
Overcoming the `1 Non-Embeddability Barrier:
Algorithms for Product Metrics

Alexandr Andoni
MIT

andoni@mit.edu

Piotr Indyk
MIT

indyk@mit.edu

Robert Krauthgamer∗
Weizmann Institute of Science

robert.krauthgamer@weizmann.ac.il

Abstract
A common approach for solving computational problems
over a difficult metric space is to embed the “hard” metric
into L1, which admits efficient algorithms and is thus con-
sidered an “easy” metric. This approach has proved success-
ful or partially successful for important spaces such as the
edit distance, but it also has inherent limitations: it is prov-
ably impossible to go below certain approximation for some
metrics.

We propose a new approach, of embedding the difficult
space into richer host spaces, namely iterated products of
standard spaces like `1 and `∞. We show that this class
is rich since it contains useful metric spaces with only a
constant distortion, and, at the same time, it is tractable
and admits efficient algorithms. Using this approach, we
obtain for example the first nearest neighbor data structure
with O(log log d) approximation for edit distance in non-
repetitive strings (the Ulam metric). This approximation is
exponentially better than the lower bound for embedding
into L1. Furthermore, we give constant factor approximation
for two other computational problems. Along the way, we
answer positively a question posed in [Ajtai, Jayram, Kumar,
and Sivakumar, STOC 2002]. One of our algorithms has
already found applications for smoothed edit distance over
0-1 strings [Andoni and Krauthgamer, ICALP 2008].

1 Introduction
An embedding is a mapping from one metric space (the
“guest” space) to another (the “host” space), which preserves
the distances between every pair of points, up to a multiplica-
tive factor called the distortion. Embeddings provide a gen-
eral method for solving problems over “hard” metric spaces,
by embedding them into “easy” ones. Since the mid 1990’s,
an extensive body of work has been devoted to this method,
resulting in many efficient approximation algorithms for a
wide variety of problems [26, 39, 42, 30].

One of the most convenient host spaces discovered
so far is the `1 space, i.e., the standard real vector space
under the `1-norm. This is because (a) it is rich – many

∗Part of this work was done while at IBM Almaden. This research was
supported in part by The Israel Science Foundation (grant #452/08).

interesting and useful spaces can be embedded into it with
low distortion, and (b) it is tractable – several computational
problems in it admit efficient algorithms. Notable successes
of this approach of obtaining algorithms via embedding into
`1 include, among others, approximation algorithm for the
sparsest-cut in a graph [40, 12, 11, 10], approximate nearest
neighbor search and sketching under edit distance [44, 16]
and under Earth-Mover Distance [15, 32, 43, 7].

However, it was recently discovered that this approach
has inherent limitations. In particular, for the aforemen-
tioned problems, embedding into `1 cannot result in algo-
rithms with constant approximation factors [37, 36, 38, 20,
43, 8, 7]. Thus, to make progress on those problems via the
embedding approach, we must identify richer, yet tractable,
classes of host spaces.

We undertake precisely this task. We focus mostly on a
specific variant of a metric that has found many applications,
namely edit distance. Our results include greatly improved
algorithms for three different problems. However, our con-
tribution should be seen from a bigger perspective: we pro-
pose a generic approach that may be useful in many contexts,
and provide an implementation for one concrete metric as a
proof-of-concept. Indeed, another metric important for ap-
plications is the Earth-Mover Distance, and our partial re-
sults for it indicate that this new approach may be applicable
here too. In both cases, embedding into `1, or even into re-
lated spaces such as `2-squared, provably requires high dis-
tortion.

Our approach is to consider a class of alternative host
spaces, namely the iterated products of standard spaces
like `1 and low-dimensional `∞. These spaces exhibit a
better balance between richness and tractability. Indeed,
we identify a sweet spot: the spaces are rich enough to
accommodate the intended guest spaces with only a constant
distortion, while admitting quite efficient algorithms. As a
result, we obtain several improved algorithms that achieve
approximation factors that are at least exponentially better
than what is possible via the `1 approach. Along the way we
answer positively several questions left open in [2, 28].

An example of our host spaces is the space

⊕k

(`2)2

⊕l

`∞
`m
1

mailto:andoni@mit.edu�
mailto:indyk@mit.edu�
mailto:robert.krauthgamer@weizmann.ac.il�

which reads as follows. For a metric space M, an integer
k, and p ≥ 1, the `p-product of k copies of M, denoted⊕k

`p
M, is the space Mk endowed with the distance func-

tion dp,M(x, y) =
(∑k

i=1 dM(xi, yi)p
)1/p. The definition

naturally extends to `∞ products and squared-`2 products.
Then, the double iterated product space

⊕k
(`2)2

⊕l
`∞ `m

1

contains points x ∈ Rk·l·m with the distance function

dNEG,∞,1(x, y) =
k∑

a=1

(
max

b=1,2,...,l

{ m∑
c=1

|xa,b,c − ya,b,c|
})2

,

where xa,b,c stands for coordinate (a− 1)lm+(b− 1)m+ c
of x.

1.1 Two Hard Metrics

Ulam metric. The edit distance (aka Levenshtein distance)
between two strings x and y, denoted ed(x, y), is the min-
imum number of character insertions, deletions, and substi-
tutions needed to transform one string into the other. This
distance is of key importance in several fields such as compu-
tational biology and text processing, and consequently com-
putational problems involving the edit distance were studied
quite extensively. Throughout, we consider strings of length
d over an alphabet Σ.

The Ulam metric is a specialization of edit distance
to non-repetitive strings, where a string is non-repetitive if
every symbol appears at most once in it. There are several
motivations for studying this variant. From a practical
perspective, strings with limited or no repetitions appear
in several important contexts, e.g. ranking of objects such
as webpages (see e.g. [2, Sections 1.2 and 6] and [41]).
In fact, our motivation is similar to [2], but we study a
different distance function on non-repetitive strings (which
they explicitly mention as open).

From a theoretical point of view, Ulam metric appears
to retain one of the core difficulties of the edit distance on
general strings, namely the existence of “misalignments” be-
tween the two strings. In fact, there is no known lower bound
that would strictly separate general edit distance from Ulam:
all known lower bounds are nearly the same (quantitatively)
for both metrics. In particular, embedding the Ulam metric
and the edit distance on general strings into `1 and similar
spaces such as `2-squared requires distortion Ω(log d

log log d) [8].
Thus, the Ulam metric is a concrete roadblock that we must
overcome if we ever hope to obtain efficient algorithms for
the general edit distance with strongly sub-logarithmic ap-
proximation.
Earth-Mover Distance (EMD). Every point in this metric
is a distribution π supported on the two-dimensional grid
[d]2, and the distance between πA, πB is given by the trans-
portation cost between these two distributions with respect
to `1 distance in the plane. For example, if the two distri-
butions are uniform over equal-size multisets A,B ⊂ [d]2,

respectively, then EMD(πA, πB) is the minimum cost bi-
partite matching between the elements in A and in B. This
metric has several applications, most notably in computer
vision [45]. Embedding EMD into `1 requires distortion
Ω(
√

log d) and even into `2-squared it is ω(1) [43].

