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Abstract
We present a new data structure for the c-approximate near neighbor problem (ANN) in the

Euclidean space. For n points in Rd, our algorithm achieves Oc(nρ + d logn) query time and
Oc(n1+ρ + d logn) space, where ρ ≤ 7/(8c2) + O(1/c3) + oc(1). This is the first improvement
over the result by Andoni and Indyk (FOCS 2006) and the first data structure that bypasses
a locality-sensitive hashing lower bound proved by O’Donnell, Wu and Zhou (ICS 2011). By
a standard reduction we obtain a data structure for the Hamming space and `1 norm with
ρ ≤ 7/(8c) + O(1/c3/2) + oc(1), which is the first improvement over the result of Indyk and
Motwani (STOC 1998).

1 Introduction
The near neighbor search problem is defined as follows: given a set P of n points in a d-dimensional
space, build a data structure that, given a query point q, reports any point within a given distance r
to the query (if one exists). The problem is of major importance in several areas, such as databases
and data mining, information retrieval, computer vision, databases and signal processing.

Many efficient near(est) neighbor algorithms are known for the case when the dimension d
is “low” (e.g., see [Mei93], building on [Cla88]). However, despite decades of effort, the current
solutions suffer from either space or query time that are exponential in the dimension d. This
phenomenon is often called “the curse of dimensionality”. To overcome this state of affairs, several
researchers proposed approximation algorithms for the problem. In the (c, r)-approximate near
neighbor problem (ANN), the data structure is allowed to return any data point whose distance
from the query is at most cr, for an approximation factor c > 1. Many approximation algorithms
for the problem are known, offering tradeoffs between the approximation factor, the space and the
query time. See [And09] for an up to date survey.

From the practical perspective, the space used by an algorithm should be as close to linear as
possible. If the space bound is (say) sub-quadratic, and the approximation factor c is a constant,
the best existing solutions are based on locality-sensitive hashing [IM98, HPIM12]. The idea of that
approach is to hash the points in a way that the probability of collision is much higher for points
which are close (with the distance r) to each other than for those which are far apart (with distance
at least cr). Given such hash functions, one can retrieve near neighbors by hashing the query point
and retrieving elements stored in buckets containing that point. If the probability of collision is at
least p1 for the close points and at most p2 for the far points, the algorithm solves the (c, r)-ANN
using n1+ρ+o(1) extra space and dnρ+o(1) query time1, where ρ = log(1/p1)/ log(1/p2) [HPIM12].

1Assuming that each hash function can be sampled and evaluated in no(1) time, stored in no(1) space, that distances
can be computed in O(d) time, and that 1/p1 = no(1).
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The value of the exponent ρ depends on the distance function and the locality-sensitive hash
functions used. In particular, it is possible to achieve ρ = 1/c for the `1 norm [IM98], and ρ =
1/c2 + oc(1) for the `2 norm [AI06].

It is known that the above bounds for the value of ρ are tight. Specifically, we have that, for all
values of c, ρ ≥ 1/c − oc(1) for the `1 norm2 [OWZ11]. A straightforward reduction implies that
ρ ≥ 1/c2−oc(1) for the `2 norm. Thus, the running time of the simple LSH-based algorithm, which
is determined by ρ, cannot be improved.

Results. In this paper we show that, despite the aforementioned limitation, the space and
query time bounds for ANN can be substantially improved. In particular, for the `2 norm, we give
an algorithm with query time Oc(nη + d logn) and space Oc(n1+η + d logn), where η = η(c) ≤
7/(8c2) + O(1/c3) + oc(1) that gives an improvement for large enough c. This also implies an
algorithm with the exponent η ≤ 7/(8c) +O(1/c3/2) + oc(1) for the `1 norm, by a classic reduction
from `1 to `2-squared [LLR95]. These results constitute the first improvement to the complexity of
the problem since the works of [IM98] and [AI06].

Techniques. Perhaps surprisingly, our results are obtained by using essentially the same LSH
functions families as described in [AI06] or [IM98]. However, the properties of those hash functions
that we exploit, as well as the overall algorithm, are different. On a high-level, our algorithms are
obtained by combining the following two observations:

1. After a slight modification, the existing LSH functions can yield better values of the exponent
ρ if the search radius r is comparable to the diameter3 of the point-set. This is achieved by
augmenting those functions with a “center point” around which the hashing is performed.
See Section 1.1 for an intuition why this approach works, in the (somewhat simpler) context
of the Hamming distance.

2. We can ensure that the diameter of the point-set is small by applying standard LSH functions
to the original point-set P , and building a separate data structure for each bucket.

This approach leads to a two-level hashing algorithm. The outer hash table partitions the data
sets into buckets of bounded diameter. Then, for each bucket, we build the inner hash table, which
uses (after some pruning) the center of the minimum enclosing ball of the points in the bucket as
a center point. Note that the resulting two-level hash functions cannot be “unwrapped” to yield a
standard LSH family, as each bucket uses slightly different LSH functions, parametrized by different
center points. That is, the two-level hashing is done in a data-aware mannerwhile the standard LSH
functions are chosen from a distribution independent from the data. This enables us to overcome
the lower bound of [OWZ11].

