable subtree
conditioned on Lv (defined in Lemma 3.3). Then

ν ′r ≥ (1− α)g(ν ′r−1).
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By the argument in Lemma 3.3, ν ′r = νr + 1/poly(n) and ν ′r−1 = νr−1 +
1/poly(n) so that the previous inequality holds without the primes up to an
additive 1/poly(n) term.

Note that
g′(ν) = d(d− 2)νd−2(1− ν).

In particular, g is monotone, g(1) = 1, and g′(1) = 0. Hence, for all 0 < χ <
1, there is 1− χ < ν∗ < 1 such that

g(ν∗) > ν∗.

Then, taking α small enough that

1− α > ν∗/g(ν∗),

we have

νr & (1− α)g(νr−1) &
ν∗

g(ν∗)
g(νr−1) & ν∗ > 1− χ,

by the induction hypothesis that νr−1 ≥ ν∗, where & indicates inequality up
to an additive 1/poly(n) term. Note in particular that ν0 = 1 ≥ ν∗. �

4. A Stylized Reconstruction Process

We describe a hypothetical sequence reconstruction process performed
on the stable tree defined from the indels. Assuming that the radioactive
nodes and the islands with indels are controlled by an adversary, we argue
that the process gives strong reconstruction guarantees. In the next section,
we will then argue that the true algorithm performs at least as well as this
hypothetical reconstruction process against an adversary. Throughout we
suppose that a stable tree exists and is given to us, together with the “orbit”
of every site of the sequence at the root of the tree (see function F below).
However, we are given no information about the substitution process.

Let v ∈ V and assume v is the root of a (d − 1)-ary stable subtree
T ∗ = (V ∗, E∗) of T . (We make the stable subtree below v into a (d− 1)-ary
tree by removing nodes from it at random.) Let u ∈ V ∗. For each island
I in u, at most one child u′ of u in T ∗ contains an indel in which case it
contains exactly one indel. We say that such an I is a corrupted island of
u′. The basic intuition behind our analysis is that, provided the alignment
on T ∗ is performed correctly (which we defer to Section 5.2), the ancestral
reconstruction step of our algorithm is a recursive majority procedure against
an adversary which controls the corrupted islands and the radioactive nodes
(as well as all their descendants). Below we analyze this adversarial process.
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Recursive majority. We begin with a formal definition of recursive majority.
Let Maj : {0, 1, ]}d → {0, 1} be the function that returns the majority value
over non-] values, and flips an unbiased coin in case of a tie (including the all-
] vector). Let n0 = dH0 be the number of leaves in T below v. Consider the
following recursive function of z = (z1, z2, . . . , zn0) ∈ {0, 1, ]}: Maj0(z1) = z1,
and

Majj(z1, . . . , zdj)

= Maj(Majj−1(z1, . . . , zd(j−1)), . . . ,

Majj−1(zdj−d(j−1)+1, . . . , zdj)),

for all j = 1, . . . , H0. Then, MajH0(z) is the d-wise recursive majority of z.
Let X0 = X0

1 , . . . , X
0
k0

be the sequence at v. For u ∈ V ∗ and t = 1, . . . , k0,
we denote by Fu(t) the position of site X0

t in u or † if the site has been deleted
on the path to u. We say that Cu,t holds if Fu(t) is in a corrupted island of
u. Let Path(u, v) be the set of nodes on the path between u and v.

Definition 4.1 (Gateway node). A node u is a gateway for site t if:

1. Fu(t) 6= †; and

2. For all u′ ∈ Path(u, v)− {v}, Cu′,t does not hold.

We let T ∗∗t = (V ∗∗t , E∗∗t ) be the subtree of T ∗ containing all gateway nodes
for t. By construction, T ∗∗t is at least (d − 2)-ary and for convenience we
remove nodes at random to make it exactly (d − 2)-ary. Notice that, for
t, t′ ∈ [1 : k0], the subtrees T ∗∗t and T ∗∗t′ are random and correlated. However,
they are independent of the substitution process.