1.2 Problem Definitions and Our Results We show how
our approach of using product metrics leads to a suite of new
algorithms for the Ulam metric. We also give a new NNS
algorithm for EMD. In all cases, the approximation ratios
we achieve are exponentially better than previously known
bounds, albeit sometimes at the expense of some loss in other
parameters. Moreover, our bounds overcome (or bypass) the
`1 non-embeddability barrier. We proceed to describe our
algorithmic results, which are also summarized in Table 1.

Nearest Neighbor Search (NNS). A major algorithmic chal-
lenge is the problem of Nearest Neighbor Search (NNS) un-
der various metrics. In this problem, we wish to design a data
structure that preprocesses a dataset of n points, so that when
a query point is given, the database reports query’s nearest
neighbor (i.e., a point in the dataset with the smallest dis-
tance to the query point). A ρ-approximate NNS algorithm
reports a point whose distance from the query is at most ρ
times that of the nearest neighbor. In many cases, the chal-
lenge is to use space (storage) that is polynomial in n and in
the point length d, and query time that is strongly sublinear
in n, namely nεdO(1) for an arbitrarily small constant ε > 0.
We shall call such a data structure efficient.

We devise for the Ulam metric an NNS scheme
that achieves O(ε−3 log log d)-approximation using nεdO(1)

query time and (dn)O(1) preprocessing, for any desired con-
stant ε > 0. Our approximation factor is exponentially better
than the O(log d) previously known via `1-embedding, due
to [16], although their query time is better (logarithmic in
n). In fact, our result is the first algorithm that beats the `1
distortion lower bound of Ω(log d/ log log d) [8].

Sketching Algorithms. Another important algorithmic
primitive is the communication complexity of distance es-
timation, and more specifically in the sketching model. The
sketch of a point x is a (randomized) mapping of x into a
short “fingerprint” sk(x), such that sketches of two points,
sk(x) and sk(y), are sufficient to distinguish (with high
probability) between the case where x, y are at distance
d(x, y) ≤ R, and the case where d(x, y) > ρR, for an ap-
proximation factor ρ > 1 and a parameter R ∈ R+. The
main parameter of a sketching algorithm is its sketch size,
the bit length of sk(x).

The sketching model is viewed as a basic computational
primitive in massive data sets [3, 13, 22]. For example,
constant-size sketches for an approximation ρ imply efficient
NNS with approximation (1 + ε)ρ for every fixed ε > 0.

We design a sketching algorithm for Ulam metric that
achieves O(1)-approximation using sketch size logO(1) d.
Again, this approximation is a significant improvement

Problem Reference Approximation Comments
U

la
m

NNSa [16] O(log d)
[28] 3α−1 space nO(d1/α)

(lower bound) [8] Ω(log d/ log log d) for embedding into `1, (`2)2

This paper O(log log d) query time dO(1)nε

Sketching [16] O(log d) sketch size O(1)
(lower bound) [8] O(1) sketch size Ω(log log d)

This paper O(1) sketch size (log d)O(1)

Distance Estimation [14] dε (w/restrictions) Õ(d1−2ε) running time
(lower bound) [14] O(1) Ω(

√
ed(P,Q) + d/ ed(P, Q))

This paper O(1) Õ(d/
√

ed(P, Q)) running time

E
M

D NNS [15, 32] O(log d)
(lower bound) [43] Ω(

√
log d) for embedding into `1

This paper O(α log log n) space n2+ε · 2d/α and query time is dO(1)nε

aUnless mentioned otherwise, query time is d logO(1) n and space is (dn)O(1).

Table 1: Our results for the Ulam and EMD metrics, compared with previous bounds.

over the O(log d) approximation that follows immediately
from the `1-embedding of [16]. It is known that O(1)-
approximation requires sketch size Ω(log log d) and, in fact,
a logarithmic lower bound is quite plausible [8].

Our sketch is in fact computable in the data stream
model, thus answering a question from [2, Section 6] on
computing Ulam distance in a stream. Specifically, we can
compute the sketch of a string P even if we have a sequential
access to elements P [1], P [2], . . ., using a total of polylog(d)
space.
Sublinear Distance Estimation. The third problem is per-
haps the most natural: it is that of computing the distance
between two given points x and y, potentially up to a ρ-
approximation. The goal here is to obtain the best possible
running time, as a function of the size of the point represen-
tation (in our case d). Where possible, the best-case scenario
would be a sublinear time algorithm.

We present the first algorithm for Ulam’s distance that
achieves sublinear distance estimation within a constant
factor in sublinear time. The algorithm’s running time for
two strings P,Q is Õ(d/

√
ed(P,Q)).1 Our algorithm’s

running time is optimal in the two extremes, namely, when
ed(P,Q) = O(1) and when ed(P, Q) = Ω(d), since a query
complexity lower bound of Ω(

√
ed(P, Q) + d/ ed(P, Q))

can be obtained by arguments similar to those in [14, Section
4]. Our approximation improves over the dε given in [14] for
edit distance in general strings.

We remark that our sublinear time algorithm for Ulam
metric has already found another application — it was
recently used in [9] to obtain a sublinear time algorithm for
computing edit distance between smoothed 0-1 strings. The

1Following standard convention, we use Õ(f(n)) to mean O(f(n) ·
logO(1) f(n)).

main idea there is to compute on the fly a reduction between
the two problems that maintains “locality of reference”.
NNS for EMD metric. For EMD over [d]2, our tech-
niques, together with an embedding from [29], yield NNS
with O(α

ε log log n) approximation, dO(1)nε query time and
n2+ε · 2d1/α

space for any desired α = α(d, n) > 1 and
ε > 0. This improves upon the O(log d) approximation
of [15, 32, 43], albeit at the cost of a much higher space. Our
approximation also beats the Ω(

√
log d) non-embeddability

lower bound into `1 as long as n ¿ exp(exp(
√

log d)) [43].
We defer details to the full version of the paper.

1.3 Overview of Techniques Our technical contributions
are twofold. The first part shows an embedding of the Ulam
metric into a product space. The second part gives efficient
algorithms for the resulting product metrics.
Embedding Ulam into product spaces. Let Ulamd denote
the Ulam metric over strings of length d over alphabet Σ (we
omit Σ for simplicity). Our first contribution is the following
embedding.

THEOREM 1.1. There exists a constant distortion embed-
ding ϕ : Ulamd 7→

⊕d
(`2)2

⊕O(log d)
`∞ `2d

1 .

Our new embedding of Ulam metric is based on a new
estimate of Ulam’s distance. It is inspired by previous
work on testing and estimating the distance to monotonic-
ity/sortedness [21, 1, 23], but unlike the previous estimates
which are asymmetric in the two strings, our new estimate
is entirely symmetric in the two strings. Our estimate uses
primitives such as “count”, “there exists”, and “majority”,
but we design the estimate such that it can be transformed
into a distance function, in fact a norm, defined via iterated
product spaces. The resulting embedding turns out to be very

simple to compute, mapping a string into a carefully chosen
collection of incidence vectors of its substrings.
Algorithms for product spaces. Our second contribution
is designing efficient algorithms for iterated product spaces.
For example, the following theorem, together with The-
orem 1.1, already gives an NNS scheme for Ulam with
O(log log n) approximation (the improved O(log log d) ap-
proximation is obtained by extending the two theorems).