Many or most of the practical applications of LSH involve designing data-aware hash functions.
Unfortunately, not many rigorous results in this area are known. The challenge of understanding
and exploiting the relative strengths of data-oblivious versus data-aware methods has been recog-
nized as a major open question in the area (e.g., see [fmd13], page 77). Our results can be viewed
as a step towards that goal.

Related work. In this paper we assume worst case input. If the input is generated at random,
it is known that one can achieve better running times. Specifically, assume that all points are
generated uniformly at random from {0, 1}d, and the query point is “planted” at distance d/(2c)

2Assuming 1/p1 = no(1).
3In the analysis we use a notion that is weaker than the diameter. However, we ignore this detail for now for the

sake of clarity.
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from its near neighbor. In this setting, the work of [CR93, GPY94, KWZ95, PRR95] gives an
exponent of roughly 1

ln 4·c ≈
1

1.39c .
Even better results are known for the problem of finding the closest pair of points in a dataset.

In particular, the algorithm of [Dub10] for the random closest pair has an exponent of 1 + 1
2c−1 .

4

More recently, [Val12] showed how to obtain an algorithm with a runtime exponent < 1.79 for any
approximation c = 1 + ε in the random case. Moreover, [Val12] also gives an algorithm for the
worst-case closest pair problem with a runtime exponent of 2−Ω(

√
ε) for c = 1 + ε approximation.

There are also two related lines of lower bounds for ANN. First, the work of [MNP07] showed
that LSH for Hamming space must have ρ ≥ 1/(2c)−O(1/c2)− oc(1), and [OWZ11] improved the
lower bound to ρ ≥ 1/c− oc(1). Second, [PTW08, PTW10] have given cell-probe lower bounds for
`1 and `2, roughly showing that any randomized ANN algorithm for the `1 norm must either use
space n1+Ω(1/(tc)) or more than t cell-probes. We note that the LSH lower bound of ρ ≥ 1/(2c)
from [MNP07] might more naturally predict lower bounds for ANN because it induces a “hard
distribution” that corresponds to the aforementioned “random case” . In contrast, if one tries to
generalize the LSH lower bound of [OWZ11] into a near neighbor hard distribution, one obtains a
dataset with special structure, which one can exploit (and our algorithm will indeed exploit such
structure). In fact, the LSH lower bound of [MNP07] has been used (at least implicitly) in the data
structure lower bounds from [PTW08, PTW10].

1.1 Intuition behind the improvement

We give a brief intuition on why near neighbor instances with bounded diameter are amenable to
more efficient LSH functions. For simplicity we consider the Hamming distance as opposed to the
Euclidean distance.

Assume that all input points, as well as the query point, are within the Hamming distance of
s from each other. By shifting one of the data points to the origin, we can assume that all points
have at most s non-zeros (i.e., ones). Consider any data point p and the query point q. To make
calculations easier, we assume that both p and q have exactly s ones.

The “standard” LSH functions for the Hamming distance project the points on one of the coor-
dinates selected uniformly at random. For two points p and q this results in a collision probability
of 1− ‖p− q‖1/d, which is 1− r/d and 1− cr/d for points within the distance of r and cr, respec-
tively. The probability gap of 1 − x vs. 1 − cx leads to the exponent ρ equal to 1/c [IM98]. To
improve on this, we can instead use the min-wise hash functions of [Bro98]. For those functions, the
probability of collision between two points p and q is equal to |p∩q||p∪q| , where ∪ and ∩ denote the union
and intersection of two Boolean vectors, respectively. Since we assumed that ‖p‖1 = ‖q‖1 = s, we
have

|p ∩ q|
|p ∪ q|

= ‖p‖1 + ‖q‖1 − ‖p− q‖1
‖p‖1 + ‖q‖1 + ‖p− q‖1

= 2s− ‖p− q‖1
2s+ ‖p− q‖1

= 1− ‖p− q‖1/(2s)
1 + ‖p− q‖1/(2s)

As a result, the collision probability gap for distances r and cr becomes 1−x
1+x vs. 1−cx

1+cx . This
leads to ρ that is lower than 1/c.

4Note that a near neighbor search algorithm with query time nρ and space/preprocessing time of n1+ρ naturally
leads to a solution for the closest pair problem with the runtime of n1+ρ.
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2 Preliminaries
In the text we denote the `2 norm by ‖ · ‖. When we use O(·), o(·), Ω(·) or ω(·) we explicitly write
all the parameters that the corresponding constant factors depend on as subscripts.