We will argue in Section 5.2 that the reconstructed sequence produced
by our method at v “dominates” (see below) the following reconstruction
process. Let Lv = u1, . . . , un0 be the leaves below v ordered according to a
planar realization of the subtree below v. Denote by Xi = X i

1, . . . , X
i
ki

the
sequence at ui. For t = 1, . . . , k0, let L∗∗t be the leaves of T ∗∗t . We define the
following auxiliary sequences: for ui ∈ Lv, we let Ξi = ξi1, . . . , ξ

i
ki

where for
t = 1, . . . , k0

ξit =

{
X i
Fui (t)

if ui ∈ L∗∗t
1−X0

t o.w.

In words, ξit is the descendant of X0
t if ui is a gateway to t and is the opposite

of the value X0
t otherwise. Because of the monotonicity of recursive majority,

the latter choice is in some sense the “worst adversary” (ignoring correlations
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between sites—we will come back to this point later). We then define a

reconstructed sequence at v as Ξ̂0 = ξ̂0
1 , . . . , ξ̂

0
k0

where for t = 1, . . . , k0

ξ̂0
t = MajH0(ξ1

t , . . . , ξ
n0
t ).

We now analyze the accuracy of this (hypothetical) estimator—which we
refer to as the adversarial reconstruction of X0.

4.1. Recursive Majority Against an Adversary

To analyze the performance of the adversarial reconstuction Ξ̂0, we con-
sider the following stylized process.

Definition 4.2 (Adversarial Process). We consider the following process:

1. Run the evolutionary process on T
(d−2)
H0

at one position only starting
with root state 0 without indels, that is, taking pid = 0.

2. Then complete T
(d−2)
H0

into T
(d)
H0

and associate to each additional node
the state 1.

3. Let R
(d)
H0

be the random variable in {0, 1} obtained by running recursive
majority on the leaf states obtained above.

We call this process the recursive majority against an adversary on T
(d)
H0

.

Lemma 4.3 (Accuracy of recursive majority). There exists a constant
C ′′ > 0 and d′′ > 0 such that taking

θ2
s >

C ′′ log d

d
,

and d ≥ d′′, then the probability that the recursive majority against an ad-
versary on T

(d)
H0

correctly reconstructs root state 0 is at least 1− β uniformly
in H0 where β = d−1. In comparison, note that the Kesten-Stigum bound for
binary symmetric channels on d-ary trees is θ2 > d−1 [34, 59].

Proof of Lemma 4.3: Recall that we assume the root state is 0. Because
of the bias towards 1 from Part 2 in Definition 4.2, we cannot apply standard
results about recursive majority for symmetric channels [17, 13]. Instead, we
perform a tailored analysis of this particular channel.

We take asymptotics as d → +∞ and we show that the probability of
reconstruction can be taken to be

1− β = 1− 1

d
,
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for C ′′ large enough. Let v be the root of T
(d)
H0

. We denote by Zv the number
of non-adversarial children of v in state 0 and by Z ′v the number of nodes
among them that return 0 upon applying recursive majority to their respec-
tive subtree. Let q0

H0
be the probability of incorrect reconstruction at v (given

that the state at v is 0). Then

1− q0
H0
≥ P

[
Z ′v ≥

d+ 1

2

]
≥

d−2∑
i=0

P
[
Z ′v ≥

d+ 1

2
|Zv = i

]
P[Zv = i], (1)

where we simply ignored the contribution of the children who flipped to 1.
We prove q0

H0
≤ 1/d by induction on the height. Let u be a non-

adversarial node in T
(d)
H0

at height h from the leaves to which we associate
as above the variables Zu, Z

′
u and the quantity q0

h. Note that q0
0 = 0. We

assume the induction hypothesis holds for h − 1. Note that conditioned on
the state at u being 0 Zu is Bin(d− 2, (1− ps)) where

1− ps =
1 + θs

2
=

1

2
+ Θ

(√
log d

d

)
,

as d → +∞. Similarly, given Zu = i, the variable Z ′u is Bin(i, 1 − q0
h−1). In

particular, the quantity

P
[
Z ′u ≥

d+ 1

2
|Zu = i

]
,

is monotone in i. We use Chernoff’s bound on Z ′u to truncate the lower
bound (1). Indeed, let

µ = (1− ps)(d− 2) =
d

2
+ Υ(d),

with
Υ(d) = Θ(

√
d log d),

and

µ(1− η) =
d

2
+

Υ(d)

2
,
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where in particular

η = Θ

(√
log d

d

)
.