THEOREM 1.2. For every k, l,m > 1 and ε > 0, the
metric

⊕k
(`2)2

⊕l
`∞ `m

1 admits an NNS scheme achieving
approximation O(ε−3 log log n), query time (klm)O(1)nε,
and space (klm)O(1)n2+ε.

All our NNS algorithms build on a new NNS scheme
that we design for a sum-product metric

⊕
`1
M. This latter

scheme uses a technique, which we call black-box Locality
Sensitive Hashing (LSH). LSH-type techniques have been
used before for NNS under simple metrics like `1 and `2, and
are based on probabilistic partitionings of the corresponding
space. Naturally, for a metric like

⊕
`1
M, we cannot hope

to do a similar partitioning of the space since we do not have
any information about the metric M. However, we show
the space can be partitioned in a black-box manner so as to
effectively reduce NNS for

⊕
`1
M to NNS for max-product⊕

`∞M, with a mild increase in parameters. (See Theorem
3.2 for more details.) For the latter max-product

⊕
`∞M,

we can use the algorithms of [25, 27]. We note that a related
idea was also present in [28]. However, the algorithm of [28]
had much larger (superlogarithmic) approximation factor,
which makes it inapplicable to the scenarios we consider in
this paper.

Our sketching algorithm uses two tools: sub-sampling
(i.e., projecting a vector on a random subset of coordinates)
and sketching of heavy hitters [18] (which enable the recov-
ery of coordinates on which the two sketched vectors differ
considerably). This idea is somewhat related to the Lk norm
estimation algorithm of [33], although the technical devel-
opment is very different here. We do not provide a sketch
of the space

⊕k
(`2)2

⊕l
`∞ `m

1 in its full generality, and it is
in fact plausible that short sketches for this norm might not
exist. Instead, we make use of additional properties of our
embedding’s images. Finally, to obtain a data stream algo-
rithm for computing the sketch, we employ the block heavy
hitters algorithm of [5], as well as a technique of an attenu-
ated window in the stream.

1.4 Related Work
Product spaces. Product spaces were studied in the context
of developing NNS for other hard metrics in [27, 28]. An
algorithm for NNS under the max-product

⊕k
`∞M is de-

signed in [27], achieving O(c log log n) approximation us-
ing polynomial space and sublinear query time, under the
assumption that M itself has an NNS scheme achieving c-
approximation with polynomial space and sublinear query

time. Although [28] gave two algorithms for NNS under the
sum-product

⊕k
`1
M, they are much less satisfying, since

one requires very large storage and the other obtains a rather
large approximation. Our NNS algorithm significantly im-
proves the NNS for sum-products from [28], achieving per-
formance comparable to that of max-products.

We note that the algorithms from [28] were used to
design algorithms for the NNS under the edit distance.
However, they did not provide any embedding of the edit
distance into a simpler space, and thus do not fall under
our approach of identifying richer host spaces. There has
also been work on streaming product metrics such as

⊕
`p

`q

(see, [19, 34]). Furthermore, product spaces, even iterated
ones, are examined quite frequently in the study of the
geometry of Banach spaces, see e.g. [35, Chapter 1].
Nearest Neighbor Search. For edit distance in general
strings, the two known NNS schemes with strongly sublinear
query time achieve a constant factor approximation using
ndε

storage for every fixed ε > 0 [28], or 2O(
√

log d log log d)

approximation using (dn)O(1) storage [44]. The latter result
is obtained by embedding the corresponding metric into `1.

For EMD, the only known NNS scheme achieves
O(log d) approximation with polynomial storage, and is also
obtained via embedding into `1 [15, 32, 43].
Sketching Algorithms. Most known algorithms for NNS
under edit distance, Ulam, and EMD actually go through `1
embeddings, as we just mentioned. Thus, they have O(1)
sketch size. The only known lower bound on sketching
complexity applies to both edit distance on 0-1 strings and
to Ulam metric [8], showing that the sketch size must be
Ω(log log d

ρ log ρ) for approximation ρ.

Distance Estimation. Sublinear time (heuristic) algorithms
are often used as a filtering step in sequence alignment tools
to weed out sure non-matches (cf. [17]). Clearly, sublinear
time is not always possible, but it is concievable when
the edit distance is relatively high. The only previously
known sublinear time algorithm, due to [14], works for
general strings and can distinguish, with high probability
whether ed(x, y) ≤ d1−ε or ed(x, y) ≥ Ω(d), in time
Õ(dmax{1/2−ε/2,1−2ε}).

1.5 Preliminaries Let Σ be the alphabet. For x ∈ Σd, we
use the notation xi or x[i] to refer to the ith position in x.

For P, Q ∈ Ulamd, we let ed(P,Q) denote the mini-
mum number of deletions from P to obtain a subsequence
of Q. Note that ed(Q,P) = ed(P, Q) and ed(P,Q) ≤
ed(P, Q) ≤ 2 ed(P, Q).

To simplify the presentation in the rest of the paper, we
will assume that Σ = [d] since we can reduce the more
general case to it. For example, here is one simple reduction
from Ulam on alphabet Σ with |Σ| > d to Ulam metric over
strings of length |Σ| and alphabet Σ: for given x ∈ Σd,
construct x̃ ∈ Σ|Σ| by appending all the alphabet symbols
that are missing from x in the increasing order. Then, for

any x, y ∈ Σd, ed(x̃, ỹ) is within a factor 3 of ed(x, y).
Furthermore, if |Σ| À dO(1), one can use standard hashing
to reduce the alphabet to a polynomial in d size.

We will use the notation
⊕

`p
M for product metric, as

defined in the Introduction. Abusing terminology, we shall
continue to call

⊕
`p
M a metric even when it is not guar-

anteed to satisfy the triangle inequality, for example, in the
case of

⊕
(`2)2

M. For the distance function in an arbitrary
iterated product space, we use the subscript to identify which
operations are made in which order. For example dNEG,∞,1 is
the distance function of the space

⊕
(`2)2

⊕
`∞ `1.

2 Embedding the Ulam Metric into Product Spaces
We now present our embeddings of Ulam into product
spaces. Our first and main embedding is a more com-
plete statement of Theorem 1.1 and embeds Ulam in⊕d

(`2)2
⊕O(log d)

`∞ `2d
1 .

Theorem 1.1 (Restated) For every d ≥ 1, there exists an
embedding ϕ : Ulamd 7→ ⊕d

(`2)2
⊕O(log d)

`∞ `2d
1 such that

for all x, y ∈ Ulamd:

ed(x, y) ≤ dNEG,∞,1(ϕ(x), ϕ(y)) ≤ O(1) · ed(x, y).

When ϕ is viewed as an embedding into `
O(d2 log d)
1 , it has

distortion O(log2 d). The image ϕ(x) of an input string x
can be computed in time O(d2 log d).

From this embedding, we also derive a second embed-
ding. The second embedding has the advantage of a some-
what simpler host space,

⊕
(`2)2

`∞, however, it handles
only one scale of distances and has high dimension (in our
applications). We use both embeddings to further improve
the approximation of NNS from O(log log n) (given by The-
orem 1.1 alone), to O(log log d).

