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Abstract

We study phylogenetic reconstruction of evolutionary trees, undergoing three possible types
of mutations: substitutions, insertions, and deletions. We give the first efficient algorithm
for this problem which needs sequences of only poly-logarithmic length. The best previously
known result of Daskalakis and Roch [DR10] showed how to do phylogenetic reconstruction
using sequences of polynomial length. For the related problem of trace reconstruction (on an
a-priori given tree structure), Daskalakis, Roch, and two of the authors [ADHR10] developed an
algorithm that also uses only poly-logarithmic length sequences. The algorithm of [ADHR10],
however, does not lead to phylogenetic reconstruction.

We develop three new tools enabling us to accomplish phylogenetic reconstruction under
insertion/deletion mutations:

1. A new reconstruction guarantee for internal node sequences. The new guarantee is weaker
but is more robust, allowing us to establish the reconstruction guarantee inductively.

2. A new local alignment and trace reconstruction algorithm, with an inductive correctness
guarantee.

3. A new distance measure, tailored to traces estimated in the presence of insertions and
deletions.

We analyze the error of the new algorithm by showing that it is dominated by a certain new
random process on the tree, and apply percolation theory tools to analyze its behavior.
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1 Introduction

The evolutionary history of a given set of species is usually modeled as a phylogenetic tree. The
leaves of the tree correspond to the species which exist today. The root of the tree is their closest
common ancestor, and each branching corresponds to a specification event, in which one species is
extinct, and several new species are formed. The goal of phylogenetic reconstruction is to infer the
tree structure from the information we have on the leaves, usually the DNA sequences of the species
which exist today. The problem of phylogenetic reconstruction received a lot of attention in the
recent literature; see, e.g., [Mos03, Mos04a, DMR06, Roc08, BRZ95, EKPS00, Iof96, BKMP05,
MSW04, BCMR06, MHR08] and the excellent surveys [Roc07, SS03].

The basic model in the present work is the following common formalization. The phylogenetic
tree is fixed arbitrarily (in particular, the tree need not to be balanced). The genetic information
is modeled as a binary string (the CFN model of [Cav78, Far73, Ney71]). For each node, we call
the bit string corresponding to the node its trace, and each location in this bit string a site. The
genetic information of the root is assumed to be sampled uniformly at random from {0, 1}k for
some k representing the amount of the available genetic information. The reconstruction problem
becomes easier as k increases. In every branching event, the bit string of the father node v is copied
to each one of the child nodes u1, . . . , ud, subject to a random mutation process. The mutation
process of an edge (v, uj) is characterized by three parameters: the substitution probability of the
edge ps(v, uj), the insertion probability pi(v, uj) and the deletion probability pd(v, uj). Given these
probabilities, when copying the genetic information xv to the child uj , every site undergoes any of
the following mutations, independently of any other site:

1. Substitution: the bit is flipped with probability ps(v, uj).

2. Deletion: the bit is deleted with probability pd(v, uj).

3. Insertion: a new site is added to the right of the current site with probability pi(v, uj). The
value of the bit in that site is a random bit in {0, 1}.

We also assume some bounds on the mutation probabilities. The substitution probability of
every edge (v, uj) is bounded from above and below: Pmin < ps(v, uj) < Psubs, where Psubs,Pmin

are global constants. The insertion and deletions probabilities are only bounded from above:
pi(v, uj), pd(v, uj) < Pid, for Pid subconstant. We call Pid the indel probability, and say that
a site has undergone an indel if it suffered an insertion/deletion mutation.

We want to design an algorithm for the following phylogeny reconstruction problem. Consider
an instance of the above evolutionary process on a tree with n leaves. Then, given an unordered
list of leaves with their traces, and the parameters d,Psubs,Pid,Pmin, the algorithm has to output
the tree topology, identifying the tree leaves with the corresponding input traces. The algorithm is
required to succeed for any choice of parameters pi(v, uj), pd(v, uj), ps(v, uj) with high probability
over the random coin flips of the evolutionary process (which determine the initial values of the
root and govern the mutations). We limit our attention to algorithms which are polynomial in n,
but make no further attempt to optimize the runtime.1

Traditionally, the computational biologists approach the problem via a two-stage process. In-
formally, first, they align all the sequences, and then they build the evolutionary tree on the aligned
data. The advantage of this approach is that it allows one to build the tree assuming there are no
indels. The success of this method is based on the assumption that insertions and deletions occur

1We note that, in exponential time, one can compute the maximum-likelihood estimate, reducing the problem to
a purely information-theoretic problem.
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much less frequently than substitutions. In practice, this method gives good results, although lately
it was criticized in the biological community (see e.g. [WSH08, LRN+09a, LG08]).

In the theoretical community, most of the work focused on the second stage of building the
tree, assuming that the genetic material is aligned correctly, and thus the reconstruction problem
is reduced to one without indels. Under this assumption, early results (see, e.g., the work of Erdös
et al. [ESSW99a, ESSW99b]) showed how to use distance estimations between all pairs of nodes
in order to build the tree. Classically, these approaches require a polynomial number of sites, since
the correlation between the same sites in two nodes which lie in different parts of the tree can be as
small as n−O(1). More recently, the surprising result of Roch [Roc08] showed that reconstruction
from distance information is possible even when k is subpolynomial.

In the last decade, several breakthrough results [Mos03, Mos04a, DMR06, Roc08] showed that
there exists a critical substitution probability P?

subs = 1
2 −

1
2
√
d
, such that if Psubs < P?

subs the

correct tree can be reconstructed with high probability even if the trace length is logarithmic,
k = O(log n). A key, new ingredient in these results has been to reconstruct (approximations to)
the traces of internal nodes of the tree iteratively. The authors of [Mos03, Mos04a, DMR06, Roc08]
developed powerful frameworks for such reconstruction, where the requirement is not that the
reconstruction is very good (in fact each bit is correct with i.i.d probability which is very close to
1/2), but rather that the algorithm fails at reconstructing any node only with an exponentially
small probability (that is exponentially small in the length of the sequence k, which gives a failure
probability much less than 1/n). In fact all these papers take a union bound on the tree and argue
that they never fail to reconstruct any node2.

In this paper, we present phylogenetic reconstruction algorithms for the complete evolutionary
process that includes indels, for the sequences of polylogarithmic length (or higher). We handle
insertion and deletion probabilities of up to O(1/ log2 n). Before describing our results, we give an
overview of related work.

1.1 Related Work

We now discuss past work on phylogeny reconstruction in the presence of substitutions and indels.
Daskalakis and Roch [DR10] proposed an algorithm for phylogeny reconstruction that uses only

pairwise distance information between the (input) traces of the leaves of the tree. In particular,
their method does not reconstruct the traces of the tree’s inner vertices. Their algorithm works
under the following assumptions:

1. The number of sites required for successful reconstruction is polynomial in the number of
leaves, k = poly(n).

2. The maximal indel probability is inverse proportional to the depth of the tree.

The latter assumption leads to an inverse-polynomial bound on maximal indel probability of at
most 1/nε for unbalanced trees.