Then, we have

P[Zu < µ(1− η)] < exp
(
−µη2/2

)
= d−Ω(1),

for C ′′ large enough. Applying to (1) leads to the lower bound

1− q0
h ≥ (1− d−Ω(1))P

[
Bin

(
d

2
+

Υ(d)

2
, 1− q0

h−1

)
≥ d+ 1

2

]
,

where we used monotonicity. By the induction hypothesis, q0
h−1 ≤ 1/d. By

applying Chernoff’s bound again we get

P
[
Bin

(
d

2
+

Υ(d)

2
, 1− q0

h−1

)
≥ d+ 1

2

]
> 1− d−Ω(1),

and therefore q0
h ≤ 1/d. This proves the claim. �

Definition 4.4 (Bernoulli sequence). For q > 0 and m ∈ N, the (q,m)-
Bernoulli sequence is the product distribution on {0, 1}m such that each po-
sition is 1 independently with probability 1− q. We denote by Bq,m the cor-
responding random variable.

Lemma 4.5 (Subsequence reconstruction). Assume v is the root of a
(d− 1)-ary stable subtree. Choosing C ′′ > 0 and d′′ > 0 as in Lemma 4.3 is
such that the following holds for d ≥ d′′ and β = d−1. For t,m ∈ {1, . . . , k0},
let Λ = (λ1, . . . , λm) be the agreement vector between the Ξ̂0[t+1 : t+m] and
X0[t + 1 : t + m], that is, λi = 1 if recursive majority correctly reconstructs
position i. Then there is 0 ≤ β′ ≤ β such that Λ ∼ Bβ′,m. (Here, β′ may
depend on H0 but β does not.)

Proof of Lemma 4.5: As we pointed out earlier, although the subtrees
(T ∗∗t′ )t+mt′=t+1 are correlated by the construction of the islands, they are in-
dependent of the substitution process. By forcing (randomly) the subtrees
(T ∗∗t′ )t+mt′=t+1 to be (d − 2)-ary and fixing the adversarial nodes to 1 (as per
Part 2 in Definition 4.2), we restore the i.i.d. nature of the reconstruction
process on the sites, from which the result follows. �
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4.2. Stochastic Domination and Correlation

In our discussion so far we have assumed that a stable tree exists and
is given to us, together with the function F . This allowed us to define the
stylized recursive majority process against an adversary for which we claimed
strong reconstruction guarantees. In reality, we have no access to the stable
tree. We construct it recursively from the leaves to the root. At the same time
we align sequences, discover corrupted islands, and reconstruct sequences
of internal nodes. The stylized recursive majority process may be used to
provide a lower bound on the actual reconstruction process. The notion of
lower bound that is of interest to us is captured by stochastic domination,
which we recall.

Definition 4.6 (Stochastic domination). Let X,Y be two random vari-
ables in {0, 1}m. We say that Y stochastically dominates X, denoted X � Y,

if there is a joint random variable (X̃, Ỹ) such that the marginals satisfy

X ∼ X̃ and Y ∼ Ỹ and moreover P[X̃ ≤ Ỹ] = 1.

Correlation. The analysis of the previous section guarantees that the se-
quences output by the adversarial reconstruction process are well corre-
lated with the true sequences. Now we establish that, under stochas-
tic domination, the inter-sequence correlation is preserved. We first estab-
lish an important property of the adversarial process. Let Tu and Tv be
the two disjoint copies of T

(d)
h rooted at the nodes u and v respectively,

and let X = X1, X2, . . . , Xm ∈ {0, 1}m and Y = Y1, Y2, . . . , Ym ∈ {0, 1}m
be sequences at the nodes u and v. Assume that u and v are the roots
of (d − 1)-ary stable subtrees. Let X̂′ = X̂ ′1, X̂

′
2, . . . , X̂

′
m ∈ {0, 1}m and

Ŷ′ = Ŷ ′1 , Ŷ
′

2 , . . . , Ŷ
′
m ∈ {0, 1}m be the reconstructions of X and Y ob-

tained by the adversarial reconstruction process. Let Λ = λ1, . . . , λm and
Θ = θ1, . . . , θm be the resulting agreement vectors.