LEMMA 2.1. For every 1 ≤ R, α ≤ d there is a ran-
domized map ϕ̂ : Ulamd → ⊕d3

(`2)2
`m
∞ with m =

dO(α), such that for every x, y ∈ Ulamd, with probabil-
ity at least 1 − e−Ω(d2) we have: If ed(x, y) ≥ R then
dNEG,∞(ϕ̂(x), ϕ̂(y)) ≥ Ω(R), and if ed(x, y) ≤ R/α then
dNEG,∞(ϕ̂(x), ϕ̂(y)) ≤ O(R/α).

We prove Theorem 1.1 below and defer the proof of
the Lemma 2.1 to the full version of this article. We start
by presenting the construction of the embedding ϕ from
Theorem 1.1.

Construction of ϕ. We use the following notation. For
P ∈ Ulamd, we assume by convention that in positions
j = 0,−1, . . . ,−d + 1 we have P [j] = j and set the
extended alphabet to be Σ̄ = {−d + 1, . . . , d}. For a ∈ [d]
and k ∈ [d], let Pak be a set containing the k symbols that
appear in the k positions immediately before symbol a in P ,
i.e. Pak = {P [P−1[a]− k], . . . , P [P−1[a]− 1]}.

We proceed in three steps. First, for a symbol a ∈ [d]
and integer k ∈ [d], we define ϕak : Ulamd 7→ `2d

1 by set-
ting ϕak(P) to be the 0/1 incidence vector of Pak scaled
by 1/2k. Thus, ϕak(P) ∈ {0, 1

2k}Σ̄ and has exactly k
nonzero entries. Distances in this host space are computed
using the `1-norm, namely ‖ϕak(P) − ϕak(Q)‖1. Second,
for every a ∈ Σ, define ϕa : Ulamd 7→ ⊕O(log d)

`∞ `2d
1 to

be the direct sum ϕa(P) = ⊕k∈Kϕak(P), where K =
{d(1 + γ)ie : i = 0, 1, . . . , dlog1+γ de} ranges over all
powers of 1 + γ in [d] where we set γ = 1/4.2 Distances in
this product space are computed using an `∞-norm, namely
d∞,1(ϕa(P), ϕa(Q)) = maxk∈K ‖ϕak(P) − ϕak(Q)‖1.
Third, define ϕ : Ulamd 7→ ⊕d

(`2)2
⊕O(log d)

`∞ `2d
1

by the direct sum ϕ(P) = ⊕a∈[d]ϕa(P). Distances
in this host space are computed using squared-`2, i.e.
dNEG,∞,1(ϕ(P), ϕ(Q)) =

∑
a∈[d]

(
d∞,1(ϕa(P), ϕa(Q))

)2.
An estimate of the Ulam distance. The following

lemma is key to the proof of Theorem 1.1 and provides an
estimate on the Ulam distance between two permutations. It
is inspired by, and technically builds upon, [21, 1, 23], which
gave estimates to the distance from P to a fixed permutation,
say the identity (hence called distance to monotonicity).
Relabeling of the symbols can clearly be used to apply these
previous estimates to two arbitrary permutations P and Q;
however, it requires an explicit description of Q−1, which is
inefficient or just impossible, in our intended applications.3

Thus, the main advantage of our estimate is that it is the first
one which is efficient for two arbitrary permutations. In the
sequel, we use A4B to denote the symmetric difference
between two sets A,B.

LEMMA 2.2. Fix P, Q ∈ Ulamd, and let 0 < δ ≤ 1/2.
Let Tδ be the set containing all symbols a ∈ Σ for which
there exists k ∈ [d] such that the symmetric difference
|Pak 4Qak| > 2δk. Then

(2.1)
1
2

ed(P,Q) ≤ |Tδ| ≤ 4
δ
· ed(P, Q).

In the case of two permutations P and Q, there is a cru-
cial (albeit technical) difference between our estimate and
the previous ones, including [1, 23]. The core of all such es-
timates is a certain counting. In our case, for a given symbol
a and integer k, it is |Pak 4Qak| (the symmetric difference
between the k symbols appearing immediately before a in
P and similarly in Q); and it is well-known that symmetric
difference can be expressed as the `1 difference between the
respective incidence vectors. In contrast, previous estimates

2To simplify the exposition, we shall ignore rounding issues and the fact
that the largest value in K should be capped by d.

3We seek embeddings that are oblivious, i.e. the image of P has to be
determined independently of Q. In NNS algorithms, the data string P are
preprocessed without knowing the query Q. Sublinear algorithms cannot
afford to compute Q−1 explicitly, as it would take linear time.

ask how many of the k symbols appearing immediately be-
fore a in P (i.e. the set Pak), appear in Q after a. Such
a set-intersection formulation does not lend itself to embed-
dings.4 In this sense, our estimate is symmetric with respect
to P and Q, while previous ones are not. Nevertheless, our
proof relies on the technical analysis of [1, 23], but in a rather
nontrivial way. In particular, we restore symmetry between
the two permutations by applying the known bounds twice,
once from P towards Q and once from Q towards P . The
full proof of Lemma 2.2 follows. It is more convenient for us
to use the notation and analysis from [23] (rather than [1]).

Proof. [Proof of Lemma 2.2] Fix P,Q ∈ Ulamd and 0 <
δ ≤ 1/2. We say that two distinct symbols a, b ∈ Σ are
inverted in P vs. in Q if these symbols do not appear in the
same order in P and in Q, i.e. if (P−1[a]−P−1[b])(Q−1[a]−
Q−1[b]) < 0. We say that a pair of indexes i, j in P is
inverted if the respective symbols P [i], P [j] are inverted.
Define a set RP

δ containing all indexes i ∈ [d] for which
there is j < i such that for more than δ-fraction of indexes
j′ ∈ [j, i − 1] the pair of indexes i, j′ is inverted in P . We
know from [23, Lemma 3.1] that

(2.2) ed(P,Q) ≤ 2|RP
1/2|.

(It is assumed therein that Q is the identity permutation;
the bound above may seem more general but it follows
immediately by relabeling symbols.) We claim that RP

1/2 ⊆
RP

δ ⊆ Tδ . Indeed, whenever a ∈ RP
1/2, there is j < i

such that more than 1/2 ≥ δ of the indexes j′ ∈ [j, i − 1]
are inverted with respect to i in P , and in particular P [j′] ∈
Pa,i−j\Qa,i−j . Since |Pa,i−j | = |Qa,i−j | = i−j, it follows
that |Pa,i−j 4Qa,i−j | = 2|Pa,i−j \Qa,i−j | > 2δ(i−j), and
thus a ∈ Tδ , proving the claim. Using the claim and (2.2),
we have ed(P, Q) ≤ 2|Tδ|, which proves the first inequality
in (2.1).

We proceed to proving the second inequality in (2.1).
Fix an optimal alignment between P and Q, namely a subset
D ⊆ Σ, |D| = ed(P, Q) such that deleting the symbols
of D from P and from Q yields identical strings. Let
DP = {i ∈ [d] : P [i] ∈ D} denote the indexes of D in P ,
and define DQ similarly for Q. Define a set SP

δ containing
all indexes i ∈ [d] for which there is j < i such that more
than δ-fraction of indexes j′ ∈ [j, i − 1] belong to DP . Let
SQ

δ be defined similarly for Q. We then know from [23,
Lemma 3.2],5 that for all 0 < δ′ ≤ 1/2,

|RP
δ′ \DP | ≤ |SP

δ′ | ≤ (1− δ′)/δ′ · |DP |,
and, in fact, that RP

δ′ \DP ⊆ SP
δ′ . Therefore we deduce that

(2.3) |RP
δ′ ∪ SP

δ′ | ≤ |DP ∪ SP
δ′ | ≤ 1

δ′ · |DP |,

4Similarly, our estimate lends itself to sublinear sampling, while under
the previous estimates, it seems to require access to Q−1.