Definition 1. The (c, r)-approximate near neighbor problem (ANN) with failure probability f is
to construct a data structure over a set of points P in metric space (X,D) supporting the following
query: given any fixed query point q ∈ X, if there exists p ∈ P with D(p, q) ≤ r, then report some
p′ ∈ P such that D(p′, q) ≤ cr, with probability at least 1− f .

Remark: note that we allow preprocessing to be randomized as well, and we measure the
probability of success over the random coins tossed during both preprocessing and query phases.

Definition 2 ([HPIM12]). For a metric space (X,D) we call a family of hash functions H on X
(r1, r2, p1, p2)-sensitive, if for every x, y ∈ X we have

• if D(x, y) ≤ r1, then Prh∼H[h(x) = h(y)] ≥ p1;

• if D(x, y) ≥ r2, then Prh∼H[h(x) = h(y)] ≤ p2.

Remark: for H to be useful we should have r1 < r2 and p1 > p2.

Definition 3. If H is a family of hash functions on a metric space X, then for any k ∈ N we
can define a family of hash function H⊗k as follows: to sample a function from H⊗k we sample k
functions h1, h2, . . . , hk from H independently and map x ∈ X to (h1(x), h2(x), . . . , hk(x)).

Lemma 4. If H is (r1, r2, p1, p2)-sensitive, then H⊗k is (r1, r2, p
k
1, p

k
2)-sensitive.

Theorem 5 ([HPIM12]). Suppose there is a (r, cr, p1, p2)-sensitive family H for (X,D), where
p1, p2 ∈ (0, 1) and let ρ = ln(1/p1)/ ln(1/p2). Then there exists a data structure for (c, r)-ANN
over a set P ⊆ X of at most n points, such that:

• the query procedure requires at most O(nρ/p1) distance computations and at most O(nρ/p1 ·
dlog1/p2 ne) evaluations of the hash functions from H or other operations;

• the data structure uses at most O(n1+ρ/p1) words of space, in addition to the space needed to
store the set P .

The failure probability of the data structure can be made to be arbitrarily small constant.

Remark: this theorem says that in order to construct a good data structure for the (c, r)-ANN
it is sufficient to have a (r, cr, p1, p2)-sensitive family H with small ρ = ln(1/p1)/ ln(1/p2) and not
too small p1.

We use the LSH family crafted in [AI06]. The properties of this family that we need are
summarized in the following theorem.

Theorem 6 ([AI06]). For every sufficiently large d and n there exists a family H of hash functions
for `d2 such that

• a function from H can be sampled in time, stored in space, and computed in time tO(t) · logn+
O(dt), where t = log2/3 n;
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• the collision probability of H for two points u, v ∈ Rd depends only on the distance between u
and v; let us denote it by p(‖u− v‖);

• one has the following inequalities for p(·):

p(1) ≥ L, where L = A
2
√
t
· 1

(1+ε+8ε2)t/2

∀c > 1 p(c) ≤ U(c), where U(c) = 2
(1+c2ε)t/2 ,

where A is an absolute positive constant that is less than 1, and ε = Θ(t−1/2) = Θ(log−1/3 n).

Combining Theorem 5 and Theorem 6 one has the following corollary.

Corollary 7. There exists a data structure for (c, r)-ANN for `d2 with preprocessing time and space
Oc(n1+1/c2+oc(1) + nd) and query time Oc(dn1/c2+oc(1)).

Proof. By rescaling one can assume w.l.o.g. that r = 1. Then, it is left to check that L = n−oc(1)

and ln(1/L)/ ln(1/U(c)) ≤ 1/c2 + oc(1). These computations can be found in [AI06].

We use the following standard estimate on tails of Gaussians (see, e.g., [KMS98]).

Lemma 8 ([KMS98]). For every t > 0

1√
2π
·
(1
t
− 1
t3

)
· e−t2/2 ≤ PrX∼N(0,1)[X ≥ t] ≤

1√
2π
· 1
t
· e−t2/2.

We use Johnson-Lindenstrauss dimension reduction procedure.

Theorem 9 ([JL84], [DG03]). For every d ∈ N and ε, δ > 0 there exists a distribution over linear
maps A : Rd → RO(log(1/δ)/ε2) such that for every x ∈ Rd one has PrA[‖Ax‖ ∈ (1± ε)‖x‖] ≥ 1− δ.
Moreover, such a map can be sampled in time O(d log(1/δ)/ε2).

Finally, let us state Jung’s theorem.

Theorem 10 (see, e.g., Exercise 1.3.5 in [Mat02]). Every subset of Rd with diameter ∆ can be
enclosed in a ball of radius ∆/

√
2.

3 Gaussian LSH
In this section we present and analyze a (1, c, p1, p2)-sensitive family of hash functions for the `2
norm that gives an improvement upon [AI06] for the case, when all the points and queries lie on
a spherical shell of radius O(c) and width O(1). The construction is similar to an SDP rounding
scheme from [KMS98].

First, we present an “idealized” family. In the following theorem we do not care about time and
space complexity and assume that all points lie on a sphere of radius O(c).