To relax the above assumptions, it is natural to approach the phylogeny problem via trace
reconstruction of internal nodes, following the general iterative framework of Mossel [Mos98, Mos01,
Mos03, Mos04b], which allows one to reconstruct the tree from logarithmically-long traces. In this
framework, one reconstructs the tree iteratively, level by level, maintaining a partial forest in the
process. First, one clusters the leaves into a number of small groups, each corresponding to a set

2One could naively hope to reconstruct most of the tree, even when the reconstruction algorithm has some non
negligible failure probability (say 1/nε). It turns out that this is not the case – a failure in one node can change
distance estimations in the next level, and wreck havoc on the entire reconstruction.
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of siblings. Each group is then joined into a mini-tree (a subtree), and one reconstructs the trace
of the root of the resulting mini-tree. At the next stage, the process is repeated using the traces of
the roots of the newly-formed mini-trees. This approach has two challenges:

1. Controlling the error of the recursive reconstruction, which might degrade over time: as one
iteratively reconstructs traces at each stage from the previously-reconstructed traces, the
reconstruction errors may accumulate. Mossel’s 1998 paper shows that when there are only
substitutions this does not happen: the magnitude of noise stabilizes at an absolute “small”
constant.

2. The success of the reconstruction algorithm depends critically on always correctly selecting
the traces to form each single mini-tree. Each intermediate reconstruction has some failure
probability, which must be made small in order to apply a union bound over the entire tree.
Otherwise, if the failure probability is not low enough (say, of the order of 1/n1−ε instead of
� 1/n), one cannot hope to reconstruct even “most” of the topology, since if even one single
node is not reconstructed correctly, then the clustering can change completely, and prevent
reconstruction of the rest of the tree.

For the classical substitution mutation process, the results of [Mos03, Mos04a, DMR06, MHR08]
tie the problem of trace reconstruction (reconstructing the trace of the root of a tree with a known
topology) to phylogenetic reconstruction, as long as the trace reconstruction has exponentially small
failure probability.

In presence of indel mutations, the trace reconstruction problem on a tree has been recently
studied in [ADHR10], who showed that a polylogarithmic number of sites is sufficient for good
(approximate) trace reconstruction, when the tree is d-ary for d = Ω(1). Their reconstruction
procedure has the advantage that it works even if one of the inputs is adversarial3. However, it
has a failure probability of Ω(1/ log n), which is exponentially worse than the one required for
phylogenetic reconstruction in the Mossel framework.

On a more technical level, the [ADHR10] algorithm uses anchors, which are bitstrings of length
O(log n), and islands, which are long sequences between the anchors. A node could be reconstructed
only if:

1. Generating its children, there were no indels in any of the anchors.

2. No island suffered too many deletions.

Given that both conditions hold, one can do an alignment based on the anchors, and take
a place-wise majority on the islands, which is the algorithm used in [ADHR10]. In essence, the
approach manages to circumvent dealing with the indels, by not reconstructing the parts of the
tree where they actually happen.

It is tempting to try to use the [ADHR10] approach to reconstruct at least a part of the
topology, where not many indels occurred. However, this seems challenging: the parts which were
not reconstructed correctly may well interfere with the clustering, and prevent reconstruction even
of the parts of the tree in which no indels occurred. Nonetheless, some insights of the [ADHR10]
algorithm form the departing point for our algorithms for phylogeny reconstruction.

On the empirical side, there has been a large body of work performing alignment when there
are indels (see e.g. [TKF91, TKF92, Met03, MLH04, SR06, RE08] and the textbook [Fel04]). In

3This assumption requires [ADHR10] to work with large d, and limits extending their results to d = 2, which is
the biologically interesting case.
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a breakthrough paper, Wong et al. [WSH08] showed that factoring away indels and then inferring
the phylogenetic tree assuming only substitutions does not work well, even in simple cases (e.g.
even for a small tree which consists of seven species of yeast). In follow up work, Loytynoja and
Goldman [LG08] presented heuristics for reconstruction which are based on alternating between
performing alignment (to identify indels and factor them out), and building an evolutionary tree,
assuming that there are only substitutions. An improved heuristic was presented by [LRN+09b].

1.2 Our Results

In this work we give phylogenetic reconstruction algorithms in presence of insertion and deletion
mutations for sequences of length O(log2 n). The algorithms can handle insertion and deletion
probabilities as high as Ω(1/ log2 n). The results are obtained for both binary and d-ary trees,
and for complete and general trees. We start the presentation on phylogenetic reconstruction of
complete balanced d-ary trees (for large but constant d), which is the simplest case. We then
present the additional tools required for the binary trees and the general (unbalanced) trees. Our
main theorem reads as follows, and is proven in Section 4.2.

Theorem 1.1 For every probability Pmin > 0, there exist a (small) constant ε > 0, and (large)
constants C1, C2, C3 such that, if Pid < ε/ log2 n, the degree d > C1, the substitution probability is

at most Psubs ≤ 1
2 −

C2
√

log d√
d

and the number of sites is k > C3 log2 n, then the following holds.

Fix a complete balanced d-ary tree and an indel process on it. Then, given the sequences of the n
leaves of the tree, one can reconstruct the structure of the tree with high probability.

When there are no indel mutations, the highest possible value for Psubs is 1
2 −

1
2
√
d

[DMR06,

Mos03], for any d ≥ 2. As our analysis does not attain this threshold, we did not try to optimize
C1, C2, C3 and ε.

We note that for indel probability Pid ≥ Ω(log logn/ log n), the reconstruction is impossible if
the length k of the root sequence is polylogarithmic in the number of leaves n. In such a setting,
some of the leaves will be empty (all sites are deleted). Our algorithm works for Pid = Θ(1/ log2 n).

We also show that our results extend to binary trees. For balanced binary trees, we prove the
following theorem in Section 5.

Theorem 1.2 For every (small) constant δ there exist a (small) constant ε, and a (large) constant
C3 such that, if the indel probability Pid < ε/ log2 n, the maximal substitution probability Psubs < ε,
the minimum substitution probability Pmin = δ · Psubs and the number of sites in the root is
k > C3 log2 n, then given the sequences of the n leaves of the tree, one can reconstruct the structure
of the tree with high probability.

We also give an algorithm for general binary trees. Before stating this result, we simplify the
mutation process (for reason which will be explained bellow). Every edge e has a length le ∈ [δ, 1].
The mutation process changes to be as follows for an edge e:

1. Each bit gets flipped with probability le ·Psubs.

2. Let s be a sample from a random geometric variable with expectation k · le ·Pid. We perform
s insertions and s deletions in random places in the string.