5As pointed out in [23], a similar upper bound, up to constant factors, is
implied by results of [1, Lemma 2.3].

and similarly for Q.
We next show that

(2.4) |Tδ| ≤ |RP
δ/2 ∪ SP

δ/2|+ |RQ
δ/2 ∪ SQ

δ/2|.

Indeed, consider a ∈ Tδ and let k ∈ [d] be its witness,
namely |Pak 4Qak| > 2δk. The case where P−1[a] ∈
RP

δ/2 ∪ SP
δ/2 can be paid for using the term |RP

δ/2 ∪ SP
δ/2|.

The case where Q−1[a] ∈ RQ
δ/2 ∪ SQ

δ/2 can be paid for

using the term |RQ
δ/2 ∪ SQ

δ/2|. We now claim that these are
the only two possible cases, i.e. not being in either of the
two cases implies a contradiction. Indeed, if a ∈ Tδ and
P−1[a] /∈ RP

δ/2 ∪ SP
δ/2, then there must be at least one

symbol b′ ∈ Σ̄ such that (a) b′ ∈ Pak \ Qak; (b) b′ is not
inverted wrt to a; and (c) b′ is not in D. Using (a) and (b) we
have that (d) b′ appears in Q more than k positions before
a (i.e. its index in Q is smaller than Q−1[a] − k). Since
also Q−1[a] /∈ RQ

δ/2 ∪ SQ
δ/2, we similarly obtain a symbol

b′′ ∈ Σ̄ such that (a’) b′′ ∈ Qak; (c’) b′′ is not in D; and (d’)
b′′ appears in P more than k positions before a. We obtain
from (a) and (d’) that b′ appears after b′′ in P , and from
(a’) and (d) that b′′ appears after b′ in Q. Thus, the symbols
b′, b′′ are inverted, and at least one of them must belong to D,
contradicting (c) and (c’). This proves the claim and (2.4).

Finally, using (2.3), (2.4), and the fact that |DP | =
|DQ| = ed(P, Q), we conclude |Tδ| ≤ 2

δ |DP | + 2
δ |DQ| =

4
δ ed(P, Q), which proves the second inequality in (2.1), and
completes the proof of Lemma 2.2. ¥

We can now complete the proof of Theorem 1.1 using
Lemma 2.2. We need to bound the distortion of ϕ when
viewed as an embedding into

⊕
(`2)2

⊕
`∞ `1. In a nutshell,

the distortion of the embedding roughly corresponds to∑
δ=2−j δ2|Tδ|/ ed(P, Q) ≤ O(

∑
δ=2−j δ) ≤ O(1), where

the squared term comes from the outer `2-squared product,
and would not work if instead we were to use `1 as the outer
product.

Proof. [Proof of Theorem 1.1] Fix two distinct permutations
P,Q ∈ Ulamd. By definition, for all a ∈ Σ and k ∈ [d] we
have ‖ϕak(P)− ϕak(Q)‖1 = 1

2k |Pak 4Qak|.
We first bound dNEG,∞,1(ϕ(P), ϕ(Q)) from below. By

Lemma 2.2 (and its notation) for δ = 1/2, we know that
|Tδ| ≥ 1

2 ed(P, Q). Now fix a ∈ Tδ . Then there exists
k ∈ [d] such that |Pak 4Qak| > 2δk, and rounding this
k upwards to the next power of 1 + γ, we obtain k′ ∈ K
such that ‖ϕak′(P) − ϕak′(Q)‖1 = 1

2k′ |Pak′4Qak′ | ≥
1

2k′ (2δk − 2γk) = δ−γ
1+γ = 1

5 . (We remind that the rounding
issues we neglected would lead to slightly worse constants.)
Thus, for each a ∈ Tδ we have d∞,1(ϕa(P), ϕa(Q)) ≥ 1/5,
and thus

dNEG,∞,1(ϕ(P), ϕ(Q)) ≥
∑

a∈Tδ

(1
5)2 ≥ ed(P,Q)/2

25 = ed(P,Q)
50 .

To bound dNEG,∞,1(ϕ(P), ϕ(Q)) from above, we relax
the range k ∈ K into k ∈ [d], and break the contribution
arising from different a ∈ Σ into buckets of the form
[2−j , 2−j+1].

dNEG,∞,1(ϕ(P), ϕ(Q)) =
∑

a∈Σ

(
d∞,1(ϕa(P), ϕa(Q))

)2

≤

≤
∑

a∈Σ

max
k∈[d]

‖ϕak(P)− ϕak(Q)‖21 =

=
∑

a∈Σ

max
k∈[d]

[1
2k |Pak 4Qak|]2 ≤ 1 +

log d∑

j=1

(2−j+1)2 · |T2−j |.

By Lemma 2.2, we have |T2−j | ≤ 2j+2 · ed(P, Q), and
therefore

dNEG,∞,1(ϕ(P), ϕ(Q))

≤ 1 +
log d∑

j=1

2−j+4 · ed(P, Q) ≤ 17 · ed(P, Q).

The second part of the theorem results from a similar
computation on ‖ϕ(P)− ϕ(Q)‖1. ¥

3 New Algorithms for Product Metrics
We present new algorithms for three applications: nearest
neighbor search (NNS), sketching, and sublinear distance
estimation. We first develop algorithms for NNS over
general product spaces, and subsequently obtain NNS for
Ulam, relying on our Ulam embeddings. The other two
applications, sketching (including streamable sketching) and
sublinear distance estimation rely on the Ulam embedding
from Theorem 1.1, but apply to Ulam only.

3.1 NNS for Product Spaces We now design new NNS
schemes for product spaces. The main ingredient to all
NNS algorithms is the theorem below that reduces an `1-
product metric to an `∞-product metric. In the sequel, we
also use the terms sum-product and max-product, respec-
tively. Combining it with the NNS for max-product metrics
from [25, 27], we obtain a general composition principle that
is useful for constructing NNS scheme for iterated products
with respect to `1, `2-squared, and `∞. Throughout, we let
n denote the number of points in the NNS dataset, and will
not worry about preprocessing times since it is the same as
the space bound in all our algorithms.

We note that our result does not require the triangle
inequality and is thus applicable also to `2-squared. On the
other hand, we require the following quite natural property
of a metric space.

DEFINITION 3.1. Let (M, dM) be a metric space. A map
σ : M → M is called an α-dilation, for α > 0, if for
all x, y ∈ M we have dM(σ(x), σ(y)) = α · dM(x, y).
The metric is called scalable if for every α > 0 it has an
α-dilation σα. To simplify notation, we write α ·x for σα(x).