Theorem 11. For a sufficiently large c, every ν ≥ 1/2 and 1/2 ≤ η ≤ ν there exists an LSH family
for ηc · Sd−1 =

{
x ∈ Rd | ‖x‖ = ηc

}
with the `2 norm that is (1, c, p1, p2)-sensitive, where

• p1 = exp(−oc,ν(d));

5



• one has
ρ = ln(1/p1)

ln(1/p2) =
(

1− 1
4η2

)
· 1
c2 +Oν

( 1
c3

)
+ oc,ν(1).

Proof. Let ε > 0 be a positive parameter that depends on d as follows: ε = o(1) and ε = ω(d−1/2).
Let H be a family of hash functions described by Algorithm 1 (the pseudocode describes how to
sample h ∼ H).

Algorithm 1 Gaussian partitioning
P ← ∅ . eventually, P will be a partition of ηc · Sd−1

while
⋃
P 6= ηc · Sd−1 do . we denote

⋃
P the union of all sets that belong to P

sample w ∼ N(0, 1)d

S ←
{
u ∈ ηc · Sd−1 | 〈u,w〉 ≥ ηc · ε

√
d
}
\
⋃
P

if S 6= ∅ then
P ← P ∪ {S}

end if
end while
define h to be the function that maps a point u ∈ ηc · Sd−1 to the part of P that it belongs to

Clearly for u, v ∈ ηc · Sd−1 with angle α between them

Prh∼H[h(u) = h(v)] =
Prw∼N(0,1)d [〈u,w〉 ≥ ηc · ε

√
d ∧ 〈v, w〉 ≥ ηc · ε

√
d]

Prw∼N(0,1)d [〈u,w〉 ≥ ηc · ε
√
d ∨ 〈v, w〉 ≥ ηc · ε

√
d]

= Θ(1) ·
PrX,Y∼N(0,1)[X ≥ ε

√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

PrX∼N(0,1)[X ≥ ε
√
d]

= Θ(ε
√
d) ·

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

e−ε2d/2 . (1)

In the last equality we use Lemma 8 and the fact that ε = ω(d−1/2).
The following two lemmas allow us to estimate the numerator of the right-hand side of (1).

Lemma 12.

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d] = O

(
e−ε

2d·(1+tan2 α
2 )/2

ε
√
d

)
.

Proof.

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

≤ PrX,Y∼N(0,1)[(1 + cosα) ·X − sinα · Y ≥ 2ε
√
d]

= PrZ∼N(0,1)[
√

(1 + cosα)2 + sin2 α · Z ≥ 2ε
√
d]

= PrZ∼N(0,1)[
√

2 · (1 + cosα) · Z ≥ 2ε
√
d] = O

(
e−ε

2d·(1+tan2 α
2 )/2

ε
√
d

)

In the last equality we used Lemma 8, the fact that ε = ω(d−1/2) and the identity 2
1+cosα =

1 + tan2 α
2 .
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Lemma 13. If 0 ≤ α < α0 for some constant 0 < α0 < π/2, then

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d] = Ω

(
e−ε

2d·(1+tan2 α0
2 )/2

ε2d · tan α0
2

)
.

Proof.

PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ cosα ·X − sinα · Y ≥ ε

√
d]

≥ PrX,Y∼N(0,1)[X ≥ ε
√
d ∧ Y ≤ − tan α2 · ε

√
d]

= PrX∼N(0,1)[X ≥ ε
√
d] · PrY∼N(0,1)[Y ≥ tan α2 · ε

√
d]

≥ PrX∼N(0,1)[X ≥ ε
√
d] · PrY∼N(0,1)[Y ≥ tan α0

2 · ε
√
d] = Ω

(
e−ε

2d·(1+tan2 α0
2 )/2

ε2d · tan α0
2

)
.

In the first inequality we use that for α < α0 < π/2 the right-hand side event implies the left-hand
side event. Indeed,

cosα ·X − sinα · Y ≥ cosα · ε
√
d+ sinα · tan α2 · ε

√
d = ε

√
d,

since cosα, sinα > 0. In the last equality we used Lemma 8, the fact that α0 is constant and
ε = ω(d−1/2).

Thus, combining (1), Lemma 12 and Lemma 13, we have the following estimates on the proba-
bility of collision.

Lemma 14. One has

ln 1
Prh∼H[h(u) = h(v)] ≥

ε2d

2 · tan2 α

2 −O(1);

and if α < α0 for some constant 0 < α0 < π/2, then

ln 1
Prh∼H[h(u) = h(v)] ≤

ε2d

2 · tan2 α0
2 + ln

(
ε
√
d · tan α0

2

)
+O(1).

Since
tan2 α

2 = ‖u− v‖2/(ηc)2

4− ‖u− v‖2/(ηc)2 ,

by setting ε = d−1/4 and invoking Lemma 14 for the angles that correspond to distances 1 and c,
we have

ln 1
p1
≤
√
d

2 ·
1/(ηc)2

4− 1/(ηc)2 +Oc,ν(ln d),

ln 1
p2
≥
√
d

2 ·
1/η2

4− 1/η2 −O(1).