Under this model, we prove the following theorem for general binary trees in Section 6.
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Theorem 1.3 For every δ > 0 there exists a (small) constant ε, and a (large) constant C3 such
that, if Pid < ε/ log2 n, Psubs < ε, Pmin = δPsubs, and the number of sites in the root is
k > C3 log2 n, then given the sequences of the n leaves of the tree, one can reconstruct the structure
of the tree with high probability.

We now motivate the modification in our model. The changed model is equivalent to previous
one, conditioned on the fact that the length of the sequence does not change under mutation.
This prevents us from obtaining empty leaves, and leaves us with a reversible evolutionary model
(when discussing general trees it is common to assume that there is no root). We call this model
INDEL-REVδ to emphasize that it is reversible.

Without conditioning on the length, depending on the topology, one may have empty leaves
with high probability even if we enforce (say) that the deletion probability is equal to the insertion
probability. Requiring that each edge has a well defined length was done to simplify the analysis.
The results would also hold if instead we were given a minimal indel probability.

2 Preliminaries

Notation. We fix some standard notation. We use [d] to denote the set {1, . . . , d}. When we say
that an event happens with high probability, we mean with probability at least 1− 1/nc, where we
can set up the parameters such that c is as big as we need.

Given a bit string x, we let x[i : j] denote the j − i bits from location i to location j − 1 in x.
We let |x| denote the number of 1’s in x. Sometimes we wish to distinguish between a node v and
the sequence of bits it has; in this case, we usually denote the sequence by xv.

Sequence distances. Given two strings x, y, we define the agreement A (x, y, γ) to be

A (x, y, γ) = k − min
x′∈edγ(x)

|x′ ⊕ y|

where edγ(x) is the set of sequences obtained from x by performing up to γ insertions/deletions
operations and k is the length of x. If A (x, y, γ) ≥ 0.75k, we define

ded(x, y, γ) = − log

(
2 A (x, y, γ)

k
− 1

)
.

If A (x, y, γ) < 0.75k, we say that ded(x, y, γ) is not well defined (the algorithm only uses short
distances).

When there are no insertions and deletions, the most common distance measure used is the
logarithm of twice the average correlation minus 1. Our distance reduces to the classical distance, by
allowing zero edit operations. In the substitution only case, this distance measure is (approximately)
additive, when two vertices are close by [MHR08]. For example, if u1 is the father of u2 who is the
father of u3, then

ded(u1, u2, 0) + ded(u2, u3, 0) ≈ ded(u1, u3, 0)

Alignments. For each node v, we define d functions fvi : {1, . . .Kv} 7→ {1, . . .Kv(i)}∪{⊥}, where
Kv is the length of the sequence at node v, v(i) is the i’th child, and Kv(i) is the length of the i’th
child. We let fvi (j) denote the place in vi which the j’th site went to, or ⊥ if the site was deleted.
Thus, each fvi is strictly monotone. When v is clear from context, we omit it.
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During the algorithm we will reconstruct the phylogenetic tree recursively, level by level. It
will be convenient to distinguish between the ideal tree, which is the tree generated by the random
process, and the reconstruction tree, which is the tree reconstructed by the algorithm. Variables
which refer to sequences of bits in the reconstructed tree will have a hat. There will also be a clear
correspondence between nodes in the ideal tree and the ones in the reconstructed tree. Thus, if xv
is the subsequence of bits in node v in the ideal tree, x̂v is the sequence of bits in the node which
corresponds to v in the reconstructed tree.

Problem parameters. We will usually think of each xv or x̂v as composed of blocks, which are
consecutive sequences of length B, where B = O(log n). The algorithm is only going to use the
first O(log n) blocks. To simplify the notation, the paper is written so that the algorithm uses B
blocks, so it is enough to remember that B is a large constant times log n (the number of blocks
does not have to be equal to the length of each block in order for the algorithm to succeed). We
will also have bad blocks (which will also be called red blocks), and we will later prove that with
high probability every vertex has at most α red blocks, where α = O(log n)� B. In the balanced
tree, we also prove that with high probability on the path from the leaf to the root there are at
most α indel operations. The use of the same bound for both these variables is again done to
enable the reader to remember fewer parameters. The reconstruction guarantee for d-ary trees will
introduce a new constant β, and it will reconstruct most of the vertex, such that each bit is correct
with probability 1 − β. We can use β = O(d−2/3) a small constant. As we explain below, in the
binary case this guarantee is not enough, and we present a new reconstruction procedure which
reconstructs each “good” bit correctly with probability at least 1− β and at most 1− β + γ.

3 Overview of Techniques

We begin by giving a high level overview of the algorithm for complete d-ary trees for large d
and the technical tools involved. We then show how to extend these tools to the case of binary
(balanced) trees and general trees, and explain what new tools we introduce. In this section we
focus on intuition, skipping the details; in later sections we give formal proofs of our theorems.

For complete trees, our algorithm follows the classic version of the iterative approach given by
Mossel [Mos98, Mos01, Mos03, Mos04b]. The general form of the algorithm appears in Alg. 1.

Algorithm 1: General structure of the phylogeny reconstruction algorithm.

for j = 0 to logd n do1

The algorithm begins with all the vertices of level j (for j = 0, these are the input2

sequences representing the leaves);
Partition the nodes of level j into clusters of siblings. Each set of siblings will contain d3

vertices;
From each cluster of d siblings, reconstruct the trace of the root of the cluster (the4

father) which is a node at height j + 1;

There are two major components to describe: 1) how to partition the nodes into clusters of
siblings (step 3 of the algorithm), and 2) how to perform the trace reconstruction of the root of
the cluster, which can be used recursively (step 4). We start by describing how we approach the
second component, the trace reconstruction.

In the classical substitutions-only case, Mossel’s algorithm reconstructs the father of a cluster
using recursive majority. When there are indels, we need to perform some alignment of the strings
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in a cluster. As the indel probability is fairly low, most of the time, this alignment will not be
necessary, since indels will not occur in the relevant sequences4. On the other hand, when indels do
occur, alignment becomes challenging as it is hard to identify the “same sites” in the cluster strings
in order to apply a majority on them (for example when you have several indels which are close
to one another it is very hard to identify them). Small misalignment events also introduce non-
trivial correlations between reconstructions of different traces, which may lead to an uncontrolled
accumulation of noise/error and adversly affect the reconstruction down the road. Thus, it is
important to localize the errors by basing the decisions of the algorithm on high probability events.
This motivates doing the alignment in blocks of length B = O(log n), where B is a large constant.
We note that [ADHR10] also use O(log n) substring for alignment, but their algorithm is based on
“anchors”, which were assumed to have no indels, or else the entire reconstruction procedure for
the cluster fails. Our algorithm depart from this idea and uses a new reconstruction guarantee,
described below.

Our local alignment is presented in Alg. 2.