THEOREM 3.2. (NNS FOR SUM-PRODUCT) Let (M, dM)
be a scalable metric space and let k ≥ 1. Suppose
there is an NNS scheme for the max-product

⊕k
`∞M with

approximation c, query time Q(n), and space S(n). Then
for every ε > 0 there is an NNS scheme for the sum-
product

⊕k
`1
M with approximation c̃ = O(1

ε c), query time
knε ·Q(n), and space knε · S(n).

An immediate corollary of this theorem is the Theo-
rem 1.2. As previously mentioned, this in turn implies an
immediate NNS for Ulam with O(log log n) approximation.
Later, we further improve the approximation to O(log log d),
with another application of Theorem 3.2 together with the
second Ulam embedding from Lemma 2.1 (see details in
Corollary 3.4).

Proof. [Proof of Theorem 3.2] We design an algorithm for
the decision version of approximate NNS problem, namely
c̃-approximate near-neighbor. In this decision problem,
given a dataset D and a radius R, we construct a data
structure that, given a query point q, if there is a point
p ∈ D with d(p, q) ≤ R then the data structure reports,
with probability at least 1/2, a point p′ ∈ D such that
d(p′, q) ≤ c̃ · R. An algorithm for this problem implies an
algorithm for approximate NNS by the results of [31, 24].

The main idea is to design a generalization of Locality
Sensitive Hashing (LSH). Previously, LSH has been used
to design NNS under simple metrics like `1 and `2. In
a nutshell, LSH is a (non-adaptive) hashing scheme that
probabilistically partitions the entire space into buckets such
that a pair of “close” points (distance ≤ R) have higher
probability of collision (i.e., falling into the same bucket)
than a pair of “far” points (distance ≥ c̃R). The NNS
algorithm then hashes all n data points according to this
partition and builds a hash table. Upon recieving a query q,
the algorithm computes the hash of q and linearly scans the
data points that fall in the same bucket and reporting those
that are indeed close to q. To guarantee a constant success
probability, the algorithm needs to construct some number
L = L(n, c̃) of such hash tables.

Ideally, we would like to be able to similarly partition
the space

⊕
`1
M, however we cannot do this since we

have no control over M. Nonetheless, we manage to do
so in a black-box manner, as will be seen later, replacing
a hash table structure by a nearest neighbor data structure for⊕

`∞M. Our algorithm may be viewed as a generalization
of the LSH scheme for `1 in [6]. We now describe our
algorithm in detail.
Preprocessing stage. Fix a threshold radius R > 0 and let
w = R log n. For integers L, t to be chosen later, construct
L different max-product data structures (these correspond to
the L hash tables of an LSH scheme). For each i ∈ [L],
construct one max-product data structure Mi, as follows. For
u ∈ [t], pick uniformly at random reals si

1,u, si
2,u, . . . si

k,u ∈
[0, w]. Then, for j ∈ [k], let si

j = minu∈[t]{sj,u}. From the

dataset D, construct the dataset D̃i containing all x̃ such that
x̃ is obtained from x ∈ D by scaling each coordinate j ∈ [k]
in the product by 1/si

j . In other words, if xj ∈ M is the jth

coordinate of x ∈ D ⊆Mk, then

D̃i =
{
x̃ =

(
x1/si

1, x2/si
2, . . . xk/si

k

) ∣∣ x ∈ D
}

.

Then Mi is simply a near-neighbor data structure for⊕k
`∞M metric with R′ = 1 constructed on the dataset D̃i.

Query stage. Given a query point q ∈ Mk, iteratively
go over Mi for all i ∈ [L]. For each Mi, compute q̃ =
(q1/si

1, q2/si
2, . . . , qk/si

k) and query the point q̃ in Mi. For
each returned point p, compute the true distance from q to p
and report the point p if d1,M(p, q) ≤ c̃R, where c̃ = O(1

ε c).
Correctness and running time. Fix one NNS data structure
Mi. Consider the reals {si

j,u}j∈[k],u∈[t] used to construct
Mi. Now, for 0 ≤ α ≤ c, let us say that two points
p, q ∈ ⊕k

`1
M α-collide if dM(pj/sj,u, qj/sj,u) ≤ α for

all j ∈ [k] (this corresponds to collision in an LSH bucket
but in a “fuzzy” sense, as determined by α). Observe that
if there exists a point p ∈ D that 1-collides with q for all
u ∈ [t], then the query to Mi will return a point p′ that c-
collides with q for all u ∈ [t] (since the NNS structure Mi

attains approximation factor c).
It remains to compute the probabilities of α-collision

of points p and q. Following the calculations done in [4,
Lemma 4.1.1], we have that: (1) if d1,M(p, q) ≤ R then the
probability of 1-collision of p and q is π1 ≥ 1−1/ log n; and
(2) if d1,M(p, q) ≥ c̃R then the probability of c-collision is
π2 ≤ 1− c̃/c

log n+c̃/c .

We can now choose L = nρ, where ρ = log 1/π1
log 1/π2

, and

t = log n
log 1/π2

. Notice that we can compute the probability
of success using standard LSH analysis similar to [31]. It
follows that our algorithm will return a point p′ ∈ D at
distance at most c̃R with probability bounded away from
zero, whenever there is a point p ∈ D at distance ≤ R from
q. As usual, the probability can be amplified to any desired
value. Note that we have used L = nρ = O(nc/c̃) = nO(ε).

Since we can implement each Mi with query time Q(n)
and space S(n), the final data structure has query time
O(Lk log2 n) · Q(n) = knO(ε)Q(n), and similarly space
knO(ε)S(n). Scaling ε accordingly concludes the proof of
the theorem. ¥

We now show how the above theorem implies Theo-
rem 1.2, namely an NNS for

⊕
(`2)2

⊕
`∞ `1 metric.

Proof. [Proof of Theorem 1.2] Notice that the metric⊕k
(`2)2

⊕l
`∞ `m

1 is the same as the metric
⊕k

`1

⊕l
`∞(`m

1)2,
where (`m

1)2 is the square of the distances in `m
1 , i.e. it is

Rm equipped with distance d12(x, y) = (
∑m

i=1 |xi − yi|)2.
We design an NNS scheme for the metric

⊕k
`1

⊕l
`∞(`m

1)2.
First, we apply Theorem 3.2 to reduce the problem to de-
signing NNS for

⊕k
`∞

⊕l
`∞(`m

1)2 =
⊕kl

`∞(`m
1)2. For

this resulting max-product, we use the following theorems
from [25, 27].

THEOREM 3.3. ([27, THEOREM 1], [25]) Consider met-
ric (M, dM) with an NNS under M that has approxima-
tion c, query time Q(n), and space S(n).6 Then, for ev-
ery ε > 0, there exists NNS under

⊕k
`∞M with approxi-

mation O(ε−1 log log n), query time O((Q(n) + kd) log n),
and space kS(n)n1+ε, where d is the time to compute dis-
tance in M. If M = R, the approximation becomes
O(ε−1 log log k).

We note that (`m
1)2 admits NNS with approximation

1/ε, query time O(mnε) and space O(mn1+ε) by [31]. Thus
we can apply Theorem 3.3 with M = (`m

1)2, and obtain
NNS under the max-product

⊕kl
`∞(`m

1)2. The resulting ap-
proximation is O(1

ε) · O(1
ε) · O(1

ε log log n) coming from
Theorem 3.2, the NNS for (`1)m, and Theorem 3.3, respec-
tively. The resulting query time is (klm)O(1)n2ε and space
is (klm)O(1)n2+3ε. ¥

3.2 NNS for Ulam Using the embeddings of Ulam in
Theorem 1.1 and in Lemma 2.1, in conjunction with the
NNS data structures from above, we achieve an O(log log d)
approximation NNS for Ulam as follows.