Note that here we use that c is large enough, since we must have α0 < π/2 in order to be able to
apply Lemma 14.
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Thus, we have p1 = exp(−oc,ν(d)). A similar estimate holds for p2 provided that η is separated
from 1/2 (but we do not really need it). Therefore

ρ = ln(1/p1)
ln(1/p2) = 4− 1/η2

4− 1/(ηc)2 ·
1
c2 + oc,ν(1) =

(
1− 1

4η2

)
· 1
c2 +Oν

( 1
c3

)
+ oc,ν(1).

Remark: we could have had Oν(1/c4) term in the expression for ρ, but we state the theorem
with Oν(1/c3) in order to be consistent with the next theorem.

Now we show how to convert this “idealized” family to a real one.
Theorem 15. For a sufficiently large c, every ν ≥ 1/2 and 1/2 ≤ η ≤ ν there exists an LSH family
H for {

x ∈ Rd | ‖x‖ ∈ [ηc− 1; ηc+ 1]
}

with the `2 norm such that
• it satisfies the conclusion of Theorem 11;

• for every k ∈ N one can sample a function from H in time exp(o(d)), store it in space
exp(o(d)) and query in time exp(o(d)).

Proof. We use the family from the proof of Theorem 11, but with two modifications. First, if we
want to compute h(x) for h ∼ H, then before doing so, we normalize x to the length ηc. Second,
in Algorithm 1 instead of checking the condition

⋃
P = ηc · Sd−1, we simply run the partitioning

process for exp(o(d)) steps. Namely, we require that after the end the probability of the event⋃
P = ηc · Sd−1 is at least 1− exp(−d) (one can see that this will be the case after exp(o(d)) steps

by a standard ε-net argument). Such a high probability means that this LSH family achieves the
same parameters as the one from Theorem 11. Clearly, such a function can be stored in space
exp(o(d)) and queried in time exp(o(d)).

It is left to argue that normalizing a vector before computing h does not affect the quality
(namely, we are interested in p1 and ρ) by a lot.

Lemma 16. For any vectors u and v,

‖u/‖u‖ − v/‖v‖‖2 = 1
‖u‖ · ‖v‖

(
‖u− v‖2 − (‖u‖ − ‖v‖)2

)
Proof.

‖u/‖u‖ − v/‖v‖‖2 = 2− 2〈u, v〉
‖u‖ · ‖v‖

= 1
‖u‖ · ‖v‖

(
‖u− v‖2 − (‖u‖ − ‖v‖)2

)
.

By the above lemma, one can check that for u, v ∈
{
x ∈ Rd | ‖x‖ ∈ [ηc− 1; ηc+ 1]

}
• if ‖u− v‖ ≤ 1, then (ηc · ‖u/‖u‖ − v/‖v‖‖)2 ≤ (ηc)2

(ηc−1)2 ≤ 1 +Oν
(

1
c

)
• if ‖u− v‖ ≥ c, then (ηc · ‖u/‖u‖ − v/‖v‖‖)2 ≥ (ηc)2

(ηc+1)2 (c2 − 4) ≥ c2 ·
(
1−Oν

(
1
c

))
.

Clearly, from these inequalities we can see that the conclusion of Theorem 11 is still true for our
case.

8



4 Two-level hashing
We now describe our near neighbor data structure. It is composed of several independent data
structures, where each one is a two-level hashing scheme, described next. We will conclude with
proving our main theorem for ANN search.

First, we provide some very high-level intuition.

Intuition

The general approach can be seen as using LSH scheme composed of two levels: the hash function
is h = (hC , hG) chosen from two families hC ∈ Hk

′
, hG ∈ Gl for some k′, l, where H is the “ball

carving LSH” from Theorem 6, and G is the “Gaussian LSH” from Theorem 15. In particular, the
hash function hG(p) will depend on the bucket hC(p) and the other dataset points in the bucket
hC(p). Intuitively, the “outer level” hash function hC performs a partial standard LSH partitioning
(with ρ ≈ 1/c2), but also has the role of improving the “geometry” of the points (namely, the points
in a buckets roughly will have a bounded diameter). After an application of hC , the pointset (inside
a fixed bucket) has bounded diameter, allowing us to use the improved Gaussian LSH partitioning
(“inner level”), with ρ < 1/c2.

In more detail, first, let us recall the main idea of the proof of Theorem 5. Suppose that H is,
say, a family from Theorem 6. Then, we choose k to be an integer such that for every p, q ∈ Rd
with ‖p− q‖ ≥ c we have

Prh∼H⊗k [h(p) = h(q)] ≈ n−1. (2)

Then, by Theorem 6, we have for every p, q ∈ Rd with ‖p− q‖ ≤ 1

Prh∼H⊗k [h(p) = h(q)] ≈ n−1/c2
.