Lemma 4.7 (Concentration of bias). Let β′, β be as in Lemma 4.5. Then,
with probability at least 1− e−Ω(mβ2) the following are satisfied∣∣∣∣∣ 1

m

m∑
i=1

〈λi〉〈θi〉 − (1− 2β′)2

∣∣∣∣∣ ≤ 1

2
β;

∣∣∣∣∣ 1

m

m∑
i=1

1〈λi〉=−1 − β′
∣∣∣∣∣ ≤ 1

2
β;
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∣∣∣∣∣ 1

m

m∑
i=1

1〈θi〉=−1 − β′
∣∣∣∣∣ ≤ 1

2
β.

Proof of Lemma 4.7: This follows from Lemma 4.5, the independence of
Λ and Θ, and three applications of Hoeffding’s lemma. �

Lemma 4.8 (Correlation bound). Let X̂, Ŷ ∈ {0, 1}m be random strings

defined on the same probability space as X̂′ and Ŷ′. Denote by Z (resp. W)

the agreement vectors of X̂ (resp. Ŷ) with X (resp. Y). Assume that Λ ≤ Z
and Θ ≤ W with probability 1, where Λ and Θ are the agreement vectors
of X̂′ and Ŷ′ with X and Y as explained above. Then, conditioned on the
conclusions of Lemma 4.7, we have, with probability 1

|Corr(X,Y)− Corr(X̂, Ŷ)| ≤ 8β.

Proof of Lemma 4.8: Note that

Corr(X̂, Ŷ) =
1

m

m∑
i=1

〈X̂i〉〈Ŷi〉 =
1

m

m∑
i=1

〈Xi〉〈Yi〉〈Zi〉〈Wi〉.

Hence,

|Corr(X,Y)− Corr(X̂, Ŷ)| ≤ 1

m

m∑
i=1

(1− 〈Zi〉〈Wi〉) = 1− 1

m

m∑
i=1

〈Zi〉〈Wi〉.

Now notice by case analysis that

〈Zi〉〈Wi〉 ≥ 〈λi〉〈θi〉 − 1〈λi〉=−1 − 1〈θi〉=−1.

The claim follows from the bounds in Lemma 4.7 which imply

1− 1

m

m∑
i=1

〈Zi〉〈Wi〉 ≤ 1− (1− 2β′)2 + 2β′ +
3

2
β ≤ 8β,

where we used 0 ≤ β′ ≤ β. �

5. Analyzing the True Reconstruction Process

In Section 5.1 we argue that, if a stable subtree exists, the adversarial
reconstructions of aligned children anchors of the same parent node exhibit
strong correlation signal between them, while misaligned anchors exhibit
weak signal. This holds true for sequences that stochastically dominate the
adversarial reconstructions as well. See the “Anchor alignment” step in Fig-
ure 1.

Then in Section 5.2 we prove the correctness of our recursive procedure.
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5.1. Anchor Alignment

Consider a parent v that is stable. Let i, j be two children with sequences
Xi = X i

1, . . . , X
i
ki

and Xj = Xj
1 , . . . , X

j
kj

. Let t = `r and consider the

following subsequences (of length a) at i and j

A i
r = X i[t+ si(r) + 1 : t+ si(r) + a],

and
A j
r = Xj[t+ sj(r) + 1 : t+ sj(r) + a].

These are related (but not identical) to the definition of anchors in the al-
gorithm of Section 2. In particular, note that by definition A i

r and A j
r are

always aligned, in the sense that they correspond to the same subsequence
of v. Consider also the following subsequences

D j
r = Xj[t+ sj(r) : t+ sj(r) + a− 1],

and
I j
r = Xj[t+ sj(r) + 2 : t+ sj(r) + a+ 1].

These are the one-site shifted subsequences for j. We claim that A i
r is always

significantly more correlated to its aligned brother A j
r than to the misaligned

ones D j
r and I j

r . This follows from the fact that the misaligned subsequences
are sitewise independent. Recall that β = d−1 and (1− 2ps)

2 = Ω( log d
d

).