COROLLARY 3.4. For every constant 0 < ε < 1 there is
a randomized NNS algorithm under Ulamd that achieves
approximation O(ε−3 log log d), query time dO(1)nε, and
space dO(1)n2+ε.

Proof. We employ one of two different data structures,
depending on the parameters d and n. If n ≤ dlog d, we apply
Theorem 1.1 to embed Ulam into

⊕d
(`2)2

⊕O(log d)
`∞ `2d

1 , and
use the NNS from Corollary 1.2, achieving approximation
O(ε−3 log log n) = O(ε−3 log log d).

If n > dlog d, then we use Lemma 2.1 with
α = O(log log d), embedding Ulam into

⊕d3

(`2)2
`m
∞ for

m = dO(log log d). Then we can apply Theorem 3.2
together with the NNS for `k

∞ (Theorem 3.3), which
achieves O(log log k) approximation. Thus, we obtain
O(ε−2 log log(d3m)) = O(ε−2 log log d) approximation,
with query time dO(log log d)nε ≤ n2ε. ¥

3.3 Sketching and Streaming Algorithms Our general
result for sketching of Ulam, in the streaming model, is based
on the embedding from Theorem 1.1 and reads as follows:

THEOREM 3.5. We can compute a randomized sketch sk :
Ulamd → {0, 1}s for s = (log d)O(1) in the streaming
model, with (log d)O(1) time per input character, with the fol-
lowing property. For every P,Q ∈ Ulamd, with high prob-
ability, given sk(P) and sk(Q) only, one can approximate
ed(P, Q) within a constant approximation.

6Strictly speaking, we need to impose a technical condition on the NNS
for M, but it is satisfied in all our scenarios; see [27, Section 2] for details.

In this conference version, we give a simpler construc-
tion of a polylog-space sketching algorithm Ulamd, but
which is not computable in a stream as is. Nonetheless, this
construction already contains some ideas used for obtaining
the streamable version of the sketch. Both the analysis of this
algorithm, and the streaming version of the sketching result
(that uses [5]) are deferred to the full version.

THEOREM 3.6. There exists a sketching algorithm for
Ulamd achieving constant approximation using logO(1) d
space.

Proof. [Proof sketch] Let P, Q ∈ Ulamd. We use the no-
tation from Section 2. Notably, let ϕ,ϕa, ϕa,k be as de-
fined in Section 2, and let ζ, ζa, ζa,k be respectively ϕ(P)−
ϕ(Q), ϕa(P)− ϕa(Q), ϕa,k(P)− ϕa,k(Q).

We prepare sketches for all possible scales R = ci,
i ∈ [logc d], for c a sufficiently large constant, determined
later. For each scale we solve the threshold problem: output
“far” if ed(P, Q) ≥ R and output “close” if ed(P,Q) ≤
R/c, with probability at least 2/3 (this can be amplified to
whp by taking independent sketches). We also assume that
ed(P,Q) ≤ cR since the algorithm can enumerate all scales
R from the biggest to the smallest stopping as soon as the
sketch for the corresponding scale outputs “far”.

The main idea is the following. Call a ∈ Σ expensive
character if a ∈ T1/2, where Tδ is the set of characters
z such that ‖ζz,k‖1 > δ from some k ∈ K. In other
words, the expensive characters are the ones that contribute
a constant fraction to the edit distance (through ζa’s). To find
the expensive characters, we down-sample the characters to
some set S such that there are few expensive characters in S.
It remains to estimate the number of expensive characters in
S.

For an expensive character a, we say it is expensive at
scale k for some k ∈ K if ‖ζa,k‖1 > 1/2. The main
observation is that if a is an expensive character at scale k,
then ‖ζa,k‖1 ≥ 1

polylog(d)‖{ζa,k}a∈S‖1 (this step uses the
second part of Theorem 1.1). Now, to find such characters a,
we use a sketching algorithm for finding heavy hitters under
`1. A more detailed description follows.

DEFINITION 3.7. Consider a vector v ∈ Rm. Coordinate i
is called a φ-heavy hitter if |vi| ≥ φ‖v‖1. The set of φ-heavy
hitters is denoted by HH1(φ).

We will use the COUNTMIN algorithm, due to
Cormode-Muthukrishnan.

LEMMA 3.8. ([18]) There exists a (randomized) sketching
algorithm sk(·), that for every two input vectors x, y ∈ Rm

and parameter φ > 0, computes sketches sk(x) and sk(y) of
size O(1

φ log m), such that one can reconstruct from the two
sketches a set H ⊂ [d], where, denoting HH1(φ) the heavy
hitters for the vector x− y, we have

Pr[HH1(φ) ⊆ H ⊆ HH1(φ
2)] ≥ 1−m−Ω(1).

The algorithm. Fix some R. Remember that we are
trying to decide whether E ≥ R or E ≤ R/c, where
E = ed(P, Q) (and by assumption E ≤ cR). Let S ⊂ [d]
be a multi-set of size |S| = d

R · cS log d, chosen uniformly at
random with replacement, where cS is a large constant.

We want to find, for each k ∈ K, the expensive
characters a ∈ S at scale k. Fix k ∈ K and consider the
multi-set of vectors Υk(P) = {2kϕa,k(P)}a∈S , and thus
Υk(P) ⊆ {0, 1}d. For l = d

2k · cL log d, we sub-sample a
multi-set L ⊂ [d] of l coordinates (with replacement). For
each ϕa,k ∈ Υk(P), we let ϕL

a,k be the restriction of ϕa,k

to the coordinates from L, and let ΥL
k (P) be the set of ϕL

a,k,
where ϕa,k ranges over Υk(P).

Our actual sketch consists of applying the COUNTMIN
algorithm (Lemma 3.8) to each set ΥL

k (P), k ∈ K, to find
the positions of all the non-zeros in all the vectors in ΥL

k (P).
For this we view ΥL

k (P) as a vector of size |S| · l, and apply
COUNTMIN with φ = Ω(1/ log4 d).

The reconstruction stage for some sketches sk(P) and
sk(Q) is then the following. Define Υk = Υk(P) −
Υk(Q) = {2kζa,k(P)}a∈S , and similarly with ΥL

k . Using
the linear in ϕ CountMin sketch sk(P) − sk(Q), we find
all the non-zeros in ΥL

k . Once we found all the non-zeros
in ΥL

k , we define the set Xk ⊂ S of characters which are
“near-expensive” according to the subset L: i.e., a ∈ Xk

iff ‖2kζL
a,k‖1 ≥ 1

3cL log d. Then, the set of all expensive
characters in S is estimated to be X = ∪kXk. If |X| ≥
1
3 · cS log d, then we declare P and Q to be far. Otherwise,
P and Q are close. ¥

3.4 Sublinear distance estimation Using the embedding
of Ulam from Theorem 1.1, we obtain the following algo-
rithm. We defer the proof of next theorem to the full version
of the paper.