Now suppose we hash all the points using a function h ∼ H⊗k. For a query q the average
number of “outliers” in a bin that corresponds to q (points p such that ‖p − q‖ > c) is at most 1
due to (2). On the other hand, for a data point p such that ‖p− q‖ ≤ 1 the probability of collision
is at least n−1/c2 . Thus, we can create n1/c2 independent hash tables, and query them all in time
around O(n1/c2). The resulting probability of success is constant.

The above analysis relies on two distance scales: 1 and c. To get a better algorithm for ANN
we introduce the third scale: τc for τ > 1 being a parameter. First, we hash all the points using
H⊗k′ (where k′ ≈ k/τ) so that the collision probabilities are roughly as follows.

Distance 1 c τc

Probability of collision n−1/(τc)2
n−1/τ2

n−1

Now we can argue that with high probability any bucket has diameter Oτ (c). This allows us to
use the family from Theorem 15 for each bucket and set probabilities of collision as follows.

Distance 1 c

Probability of collision n−(1−Ωτ (1))·(1−1/τ2)/c2
n−1+1/τ2

Due to the independence, we expect overall collision probabilities to be products of “outer”
collision probabilities from the first table and “inner” probabilities from the second table. Thus, in
total, we have the following probabilities.

9



Algorithm 2 Two-level hashing
1: function Build(P , τ , T , k, k̃l)
2: sample h ∼ H⊗k1 , where H1 is a family from Theorem 6 (w.l.o.g. h maps Rd to [m])
3: Bi ← {p ∈ P | h(p) = i}
4: for i← 1 . . .m do
5: while there exists p1, p2 ∈ Bi such that ‖p1 − p2‖ > τc do
6: Bi ← Bi \ {p1, p2}
7: end while
8: if Bi 6= ∅ then
9: let ui be the center of the smallest enclosing ball of Bi

10: let si ∈ Bi be the nearest neighbor of ui
11: for l← 0 . . . T do
12: P̃il ← {p− ui | p ∈ Bi, c/2 + l − 1 ≤ ‖p− ui‖ ≤ c/2 + l + 1}
13: sample h̃il ∼ H⊗k̃l2 , where H2 is a family from Theorem 15 for η = 1/2 + l/c

14: B̃ilj ←
{
p ∈ P̃il | h̃il(p) = j

}
15: end for
16: end if
17: end for
18: end function
19: function Query(q, T )
20: i← h(q)
21: if Bi = ∅ then
22: return ⊥
23: end if
24: if ‖q − si‖ ≤ c then
25: return si
26: end if
27: for l← 0 . . . T do
28: if c/2 + l − 1 ≤ ‖q − ui‖ ≤ c/2 + l + 1 then
29: j ← h̃il(q − ui)
30: for p ∈ B̃ilj do
31: if ‖q − (p+ ui)‖ ≤ c then
32: return p+ ui
33: end if
34: end for
35: end if
36: end for
37: return ⊥
38: end function

10



Distance 1 c

Probability of collision n−(1−Ωτ (1))/c2
n−1

Then we argue as before and achieve
ρ ≈ 1− Ωτ (1)

c2 .

This plan is not quite rigorous for several reasons. One of them is we do not properly take care
of conditioning on the event “all buckets have low diameter”. Nevertheless, in this section we show
how to analyze a similar scheme rigorously.

Construction

We want to solve (c, 1)-ANN for `d2. As a first step, we apply Johnson-Lindenstrauss transform
(Theorem 9) and reduce our problem to (c − 1, 1)-ANN for `Oc(logn)

2 by increasing the failure
probability by an arbitrarily small constant. This means that all quantities of order exp(o(d))
are now noc(1) (in particular, various parameters of the hash family from Theorem 15). Abusing
notation, let us assume that we are solving (c, 1)-ANN in `Oc(logn)

2 .
For the description of preprocessing and query algorithms see Algorithm 2. Roughly speaking,

we first hash points using a hash family from Theorem 6 and then for every bucket we utilize a
family from Theorem 15 (after some pruning). The hashing scheme has several parameters: τ , T ,
k and k̃l for 0 ≤ l ≤ T . Let us show how to set them. First, we choose some τ > 1 (we will set a
concrete value later). Second, we choose

T =
⌈
τc√

2
− c

2

⌉
+ 1. (3)

Third, we choose k to be smallest positive integer such that(
U(τc− 1)

L

)k
≤ 1

2n, (4)

where U(·) and L are from Theorem 6. Finally, for every 0 ≤ l ≤ T we set k̃l to be the smallest
positive integer such that for every u, v ∈ Rd with ‖p1‖, ‖p2‖ ∈ [c/2 + l − 1; c/2 + l + 1] and ‖p1 −
p2‖ ≥ c we have

U(c)k · Pr
h̃∼H⊗k̃l2

[
h̃(u) = h̃(v)

]
≤ 1

3n, (5)

where H2 is a family from Theorem 15 for η = 1/2 + l/c.
It is immediate to see that, if the query algorithm outputs some point p, then p ∈ P and p is

within distance c from a query.