Lemma 5.1 (Anchor correlations). For all δ > 0 (and d large enough)
such that (1− δ)(1− 2ps)

2− 8β > δ+ 8β, there is C > 0 large enough so that
with a = C log n, the following hold:

1. Aligned anchors.

P
[
Corr(A i

r ,A
j
r ) > (1− δ)(1− 2ps)

2
]

> 1− exp (−Ω(a)) = 1− 1/poly(n).

2. Misaligned anchors.

P
[
Corr(A i

r ,D
j
r ) < δ

]
> 1− exp (−Ω(a)) = 1− 1/poly(n),

and similarly for I j
r .
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We denote by Ai,j,r the above events and their symmetric counterparts under
i↔ j, that is, under the exchange of i and j.

Proof of Lemma 5.1: For the first claim note that, assuming that the
parent v is stable, the expectation of Corr(A i

r ,A
j
r ) is θ2

s = (1− 2ps)
2 where

we used that 1) there is no indel in the sites [t+ 1 : t+ a] between v and i, j;
2) that the sites are perfectly aligned; and 3) that the substitution process is
independent of the indel process. We also used the fact that the θs’s behave
multiplicatively along a path under our model of substitution [8]. The result
then follows from Hoeffding’s inequality.

For the second claim, because the anchors are now misaligned the t′-th
term in Corr(A i

r ,D
j
r ) for t′ ∈ [t+1 : t+a] is the variable 〈X i

t′+si(r)
〉〈Xj

t′+sj(r)−1〉
which is uniform in {−1,+1}. In particular, we now have the expectation of
Corr(A i

r ,D
j
r ) is 0. The result follows from the method of bounded differences

applied to the independent vectors

{(X i
t′+si(r)

, Xj
t′+sj(r))}

t+a
t′=t.

�

Lemma 5.2 (Reconstructed version). Let X̂i = (X̂ i
ι)
ki
ι=1 and X̂j = (X̂j

ι )
kj
ι=1

dominate the adversarial reconstructions X̂′i and X̂′j of Xi and Xj, as defined

in Lemma 4.8. Let Â i
r = X̂ i[t+ si(r) + 1 : t+ si(r) + a] and similarly for all

other possibilities Â ↔ D̂ , Î and/or i ↔ j. Denote by Bi,j,r the event that

the conclusions of Lemma 4.7 hold for X̂′i and X̂′j over all pairs of intervals
involving [t + si(r) : t + si(r) + a − 1], [t + si(r) + 1 : t + si(r) + a], and
[t+ si(r) + 2 : t+ si(r) + a+ 1], with i↔ j as necessary. Then, conditioned
on Bi,j,r and Ai,j,r we have

Corr(Â i
r , Â

j
r ) > (1− δ)(1− 2ps)

2 − 8β,

Corr(Â i
r , D̂

j
r ) < δ + 8β,

and
Corr(Â i

r , Î
j
r ) < δ + 8β,

as well as their symmetric counterparts under i↔ j.

Proof of Lemma 5.2: This follows from Lemmas 4.8 and 5.1 and the
triangle inequality. �
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5.2. Proof of Correctness

Recall the definitions of the events L, S, Bi,j,r, Ai,j,r from Lemmas 3.1, 3.4,
5.1 and 5.2. Conditioning on L and S, denote by T ∗ = (V ∗, E∗) the stable
(d − 1)-ary subtree of T . Then, for all v ∈ V ∗, all pairs of children i, j of
v in T ∗, and all r = 1, . . . , k̄/`, we condition on the events Bi,j,r and Ai,j,r.
Note that having conditioned on L there is only a polynomial number of
such events, since all sequence lengths are bounded by k̄. (If r` is larger
than a node’s sequence length we assume that the corresponding events are
vacuously satisfied.) Finally recall that, conditioning on L, the event S occurs
with probability 1− χ and all other events occur with high probability. We
denote the collection of events by E .

Conditioning on E , the proof of correctness of the algorithm follows from
a bottom-up induction. Suppose that at a recursive step of the algorithm we
have reconstructed sequences for all children of a node v, which are strongly
correlated with the true sequences (in the sense of dominating the correspond-
ing adversarial reconstructions). Having conditioned on the events Ai,j,r and
Bi,j,r, it follows then that the correct alignments of anchors exhibit strong cor-
relation signal while the incorrect alignments weak correlation signal. Hence,
our correlation tests between anchors discover the corrupted islands and do
the anchor alignments correctly (at least for all nodes lying inside the stable
tree). Hence the shift functions ŝi’s are correctly inferred, and the reconstruc-
tion of v’s sequence can be shown to dominate the corresponding adversarial
reconstruction. We proceed with a formal proof.