THEOREM 3.9. There is a randomized algorithm that, given
P,Q ∈ Ulamd estimates ed(P, Q) within a constant factor
in time (and query complexity) Õ(d/

√
ed(P, Q)).

4 Conclusions
In this paper we give a constant-distortion embedding of
Ulam metric into an (iterated) product space. Such em-
bedding is provably impossible to achieve with simpler host
spaces, such as `1. We further show that this implies im-
proved algorithms for a variety of computational tasks.

The main problem left open by this work is: is it possible
to embed the edit distance into a (computationally tractable)
iterated product metric with a constant distortion? Such a
result could have far-reaching algorithmic implications, both
in theory and in practice.

References

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating
the distance to a monotone function. Random Struct. Algo-
rithms, 31(3):371–383, 2007.

[2] M. Ajtai, T. S. Jayram, R. Kumar, and D. Sivakumar. Ap-
proximate counting of inversions in a data stream. In Proc. of
STOC, pages 370–379, 2002.

[3] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. Proc. of STOC, pages
20–29, 1996.

[4] A. Andoni. Approximate nearest neighbor problem in high
dimensions. M.Eng. Thesis, Massachusetts Institute of Tech-
nology, June 2005.

[5] A. Andoni, K. Do Ba, and P. Indyk. Block heavy hitters. MIT
Technical Report MIT-CSAIL-TR-2008-024, 2008.

[6] A. Andoni and P. Indyk. Efficient algorithms for substring
near neighbor problem. In Proc. of SODA, pages 1203–1212,
2006.

[7] A. Andoni, P. Indyk, and R. Krauthgamer. Earth mover
distance over high-dimensional spaces. Proc. of SODA, pages
343–352, 2008.

[8] A. Andoni and R. Krauthgamer. The computational hardness
of estimating edit distance. In Proc. of FOCS, pages 724–734,
2007.

[9] A. Andoni and R. Krauthgamer. The smoothed complexity of
edit distance. In Proc. of ICALP, pages 357–369, 2008.

[10] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the
sparsest cut. In Proc. of STOC, pages 553–562, 2005.

[11] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric
embeddings, and graph partitionings. In Proc. of STOC, pages
222–231, 2004.

[12] Y. Aumann and Y. Rabani. An O(log k) approximate min-
cut max-flow theorem and approximation algorithm. SIAM J.
Comput., 27(1):291–301 (electronic), 1998.

[13] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proc. of PODS,
pages 1–16, 2002.

[14] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhodnikova,
R. Rubinfeld, and R. Sami. A sublinear algorithm for weakly
approximating edit distance. In Proc. of STOC, pages 316–
324, 2003.

[15] M. Charikar. Similarity estimation techniques from rounding.
In Proc. of STOC, pages 380–388, 2002.

[16] M. Charikar and R. Krauthgamer. Embedding the ulam metric
into `1. Theory of Computing, 2(11):207–224, 2006.

[17] E. Chávez, G. Navarro, R. Baeza-Yates, and J. Marro-
quin. Searching in metric spaces. ACM Computing Surveys,
33(3):273–321, Sept. 2001.

[18] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. J.
Algorithms, 55(1):58–75, 2005.

[19] G. Cormode and S. Muthukrishnan. Space efficient mining of
multigraph streams. In Proc. of PODS, 2005.

[20] N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi. Inte-
grality gaps for sparsest cut and minimum linear arrangement
problems. In Proc. of STOC, pages 537–546, 2006.

[21] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and
M. Viswanathan. Spot-checkers. J. Comput. Syst. Sci.,
60(3):717–751, 2000.

[22] P. Flajolet and G. Martin. Probabilistic counting algorithms
for data base applications. J. Comput. Syst. Sci., 31:182–209,
1985.

[23] P. Gopalan, T. S. Jayram, R. Krauthgamer, and R. Kumar.
Estimating the sortedness of a data stream. In Proc. of SODA,

2007.
[24] S. Har-Peled. A replacement for voronoi diagrams of near

linear size. In Proc. of FOCS, pages 94–103, 2001.
[25] P. Indyk. On approximate nearest neighbors in l∞ norm. J.

Comput. Syst. Sci., to appear. Preliminary version appeared
in FOCS’98.

[26] P. Indyk. Tutorial: Algorithmic applications of low-distortion
geometric embeddings. Proc. of FOCS, pages 10–33, 2001.

[27] P. Indyk. Approximate nearest neighbor algorithms for
frechet metric via product metrics. Proc. of SoCG, pages 102–
106, 2002.

[28] P. Indyk. Approximate nearest neighbor under edit distance
via product metrics. In Proc. of SODA, pages 646–650, 2004.

[29] P. Indyk. A near linear time constant factor approximation
for euclidean bichromatic matching (cost). In Proc. of SODA,
2007.

[30] P. Indyk and J. Matoušek. Discrete metric spaces. CRC
Handbook of Discrete and Computational Geometry, 2nd
edition, 2003.

[31] P. Indyk and R. Motwani. Approximate nearest neighbor:
towards removing the curse of dimensionality. Proc. of STOC,
pages 604–613, 1998.

[32] P. Indyk and N. Thaper. Fast color image retrieval via
embeddings. Workshop on Statistical and Computational
Theories of Vision (at ICCV), 2003.

[33] P. Indyk and D. Woodruff. Optimal approximations of the
frequency moments of data streams. Proc. of STOC, 2005.

[34] T. Jayram and D. Woodruff. Cascaded stream aggregates.
Manuscript, 2008.

[35] W. B. Johnson and J. Lindenstrauss, editors. Handbook of the
geometry of Banach spaces. Vol. I. North-Holland Publishing
Co., Amsterdam, 2001.

[36] S. Khot and A. Naor. Nonembeddability theorems via fourier
analysis. Math. Ann., 334(4):821–852, 2006. Preliminary
version appeared in FOCS’05.

[37] S. A. Khot and N. K. Vishnoi. The unique games conjecture,
integrality gap for cut problems and embeddability of negative
type metrics into `1. Proc. of FOCS, 00:53–62, 2005.

[38] R. Krauthgamer and Y. Rabani. Improved lower bounds for
embeddings into l1. In Proc. of SODA, pages 1010–1017,
2006.

[39] N. Linial. Finite metric spaces - combinatorics, geometry
and algorithms. Proceedings of the International Congress
of Mathematicians III, pages 573–586, 2002.

[40] N. Linial, E. London, and Y. Rabinovich. The geometry of
graphs and some of its algorithmic applications. Combinator-
ica, 15(2):215–245, 1995.

[41] J. I. Marden. Analyzing and Modeling Rank Data. Mono-
graphs on Statistics and Applied Probability 64. CRC Press,
1995.

[42] J. Matousek. Lectures on Discrete Geometry. Springer, 2002.
[43] A. Naor and G. Schechtman. Planar earthmover is not in l1.

Proc. of FOCS, 2006.
[44] R. Ostrovsky and Y. Rabani. Low distortion embedding for

edit distance. J. ACM, 54(5), 2007. Preliminary version
appeared in STOC’05.

[45] Y. Rubner, C. Tomassi, and L. J. Guibas. The earth mover’s
distance as a metric for image retrieval. International Journal
of Computer Vision, 40(2):99–121, 2000.