Auxiliary lemmas

Lemma 17. After the preprocessing one has for every 1 ≤ i ≤ m

Bi =
⋃

0≤l≤T
P̃il.

11



Proof. This follows from Jung’s theorem (Theorem 10).
Indeed, after the lines 5–7 the diameter of Bi is at most τc. Thus, the radius of the smallest

enclosing ball is at most τc/
√

2. It means that for any l > T the set P̃il is empty.

Lemma 18. If U and V are two events with Pr[V] < 1, then

Pr[U ∨ V] ≥ Pr[U | ¬V].

Proof.

Pr [U ∨ V] = Pr [V] + Pr [U | ¬V] Pr [¬V]
≥ Pr [U | ¬V] Pr [V] + Pr [U | ¬V] Pr [¬V]
= Pr [U | ¬V]

Collision probabilities

Suppose that q ∈ Rd is a query and p ∈ P is a data point. Let us introduce four events:

• A stands for “h(p) = h(q)”;

• B: “for every p′ ∈ P such that ‖p′ − q‖ > τc− 1 we have h(p′) 6= h(q)”;

• C: “we iterate through p in the line 30 of Algorithm 2”;

• D: “Bh(q) 6= ∅ and ‖q − sh(q)‖ ≤ c”.

Lemma 19. If ‖p− q‖ ≥ c, then
Pr[C] ≤ 1/n. (6)

Proof. Since C implies A, we have

Pr [C] = Pr [A] Pr [C | A] . (7)

By Theorem 6 Pr [A] ≤ U(c)k. Moreover, if we denote

Wq =
{
l ∈ Z+ | c/2 + l − 1 ≤ ‖q − uh(q)‖ ≤ c/2 + l + 1

}
,

then
Pr [C | A] =

∑
l∈Wq

Pr
[
p ∈ P̃h(q)l ∧ h̃h(q)l(p) = h̃h(q)l(q)

]
.

Since |Wq| ≤ 3 and due to (7) and (5) we have (6).

Lemma 20. If ‖p− q‖ ≤ 1, then

Pr[C ∨ D] ≥ n−
(
1− 1

2τ2 + 1
2τ4
)
· 1
c2 +Oτ

(
1
c3
)
+oc,τ (1).

12



Proof. Using Lemma 18, we get

Pr [C ∨ D] ≥ Pr [A ∧ B ∧ (C ∨ D)] = Pr [A] Pr [B | A] Pr [C ∨ D | A ∧ B]
≥ Pr [A] Pr [B | A] Pr [C | A ∧ B ∧ ¬D] . (8)

In the following three lemmas we lower bound the right-hand side of (8).

Lemma 21. Pr [A] ≥ Lk

Proof. This follows immediately from Theorem 6.

Lemma 22. Pr [B | A] ≥ 1/2

Proof.

Pr [¬B | A] ≤
∑
p′∈P

‖p′−q‖>τc−1

Pr
[
h(p′) = h(q) | h(p) = h(q)

]

≤
∑
p′∈P

‖p′−q‖>τc−1

Pr [h(p′) = h(q)]
Pr [h(p) = h(q)] ≤ n ·

(
U(τc− 1)

L

)k
≤ 1/2,

where the penultimate inequality is due to Lemma 21, and the last one is due to (4).

Lemma 23.

Pr [C | A ∧ B ∧ ¬D] ≥
( 1

3n · U(c)k
)(1− 1

2τ2
)
· 1
c2 +Oτ

(
1
c3
)
+oc,τ (1)

Proof. First, since we condition on A ∧ B, we have that p ∈ Bh(q) after the preprocessing. Indeed,
A implies that p ∈ Bh(q) in the beginning of the preprocessing, and B together with ‖p − q‖ ≤ 1
imply that this will be the case in the end as well.

Second, let us prove that ‖p− uh(q)‖ ≥ c/2− 1 and ‖q − uh(q)‖ ≥ c/2− 1. Indeed,

c ≤ ‖q − sh(q)‖ ≤ ‖q − uh(q)‖+ ‖sh(q) − uh(q)‖ ≤ ‖q − uh(q)‖+ ‖p− uh(q)‖
≤ 2 · ‖p− uh(q)‖+ ‖p− q‖ ≤ 2 · ‖p− uh(q)‖+ 1,

where the first inequality follows from ¬D, and the third inequality follows from the fact that p is not
filtered from Bh(q) and the definition of sh(q). As a result, we have ‖p−uh(q)‖ ≥ (c−1)/2 ≥ c/2−1.
Similarly, we prove ‖q − uh(q)‖ ≥ c/2− 1.