Algorithm 2: Trace reconstruction of a node v from the traces of its d children.

Partition each child into blocks of length B;1

Pick a special child s;2

Let Ab,s = x̂s[b ·B : b ·B +B] be the b’th block of the special child;3

for every child t 6= s do4

Find a consecutive substring Ab,t of x̂t of length B which “matches” block Ab,s of x̂s.5

Look for such substrings only in blocks b− 1, b, b+ 1 of x̂t;

The b’th block of the father is the majority vote over all t of Ab,t ;6

We now sketch the recursive guarantee (inductive hypothesis), which lies at the heart of the
analysis. Let x be the original string, and x̂ be the reconstructed string. We require that there
exists a function g that aligns between x̂ and x. The alignment is subject to some constraints.
Divide x̂ into blocks of length B, each labeled either red or green, and each red block R has a
number nR ≥ 0 associated with it. We require that g is constant over green blocks, and that it
can change by at most nR in each red block. That is, if j, j + 1 are sites in a green block then
g(j) = g(j + 1), and if i, j are sites in different red blocks then |g(i) − g(j)| ≤

∑
nR where the

sum ranges on all the red blocks between i and j. Let y be the string which is the aligned version
of x̂, that is y[j] = x̂[j + g(j)]. If j is in a red block, we have no guarantee on y[j] ⊕ x[j]. Let
z[j] = x[j] ⊕ y[j], and consider only the places where j is in a green block. The vector z in those
places is stochastically dominated by a random variable which has 1 in each position with i.i.d.
probability β, for some small β. In particular, this means that if j is green

Pr(x̂[j + g(j)] = x[j]) ≥ 1− β

but the probability may be bigger than 1 − β, which actually complicates things, as we discuss
below. The guarantee is formally defined in Section 4.2.

To better understand the recursive guarantee, we illustrate how a “typical” reconstruction could
look like. Let u1, . . . ud be d leaves who are siblings, and let x denote the father sequence which
generated them. The reconstruction of the leaves is trivial (just the inputs themselves), and all

4This is the approach presented in [ADHR10]. They show that since most of the tree is easy, they can probably
reconstruct most of the tree (given the topology). For example, they show that when there are log2 n sites and with
an indel probability which is o(1/ log2 n) ignoring the indels altogether and just doing recursive majority reconstructs
the root (again assuming the topology is given).
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the blocks are green. As we show in the distance estimation part, if most of the blocks are green,
we can measure distances with high enough accuracy, and all the leaves are identified as siblings.
Letting x̂ denote the reconstructed version of the father, we try to characterize the relation between
x and x̂ given the indel structure of this part of the tree. Assume without loss of generality that
the special child is u1:

1. The reconstructed bit string of the father x̂ is aligned according to u1. Suppose that the
first bit is deleted going from the father to u1. In this case, going from x̂ to x will require
an insertion right at the start, and the first block of x̂ will be red. More generally, in the
worst case, every indel going from x to u1 may require an indel operation to go from x̂ to x.
Thus whenever there is an indel going from the father to u1 we will have a red block. Since
the local alignment we use only shifts blocks by at most 1, even if there are several indels
happening very close to each other, each will get its own red block. To remember this, we
give the first block the number of indels (so this block will have a non zero number).

2. After the local alignment, we take a placewise majority, between all the children. Suppose
that there were no indels going from the father to u1, but there were deletions in the first
block, going from the father to some of the children. Since the local alignment is done in
blocks, we will compute the majority of descendants of different sites in the father. This
introduces a dangerous kind of noise in computing the father: noise which has correlations.
Instead of controlling these correlations, if two or more children have indels in the same block,
we give in on the corresponding block at the father.

Suppose again that the number of red blocks at the parent level is “small”. We now use the
distances to cluster the parents, and continue to the grandparents. Now the nodes which were
reconstructed at the previous level are the children. However, since we use the reconstructed
version, these nodes themselves have red blocks, and we need to describe what happens in the
reconstruction when the children have red blocks (with numbers), and there are indels:

1. If there are indel operations going from the father to the special child, or the corresponding
block in the special child is red, the father’s block will be red, and the number on it will be
the number of the block of the special child (zero if the corresponding block in the special
child was green) plus the number of indels going from the parent to the special child.

2. Consider the b’th block of the parent. If at least two children have red blocks at block b, or
have indels going from the parent to them at block b, we say the parent has a red block in
block b. However, consider the case where (say) two children have red blocks in block b− 1.
In this case, the local alignment procedure may move the end of these blocks to intersect with
block b of the parent. Therefore if at least two children have indels (or red blocks) in blocks
b− 1, b or b+ 1 we declare the parent’s block red.

The propagation of red blocks as presented here has two important properties:

1. It is essentially independent of the algorithm, and depends only on the indel structure (as
long as no single node has too many red blocks - so the distance estimations are good enough)

2. It has a (limited) way of eliminating red blocks, and handling indels: if (locally) at most one
child has a red block (or an indel), and this is not the special child, the indel will be corrected.

To finish the argument, we need to show two things:
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1. If the algorithm errs, then the process we defined has a red block, so the process “dominates”
the algorithm. This is done by closely following the algorithm, and seeing how it behaves on
red blocks and on indels.

2. Show that the number of red blocks in the inductive process is never too large. Formally, we
show that the number of red blocks will never be more than α, where α is a small multiple
of log n.

So far we gave intuition as to how the recursive guarantee propagates upwards, and why the
algorithm is dominated by the process. Showing that (with high probability) the number of red
blocks is not too larger requires more work. Ignoring the fact that neighboring blocks can effect
one another, the standard way to do this, is to apply Galton Watson analysis, and show that given
that the father is red in block b, the expected number of children for which block b is red is less
than 1. Even without the effect of neighboring blocks, this fails, as given that block b of the father
is red, the expected number children for which block b is red is more than 1. Thus, naive Galton
Watson analysis would not yield any bound on the number of red blocks.

In order to get around this difficulty, and to handle the effect of neighboring blocks, we notice
that this process is defined bottom up (unlike many other processes on trees which are defined top
down). Thus, careful analysis reveals that the size of the red connected components is small, and
this enables to bound the effect of neighboring red blocks, and the maximal number of red blocks
in a single node of the tree. The analysis is the most involved part of the reconstruction, and is
presented in Section 4.1 (with Lemma 4.2 giving the formal result).