Proof of Theorem 1.3: Having conditioned on the event E , we justify the
correctness of our reconstruction method via the following induction. The
top level of the induction establishes Theorem 1.3. Below we use the notation
introduced in Figure 1.

Induction hypothesis. Consider a parent v in T ∗; in particular, v is stable.
We assume that the following conditions, denoted by (?), are satisfied: For
all children i ∈ [d] of v belonging to T ∗

1. Alignment. For all children i′ of i with i′ ∈ T ∗ and all r = 1, . . . , k̄/`−
1,

ŝi′(r) = si′(r). (2)

(This condition is trivially satisfied for values of r` that are larger than
the sequence length of i′.)

25



2. Reconstruction. Moreover, we have k̂i = ki and for all t = 1, . . . , ki,
the following holds:

Let Li be the leaves below i with ni = |Li|. Let H be the level
of v. Let L∗∗t be the gateway leaves for site t. For u ∈ L∗∗t
let Fu(t) be the position of site t in u. Note that X̂ i

t can be
written as X̂ i

t = MajH−1(z1, . . . , zni
), where zj is either ] or

Xj
[j

for an appropriate function [j. Our hypothesis is that

∀u ∈ L∗∗t , [u = Fu(t). (3)

In particular, the ancestral reconstruction X̂i dominates the adversarial
reconstruction X̂′i.

The base case where v is a leaf is trivially satisfied.

Alignment. We begin with the correctness of the alignment.

Lemma 5.3 (Induction: Alignment). Assuming E and (?), the algorithm
infers si correctly for all children i ∈ [d] which are also in T ∗, that is, (2)
holds for v.

Proof of Lemma 5.3: Let Π denote the set of children of v in T ∗. The
proof follows by induction on r. The base case r = 0 is trivial. Assume
correctness for r − 1.

If there is no indel in any of the children i ∈ Π between the sites (r− 1)`
and r` of v, then under E , (?) and Lemma 5.2 we have Π ⊆ Gr. In that case,
for all i ∈ Π we have ŝi(r) = ŝi(r − 1) = si(r − 1) = si(r), where the second
equality is from (?).

If there is an indel operation in island r, then since v is stable only one
indel operation occurred in one child. Denote the child with an indel by
j. Assume the indel is a deletion. (The case of the insertion is handled
similarly.) If j is not in T ∗ we are back to the previous case. So assume j
is in T ∗. Again, from E , (?) and Lemma 5.2 the other children in T ∗ are
added to the set Gr, and the shift value will be computed correctly for them.
Moreover by (?), for every i ∈ Π− {j},

fi(r`+ 1) = r`+ 1 + si(r)

= r`+ 1 + ŝi(r)

= r`+ 1 + ŝi(r − 1),
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which is the starting point of Âir. Also,

fj(r`+ 1) = r`+ 1 + sj(r)

= r`+ 1 + sj(r − 1)− 1

= r`+ 1 + ŝj(r − 1)− 1

= r`+ ŝj(r − 1),

which is the starting point of D̂j
r. Thus according to Lemma 5.2 D̂j

r matches

Âir for all i ∈ Π ∩Gr. As there are d− 2 children in Π ∩Gr, we get that the
algorithm sets

ŝj(r) = ŝj(r − 1)− 1 = sj(r − 1)− 1 = sj(r),

as required. Note also that in this case, according to Lemma 5.2 again, Âjr
does not have high correlation with Âir for any i ∈ Π ∩Gr, and thus we will

consider Îjr and D̂j
r. Similarly, Îjr does not have high correlation with Âir for

any i ∈ Π ∩Gr, and thus we will not try to set ŝj(r) twice. �

Ancestral reconstruction. We use Lemma 5.3 to prove that the ancestral re-
construction dominates the adversarial reconstruction. In the algorithm, we
perform a sitewise majority vote over the children of v in Gr (these are the
aligned children—see the description of the algorithm in Figure 1). For no-
tational convenience, we assume that in fact we perform a majority vote over
all children but we replace the states of the children outside Gr with ].