As a result, we have that for some 0 ≤ l ≤ T , p ∈ P̃h(q)l and, moreover,

c/2 + l − 1 ≤ ‖q − uh(q)‖ ≤ c/2 + l + 1,

so
Pr [C | A ∧ B ∧ ¬D] ≥ Pr

[
h̃h(q)l(p) = h̃h(q)l(q)

]
,

but due to Theorem 15, (5), (3) and the minimality of kl this implies

Pr [C | A ∧ B ∧ ¬D] ≥
( 1

3n · U(c)k
)(1− 1

2τ2
)
· 1
c2 +Oτ

(
1
c3
)
+oc,τ (1)

, (9)
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since we can apply Theorem 15 for

η = 1
2 + l

c
≤ 1

2 + T

c
≤ τ√

2
+Oτ

(1
c

)
,

and as a result we have

ρ ≤
(

1− 1
4η2

)
· 1
c2 +Oτ

( 1
c3

)
+ oc,τ (1) ≤

(
1− 1

2τ2

)
· 1
c2 +Oτ

( 1
c3

)
+ oc,τ (1),

which in turn implies (9).

Now we can finish the proof of Lemma 20. Combining Lemmas 21, 22 and 23 we get

Pr [C ∨ D] ≥ Lk ·
( 1
n · U(c)k

)(1− 1
2τ2
)
· 1
c2 +Oτ

(
1
c3
)
+oc,τ (1)

. (10)

It is known from [AI06] that
U(x) = Lx

2+ox(1),

so from (4) and the minimality of k we get

Lk = n
− 1

(τc−1)2−1
+oc,τ (1) = n−

1
τ2c2 +Oτ

(
1
c3
)
+oc,τ (1), (11)

and
U(c)k = n

− c2
(τc−1)2−1

+oc,τ (1) = n−
1
τ2 +Oτ( 1

c )+oc,τ (1). (12)

Combining (10), (11) and (12) we get

Pr [C ∨ D] ≥ n−
(
1− 1

2τ2 + 1
2τ4
)
· 1
c2 +Oτ

(
1
c3
)
+oc,τ (1).

The main result

Finally, we formulate and prove the main result.

Theorem 24. There exists a data structure for (c, 1)-ANN for `d2 with

• preprocessing time Oc(n2+ρ + nd logn),

• space Oc(n1+ρ + d logn),

• query time Oc(nρ + d logn),

where
ρ ≤ 7/8

c2 +O

( 1
c3

)
+ oc(1). (13)
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Proof. First, we analyze the running time of one two-level hash table.
The dimension reduction step takes time Oc(nd logn) by Theorem 9.
The preprocessing takes Oc(n1+oc,τ (1)) time plus the time needed for the lines 5–7 and the line

9. It is straightforward to implement lines 5–7 in time Oc(n2 logn) and one can use an algorithm
from [GLS88] for finding ui with running time Oc(n logO(1) n).

The query algorithm takes time Oc(noc,τ (1) + d logn) in expectation due to Lemma 19. This
is because in line 30 we iterate over at most 1 point on average that is not an approximate near
neighbor.

By Lemma 20 the probability of finding an approximate near neighbor is at least

Q = n−
(
1− 1

2τ2 + 1
2τ4
)
· 1
c2 +Oτ

(
1
c3
)
+oτ,c(1).

In order to make the probability of success constant we build and query 1/Q independent copies
of the two-level data structure. As a result we get the desired bounds with

ρ = ρ(τ) ≤
(

1− 1
2τ2 + 1

2τ4

)
· 1
c2 +Oτ

( 1
c3

)
+ oτ,c(1).

The bound stated in (13) is obtained by setting τ =
√

2.
Note that the above bound on the query time is in expectation, but it is also possible to modify

the algorithm slightly to get a worst-case bound. The algorithm still iterates over 1/Q tables but
stops after looking at 3/Q+ 1 points without finding an approximate near neighbor. The expected
number of points the algorithm has to look at that are not an approximate near neighbor is at
most 1/Q. By Markov’s inequality, with probability at least 2/3, the algorithm doesn’t look at
more than 3/Q points that are not an approximate near neighbor. In each two-level table, the
probability that the algorithm fails to find an approximate near neighbor is at most 1−Q. Thus,
the probability it fails in all Q tables is at most (1 − Q)1/Q ≤ 1/e. Overall, with probability at
least 1−1/3−1/e, the algorithm finds an approximate near neighbor without looking at more than
3/Q+ 1 points.

Remark: if one is willing to have quasi-linear preprocessing time, then it is possible to modify
Algorithm 2 slightly to achieve

ρ ≤ 15/16
c2 +O

( 1
c3

)
+ oc(1),

while having preprocessing time Oc(n1+ρ + nd logn). The idea is to choose an arbitrary point
p ∈ Bi after the initial hashing and then remove from Bi points that are further from p than τc.
After this filtering the algorithm is the same as before. We save in preprocessing time, since we no
longer need to run lines 5–7.

The details are almost the same as in the proof of Theorem 24 and thus omitted.
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