We now turn to describing the other major component of the phylogeny reconstruction: par-
titioning the current level of the tree into clusters of siblings. The approach originated by Mossel
requires this stage to be done without errors. Formally, this is justified by the requirement that
the entire tree structure is reconstructed correctly. However, one could consider a relaxed version
of phylogenetic reconstruction, in which we are trying to build the tree but allow a few mistakes5

(in fact it is believed that the trees reconstructed by computational biologists sometimes have
small mistakes, but they are nonetheless useful). The technical reason for this requirement is that
approximate phylogenetic reconstruction does not seem any easier than perfect phylogenetic re-
construction. Any error in the clustering, would insert some erroneous data to the reconstruction
procedure. These errors are unlikely to be random errors (for example the rouge vertex which is
inserted to the cluster is not a random vertex but a vertex chosen by the clustering algorithm),
and thus they are hard to control6. Thus, in all other algorithms any error in clustering is likely to
propagate upwards all the way to the root.

Our clustering algorithm uses a new distance measure between (reconstructed) traces. The
distance is a hybrid between Hamming distance and edit distance. We note that neither of the
two classical distance would have been suitable by itself. While Hamming distance is obviously
jeopardized by misalignments, to understand why edit distance fails we need to consider the use of
the distance estimates in the reconstruction. The goal of the distance estimates is to perform the
clustering, and find siblings. Unfortunately, since edges have different lengths (different mutation
probabilities), the closest vertex to i might not be his sibling j, but another vertex. This is true
even when there are no indels operations, and there is a classical way to get around this, called the
Four Points Condition, or neighbor joining. Essentially, it says that if we pick a distance measure

5One has to be careful in defining what is an approximate tree. Building 0.99 of the tree can be done without any
reconstruction or fancy technologies just by looking at the short distances and building the bottom part of the tree
correctly. As before, it is the “hard” parts of the reconstruction which present the challenge.

6Failing to reconstruct n/poly logn of the vertices is the reason [ADHR10] can not be used for phylogenetic
reconstruction even in the balanced d-ary case

9



which is additive, then if i, j are siblings then for any other two vertices x, y we have

dist(i, j) + dist(x, y) < dist(i, x) + dist(j, y)

When there are no indels, the additive variant of Hamming distance being used is ded(x, y, 0), or
minus log of the average correlation between x and y. Edit distance does not satisfy the required
additivity conditions.

We now mention another challenge in estimating distances. The reconstruction guarantee says
that in the green blocks we are correct with probability at least 1−β, and not exactly 1−β (which
is the case when there are no indels). The guarantee we have results in an additive error of β,
which could be adversarial. To see why this guarantee is so weak, consider two far away nodes xu,
and xv, which are completely uncorrelated. If x̂u is a reconstruction of xu such that each bit is
correct with probability 1 − β, and x̂v is a reconstruction of xv such that each bit is correct with
probability 1 − β, then x̂u and x̂v are uncorrelated for any value of β. However, if x̂u (x̂v) is a
reconstruction of xu which is correct at every bit with probability at least 1− β, the situation can
be very different. Suppose that whenever xu[i] = xv[i] agree, then x̂u[i] = xu[i] and x̂v[i] = xv[i],
but whenever xu[i] 6= xv[i], then Pr(x̂u[i] = xu[i]) = 1 − β, and also Pr(x̂v[i] = xv[i]) = 1 − β. In
this case, x̂v and x̂u will have a correlation of 2β−β2. This can of course create trouble, especially
if β is large. To handle this in the d-ary case, we use d large enough such that β is smaller than
Pmin. In the binary case, this will require a different analysis.

The final property that we require is that the distance will be robust to edit distance errors
introduced by the reconstruction. The distance we end up using is ded, which allows for a few
“free” edit distance operations (to compensate for red blocks and local deletions7), but essentially
behaves like Hamming distance with respect to concentration and additivity when looking at the
logarithm. The properties of the distance are discussed in Section 4.4.

3.1 Binary trees

Similarly to the substitution only case, we reconstruct log d levels at a time, where log d is a suitably
chosen constant.

The main difference between d-ary trees (with large constant d) and reconstructing log d levels
at a time in a binary tree, is that the error on each bit in the green blocks can be large. In the d-ary
case, we took d to be such that the error was less than Pmin, and now it is greater than Psubs.
This means that we can not afford an additive adversarial error of β in our distance approximation.
We note that in the substitution only case, the error on each bit was close to a half, and indeed it
was larger than the substitution probability. However, in the substitution only case the probability
that x̂ agreed with x was exactly 1− β, and thus this error averaged out.

To eliminate the adversarial influence, we replace the place wise recursive majority with a
threshold function. That is, we replace Step 6 in the algorithm sketch presented in Section 3 by
counting the number of ones. If there are more than 2d/3 ones we reconstruct the father as 1, if
there are less than 1/3 ones, we reconstruct the father as zero. Otherwise we flip a random coin to
determine the value at the father. Suppose the adversary has complete control over a small fraction
of the entrances to the threshold function, and no control over the rest of the entries. Then the
adversary can tilt the outcome, only if the random entries are distributed near d/3, or over 2d/3.
Since 1/3 has no finite binary representation, this event happens with low probability, which can be

7The hybrid distance can not compensate for indels which happened between two far away nodes, e.g. in the
general tree case. It is still sufficient for our needs since we do not use distance information between far nodes.
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bounded by Psubs
100 for d large enough8. The exact analysis of the process is somewhat involved,

and takes most of Section 5.5.
The rest of the work in doing the binary case is around the distance estimation, and the red

and green trees.

3.2 General binary trees

All the tools we designed for the complete trees were built in a modular way, so that they can
be used inside a scheme which reconstructs general binary trees when there are no indels. Still,
proving that all the tools fit in place requires a large amount of work.

We use the reconstruction scheme of Mihaescu, Hill and Rao [MHR08], which is a simplification
of [DMR06]. This scheme maintains a forest, and glues trees together, in a way which is very
similar to the cluster approach introduced by Mossel. When the trees become tall enough, the
inner vertices are being reconstructed, using the reconstruction scheme due to Mossel.

In order to obtain reconstruction of general trees we introduce a slight change in the indel
process. We no longer assume that each edge has a probability for insertion and a probability for
deletion (in this case we will have empty leaves even if we assume these probabilities are equal),
but rather that the number of insertions is equal to the number of deletions on each edge. This is
done to obtain a constant length of the genetic sequence, as well as reversibility.

In the general trees, we need to prove an analog of Lemma 4.1, which says that nodes which
are close in tree metric will not suffer too many indels. The analog of this Lemma is used to show
that the hybrid distance is well defined on nodes which are close in the tree metric. Since the indel
probability is close to the substitution probability, these are the nodes we care about.

We also need to prove that the distance estimates are correct. This is done in a manner similar
to the proof of Lemma 8.2, and takes into account both the adversarial errors and the random
errors.

Then we need to show that the global process does not generate too many red blocks. The
proof of this fact is based on the analysis of the process, which is based on local components and
a union bound. As the number of leaves is still n, the same union bound apply.

Finally, we need to change the reconstruction guarantee, to fit the case where the reconstruction
is made from an inbalanced tree. When there are no indels, this just results in using a weighted
majority. Here we need to be a bit more careful, giving the children the correct probability to be
the special child, and proving that threshold reconstruction still gives the correct guarantee.