Lemma 5.4 (Induction: Reconstruction). Assuming E, (?) and the con-
clusion of Lemma 5.3, (3) holds for v. In particular, the ancestral reconstruc-

tion X̂v dominates the adversarial reconstruction X̂′v.

Proof of Lemma 5.4: The second claim follows from the first one together
with the construction of the adversarial process and the monotonicity of
Maj (in the sense that, assuming the root state is 0, flipping the adversary’s
1s to 0s or ]s cannot flip Maj to 1).

As for the first claim, by Lemma 5.3 for each site of v there are d − 2
uncorrupted children islands containing this site such that the children are
also in T ∗. In particular, the d − 2 corresponding sites in the children are
correctly aligned. Moreover, by the induction hypothesis, each corresponding
site in the children satisfy (3). By taking a majority vote over these sites we
get (3) for v as well.
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One last detail is handling the case where the last island is shorter than
`. In that case, we add the last island to the previous one (and treat the
juxtaposition as a regular island in the analysis above). �

This concludes the proof of Theorem 1.3. �

6. Discussion

We have provided a novel algorithm for reconstructing ancestral sequences
in the presence of indels. The algorithm also provides a partial alignment of
the sequences at the leaves.

Several open problems remain. The bounds we obtained on the mutation
parameters are likely not tight. In particular, it is not clear whether the
bound on the indel probability should depend on k and n. Removing such
dependence appears to be a significant challenge.

Also, we have only considered trees with sufficiently high degrees. In
the biological context, one is generally interested in binary trees instead.
It may be possible to extend our result to that case by dividing the tree
into large subtrees. Such an approach was used successfully in the indel-free
case [17, 13]
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1. Input. Children sequences X̂1, . . . , X̂d.

2. Initialization. Set ŝi(0) := 0, ∀i, ` = k1/3, r = 1, and t = `.

3. Main loop. While X̂i[t+ ŝi(r−1)+1 : t+ ŝi(r−1)+a] is non-empty
for all i,

(a) Current position. Set t = `r.
(b) Anchor definition. For each i, set Âir = X̂i[t+ ŝi(r − 1) + 1 :

t + ŝi(r − 1) + a]. We say that Âir is the r’th anchor of the i’th
child. (If any of the remaining sequences is shorter than a, redo
the previous loop with the entire remaining sequences, that is,
use the anchor from the previous loop to align the rest of the
sequences.)

(c) Anchor alignment. For each anchor, we define the set of
anchors which agree with it. Formally, Gir = {j ∈ [d] :
Corr(Âir, Â

j
r) ≥ γ}.

(d) Update. Define the set of aligned children Gr = {i : |Gir| ≥
d− 2}.

i. Aligned anchors. For each i ∈ Gr, set ŝi(r) = ŝi(r − 1).
ii. Misaligned anchors. For each i 6∈ Gr define two strings

D̂i
r = X̂i[t + ŝi(r − 1) : t + ŝi(r − 1) + a − 1] and Îir =

X̂i[t+ ŝi(r − 1) + 2 : t+ ŝi(r − 1) + a+ 1]. If

|{j ∈ [d]− {i} : Corr(D̂i
r, Â

j
r) ≥ γ}| ≥ d− 2,

set ŝi(r) = ŝi(r − 1)− 1. If

|{j ∈ [d]− {i} : Corr(Îir, Â
j
r) ≥ γ}| ≥ d− 2,

set ŝi(r) = ŝi(r − 1) + 1.

(e) Ancestral sequence. Compute X̂0
t−`+1, . . . X̂

0
t by performing a

sitewise majority on the children in Gr.
(f) Increment. Set r := r + 1.

4. Output. Output X̂0 and set k̂0 to its length.

Figure 1: This is the basic recursive step of our reconstruction algorithm. It takes as
input the d inferred sequences of the children X̂1, . . . , X̂d and computes a sequence for the
parent X̂0. If any of the steps above cannot be accomplished, we abort the reconstruction
of the parent and declare it radioactive.
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