The organization of the rest of the paper is as follows. Section 4.1 describes the coloring process
in more detail, and proves that with high probability the number of red blocks, and the sum of
numbers on red blocks is bounded. Section 4.2 introduces the algorithm and the reconstruction
guarantee, and Section 4.3 proves that the algorithm is dominated by the percolation process.
Section 4.4 shows how to use the reconstruction guarantee to find siblings. Finally, sections 8,9
give the proof for binary trees and for general trees.

4 Phylogenetic Reconstruction for High-Degree Trees

We now describe the algorithm and analysis for the problem of reconstructing the phylogenetic tree
for a balanced tree of arity d = Ω(1), thereby proving Theorem 1.1. We will show the extension to
balanced binary and general binary trees in subsequent sections.

8Note that the event that about half the entries agree occurs with probability about 2 Psubs - it’s enough that
there is a substitution in one of the top two branches. The analysis can be made such that the probability of this
event is Psubs

2.
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The proof is composed of several parts. First, we introduce and analyze the random process
that controls the error propagation along the tree during our reconstruction algorithm. Second, we
present our trace reconstruction algorithm and the iterative guarantee. Third, we show that the
algorithm reconstructs the traces of the nodes correctly, up to noise that is dominated (controlled)
by above random process. Finally, we show that, given that the algorithm reconstruct the traces
approximately correctly, the tree topology is reconstructed correctly.

4.1 Red and Green Trees

We now introduce and analyze the random process that will be shown to control the error of our
algorithm. Here, we assume fixed (ideal) tree. Let B2 denote the length of the sequence of the root.
Most of the properties we prove are defined on blocks, which are consecutive sequences of sites of
length B, which begin at kB and end at kB +B for some value k. The following claim motivates
this.

Claim 4.1 With high probability, the maximum number of indels between the root and any leaf is
bounded by α = O(log n), and α� B.

Specifically, the condition from Claim 4.1 means that throughout the process indels never create
shifts longer than α, which is much less than the length of a single block. The claim follows
immediately from a standard concentration bound. We condition the rest of the analysis on the
high probability event of Claim 4.1, without mentioning it explicitly. Given this event, we partition
the sites of each node into B blocks, each of length B, except maybe the last block (which can be
a bit longer or shorter). In the rest of the section, we ignore the length of the last block, implicitly
assuming that it is B exactly9.

We color all the blocks in the tree in two colors: red and green, and assign each red block some
integer. Initially red nodes signify a misalignment between a parent node and a child node caused
by indels. We then apply the following recursive process, level by level, from bottom to top.

Initialization: Assume that there are k an indel operation going from the father to the i’th
child, which happen in the j’th block. Color block j red, and assign it the number k.

After coloring level ` − 1, we color level ` by the Algorithm 3. This procedure temporarily
expands the red blocks on level `− 1. These red blocks are only added to simplify the description
(one can think of Algorithm 3 as first copying the child nodes, and then coloring the father while
changing the temporary copies of the children). Algorithm 3 is carefully tailored to dominate
misalignments in our reconstruction algorithm. By analyzing it we obtain the bounds that we
need for the algorithm. For example, the temporary extension in the recursive coloring (line
9) corresponds to the fact that during the algorithmic reconstruction, errors that appear in two
different children may “spill over” one block when we reconstruct the parent.

The following lemma is the heart of our error analysis, and its proof takes the rest of this section.

Lemma 4.2 With high probability, in each node of the tree there are at most α blocks which are
not green, assuming α ≥ 1200 log d

log 1/(B2·Pid)
.

In the remainder of the paper, we will condition the rest of the analysis on the high probability
event of Lemma 4.2, without mentioning it explicitly.

9Handling the length of the last block requires some tedious details, but is not fundamentally different. In fact, in
the i’th level of the tree, we could throw away the last block. This would mean that in the top level the root would
have B − logn blocks, which would still not affect the distances by much because B is a large constant times logn.
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Algorithm 3: Recursively coloring a father y given the d child nodes

Initialization:1

for each vertex t, and each block k do2

if there are nk,t > 0 insertions and deletions going from t’s parent to t in block k then3

Color block k in t red, and give it the number nk,t > 0 ;4

Recursively coloring a father y given the d child nodes:5

Let s be a random child ;6

for every child t 6= s do7

for every maximal consecutive sequence of red blocks in the t’th child, i, i+ 1, . . . , i+ k do8

temporarily color blocks i− 1, i+k+ 1 red in the child t, and give them the number 1.9

for k = 1 to B do10

if the k’th block in s is red, and has number i then11

Color the k’th block in the father red, and add number i to it.12

else13

if exist distinct children t1, t2, in which the k’th block is red then14

Color the k’th block in the father red, and give it number 1.15

Proof of Lemma 4.2
We distinguish between initial red blocks that were placed during the initiation phase (lines 2-4)
and acquired red blocks that were passed from child to parent (lines 6-15).

We first note that the probability that a node contains any initial red blocks at all is bounded
by ε1 where ε1 < B2 ·Pid is small. We say that a node is red if it contains any red blocks (initial or
acquired). We first claim that with high probability the largest connected component of red nodes
is small.

Claim 4.3 Except with probability n−3, the largest red connected component in the graph has fewer
than ε2 log n nodes with initial red blocks, where ε2 <

3 log d
log 1/ε1

is small.

Proof: For a node v in the graph, denote by Pi(v) the probability that the set Sv of initial red
descendants of v that are connected to it through a red path contains at least i nodes. We will
prove that

Pi(v) <
εi+1

3

i2
,

where ε3 = 40
√
ε1 is a small constant. We will show this by induction.

Base case: For Sv to be non-empty, one of the three cases has to hold: (1) v has an initial red
block; (2) v has at least two red children; (3) v has one red child that has been randomly selected.
This implies the following inequality:

P1(v) ≤ ε1 + d2P1(v)2 +
1

d
P1(v).

It is not hard to see that for a sufficiently small ε1, P1(v) < 1/(2d), and thus we get that P1(v) <
3ε1 < ε2

3.
Step: We want to show the bound for Pi(v), v > 1. As in the base case, there are three possibilities
that cover all the cases when |Sv| ≥ i: (1) v has an initial red block; (2) v has at least two red
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children; (3) v has one red child that has been randomly selected. Denote the probabilities of
the three cases by Q1, Q2 and Q3. Given that there is an initial red block in v, the probability
that |Sv| ≥ i is bounded by the probability that it is ≥ i − 1 without this information. Thus
Q1 ≤ ε1 · Pi−1(v). We also have Q3 ≤ 1

dPi(v). Thus we have

Pi(v) ≤ ε1 · Pi−1(v) +Q2 +
1

d
Pi(v) <

1

3

εi+1
3

i2
+Q2 +

1

3
Pi(v).

To complete the proof, all we need to show is that Q2 <
1
3
εi+1
3
i2

. To estimate Q2 we cover it using
the following events. For each 0 < j < i and index 1 ≤ k < d let Qjk be the event that the children
v1, . . . , vk−1 of v have no initial red nodes in their subtrees, node vk has ≥ j initial red nodes in
their subtrees, and children vk+1, . . . , vd of v have ≥ i− j initial red nodes in their subtrees. These
events cover Q2. Moreover, the probability of Qjk is bounded by (d+ 1)Pj(v) · Pi−j(v): the event
that exactly one of the nodes vk+1, . . . , vd has initial red descendants is covered by d ·Pj(v) ·Pi−j(v).
The event that more than one does has probability bounded by Pi−j(v), which we multiply by the
probability Pj(v) that vk has ≥ j descendants. Thus, in total, we get

Q2 ≤ 2d2
i−1∑
j=1

Pj(v) · Pi−j(v) < 2d2ε3 ·
εi+1

3

i2
·
i−1∑
j=1

i2

j2(i− j)2
<

4d2ε3 ·
εi+1

3

i2
·
∞∑
j=1

4

j2
=

8π2

3
d2ε3 ·

εi+1
3

i2
<
εi+1

3

i2
,

as long as ε3 < 3/(d2 · 8π2). The claim follows immediately. �

From now on we will assume that the conclusion of Claim 4.3 holds. Next we want to prove
Lemma 4.2, namely that in each node the number of red blocks is bounded by α. We distinguish
two types of red blocks: natural blocks and extension blocks. A red block is natural if either it
is an initial red block, or the block is natural in one of the node’s children. In other words, for
each natural block in a node v there is a descendent of v connected to it via a red path where this
block is an original red block. All other blocks are called extension blocks. Extension blocks occur
because in the case when a node has two or more red children the process extends the red blocks
by 1 before taking intersections.

We will bound the number of each type of blocks separately. As a first step, we present the
process of red block creation above in an equivalent way as follows:

1. First of all, for each node in the tree we decide with probability ε1 whether it contains any
original red blocks at all; we also select for each node the random child that it copies;

2. we then sample the original blocks in the flagged “red” nodes conditioned on there being at
least one red block;

3. we deterministically propagate the choices throughout the tree according to the rules.

Note that by Claim 4.3 the first step creates red connected components of size < ε2 log n. The
propagation only happens on these connected components separately. Using this new presentation
of the process we first bound the numbers of the natural red blocks in each node.

Claim 4.4 Except with probability < n−3 the maximum number of natural red blocks in each node
is bounded by ε4 log n, where ε4 = 2ε2.
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Proof: We will prove that this is true for each individual node in the graph except with probability
n−3−log d, thus implying the claim by union bound. Let v be a node and Sv be the nodes that contain
at least one original red block, are in v’s red connected component and that are v’s descendants.
By Claim 4.3 we know that t = |Sv| < ε2 log n. Denote the nodes in Sv by v1, . . . , vt. Each node
contains at least one original red block. Denote the number of red blocks in vi, counted with
multiplicities, by Bi. Then the Bi’s are i.i.d. and for j > 1

Pr[Bi > j] < εj−1
1 .

since ε4 = 2ε2, and ε2 <
3 log d

log 1/ε1
, denoting A = ε4 log n, we have

Pr

 t∑
j=1

Bj > A

 =
∞∑

i=A+1

Pr

 t∑
j=1

Bj = i

 < ∞∑
i=A+1

(
i

t

)
εi−t1 <

∞∑
i=A+1

2iε
i/2
1 < (4ε1)A/2 < n−3−log d.

�

Next, we bound the number of extension red blocks. Note that extension blocks always have
multiplicity 1. We again consider the original red blocks in each red connected component. Let
Sv be a set of nodes that contain original red blocks and all belong to the same red connected
component. We know that |Sv| < ε2 log n. We denote by Pk the set of blocks that are covered more
than k times by original red blocks in Sv (not counting multiplicities). For example, P1 is just the
set of blocks that appear as original red blocks in at least one of the nodes of Sv. We first argue
that

Claim 4.5 For each k,
Pr[Pk > (ε4 log n)/k] < n−3−log d.

Thus, by union bound, we can assume that this even doesn’t happen. The claim just follows
from counting the total number of original red blocks. The proof of Claim 4.4 implies that the total
number of original red blocks cannot exceed ε4 log n, and the claim follows by Markov’s. Next we
make a simple combinatorial observation.

Claim 4.6 For each extension block b, there is a block b′ that is i positions away from b such that
b′ ∈ P2i/2−3 (Pk is extended naturally to non-integer values by setting Pk := Pdke).

Proof: An extension block b can be traced to two children that are either in the original block
or in an extension block as well. We can continue tracing the extension blocks until we obtain a
binary tree with b at the root and an original red block at each leaf. Moreover, if the leaf is j levels
from b then the location of its original block is ≤ j-away from b. Denote the distances of all the
leaf blocks from b by d1, . . . , dt. We have

t∑
j=1

2−dj ≥ 1.

Denote by nk the number of leaf blocks exactly k-away from b (so that
∑
nk = t). Then we have∑

k

nk2
−k ≥ 1.
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Algorithm 4: Trace reconstruction of a node x. Input: traces x̂1, . . . , x̂d of the children of
x.

Let s ∈ [d] denote a random child ;1

for each block k do2

Gk = {x̂s[kB : kB +B]} ;3

hs = 0 ;4

for each t 6= s do5

if exists a shift −4α < ht < 4α such that6

|x̂s[kB : kB +B]⊕ x̂t[kB + ht : kB +B + ht]| < B/4 then
Set Gk ← Gk ∪ {x̂t[kB + ht : kB +B + ht]} ;7

Set x̂[kB : kB +B] = Majorityσ∈Gkσ8

Hence there must exist a k such that nk > 2k/2/4. Otherwise∑
k

nk2
−k <

1

4

∑
k

2−k/2 =
1

4(1− 1/
√

2)
< 1.

Thus there is a location b′ that is k-blocks away from b and that appears in at least nk/2 > 2k/2−3

original blocks, thus belonging to P2k/2−3 . �

Putting Claims 4.5 and 4.6 together we conclude that:

Claim 4.7 Except with probability < n−3 the total number of extension blocks in each connected
component does not exceed 199ε4 log n.

Proof: Fix a connected component Sv. By Claim 4.6, each extension block is close to a point in
one of the Pk’s, and thus

#{extension blocks in Sv} ≤
∞∑
i=0

(2i+ 1) · |P2i/2−3 | ≤

by Claim 4.5

ε4 log n ·
∞∑
i=0

(2i+ 1) · 23−i/2 < 199ε4 log n.

�

Lemma 4.2 is obtained by putting Claims 4.4 and 4.7 together. The former bounds the number
of natural red blocks in every node, while the latter bounds the number of extension red blocks.

4.2 Trace Reconstruction Algorithm

Our trace reconstruction algorithm is presented in Alg. 4. We now explain the notation from the
algorithm. α is the bound from Lemmas 4.1, 4.2, which satisfies α = O(log n), α � B. We will
only care about the result of the majority, if at least d− 1 children participated in it, treating it as
adversarial otherwise. Note that since the original process is symmetric, the algorithm can easily
be derandomized, fixing s to be, say, s = 1.
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To analyse the algorithm, we introduce the following trace reconstruction guarantee, which
serves as our inductive hypothesis. Let x̂1, . . . , x̂K̂ be the reconstructed sequence of a sequence x
(trace of an internal node). We decompose it into consecutive blocks (subsequences) of length B,
as we did in Section 4.1. Let 1 ≤ R1, . . . , Rr ≤ B denote the positions of the red blocks, where
r ≤ α. Let ni denote the number given to the i’th block if it’s red, or ni = 0 if i is a green block.
Then there exists g : [K̂] 7→ [−r, . . . , r] ∪ {⊥} satisfying the following properties:

1. g(0) = 0, by definition 0 is green.

2. g is not defined over red blocks: if RiB ≤ j < RiB +B for some i ∈ [r], then g(j) = ⊥.

3. g is constant over consecutive green blocks: If j, j − 1 are both in green block(s), then
g(j) = g(j − 1).

4. g can change by at most ni over the i’th block: If j is green but j − 1 is red, let k < j be the
last green site. Then

|g(j)− g(k)| ≤
∑
k<i<j

ni

where the sum ranges over all the red blocks between k and j.

5. g is an alignment of x̂ and x: Consider the string Y which is aligning x̂ according to g, that is
y[j] = x̂[j+ g(j)], or y[j] = ⊥ if g(j) = ⊥. Letting z[j] = x[j]⊕ y[j], or 0 if y[j] = ⊥, we have
that z is stochastically dominated by a string which has 1 in each place with i.i.d probability
β.

In words, for a site j in a green block, g(j) will give the displacement between this site and the
matching site in the original string x. g is not defined on sites in red blocks - it gives ⊥. Note that
although g is defined as a function of the site, it is actually equal for all the sites in the same block.
The algorithm will not reconstruct g, but it will be used in the analysis.

We now prove that, if the reconstruction guarantee holds, then Alg. 4 performs the correct
alignment.

Lemma 4.8 Suppose that in children i and j 6= s the k’th block is green. Then with high probability
(that is with probability 1− 2−Ω(B)) there is exactly one shift ĥj for which

|x̂i[kB : kB +B]⊕ x̂j [ĥj + kB : kB + ĥj +B]| < (2 Psubs(1−Psubs) + 2β + ε)B < B/4

This shift satisfies −4α < ĥj < 4α. Moreover, denoting hj = ĥj − gj(kB) + gi(kB), for each
1 ≤ z ≤ B we have f−1

i (kB + z) = f−1
j (kB + z + hj), or the same site in the father is mapped to

the same site in the sons, up to the shift hj.

Proof: The 4α bound comes from a maximal shift of 2α for each child. The 2α shift for each
child is the sum of two terms: the maximal number of indel operations, and the bound on the shift
gi(kB).

To show that the distance behaves correctly, note that

x̂i[kB + gi(kB) : kB + gi(kB) +B]⊕ xi[kB : kB +B]

stochastically dominates a string which has 1 with i.i.d probability β. Since i, j are siblings, we
know that there exists a shift hj between them, such that

Pr(xi[kB + t] = xj [kB + t+ hj ]) = psipsj + (1− psi)(1− psj )
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where psi < Psubs is the substitution probability going from the father to child i, and psj < Psubs

is the substitution probability going from the father to child j. The shift hj is just

hj = |{r < kB : fi(r) = ⊥}|−|{r < kB : fj(r) = ⊥}|−|{r < kB : f−1
i (r) = ∅}|+|{r < kB : f−1

j (r) = ∅}|

or the difference between insertion and deletion operations between child i and child j up to block
k. Note that we rely on the fact that there are no indel operations in blocks k − 1, k + 1 of the
j’th child. This is the case, as otherwise block k would have been colored red, since j 6= s. Also
note that the shift hj may not be equal to ĥj , as hj is the optimal shift in the ideal tree, and ĥj is
effected by the functions gi, gj .

Consider the reconstructed tree. The expected hamming distance of x̂i[kB : kB + B] from
x̂j [kB + gj(kB)− gi(kB) + hj : kB + gj(kB)− gi(kB) + hj +B] is at most(

psi(1− psj ) + (1− psi)psj + 2β
)
B

, and we find ĥj = hj + gj(kB)− gi(kB).
Using a Chernoff bound and the definition of stochastic dominance, one can get that with high

probability this distance is well concentrated. However, as for any h 6= hj , we have

Pr(xi[kB + t] = xj [kB + t+ h]) = 1/2

And therefore the expected distance between x̂i[kB : kB + B] and x̂j [kB + gj(kB)− gi(kB) + h :
kB+ gj(kB)− gi(kB) +h+B] is at least (1/2−2β)B−2α, and again this distance is concentrated
with high probability. As α is small relative to B, and β is a small enough constant, we get that with
high probability the correct shift ĥj passes the bound, and every other shift does not pass it. In this

case, for each 1 ≤ z ≤ B we have f−1
i (kB+z) = f−1

j (kB+z+hj), where hj = ĥj−gj(kB)+gi(kB).
�

We condition on the high probability event of this lemma for any two comparisons between
blocks made in the algorithm. This is a union bound over Õ(n) comparisons, and the success
probability of the lemma can be made to be 1− 1/n2.

4.3 Existence of the Reconstruction Guarantee

We now show that the reconstruction guarantee holds inductively over the tree. We do so by
showing that the algorithm alg. 4 is dominated by the random process analyzed in Section 4.1.
We utilize Lemma 4.8 to argue that assuming the d children meet the reconstruction guarantee
with some redness structure, the father also meets it, when the redness structure of the father is
determined by the coloring procedure 3. Let ~R denote all the coin flips made by the algorithm;
that is, R is a sequence of length

∑logn−1
i=0 di of numbers in [d], which choose which son was chosen

in step 4 of Algorithm 3.

Lemma 4.9 Suppose all the children meet the reconstruction guarantee for some red and green
structure. Then the father x meets the guarantee as well, when the blocks of the father are colored
red according to the coloring procedure 3, and the random choice of child node is made according
to ~R.

Proof: Let gs denote the alignment function between x̂s and xs, and let fs denote the alignment
function between the father node v to the child s. The set of sites which were deleted when going
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from v to s isDs = {j : fs(j) = ⊥}, and the set of sites which were inserted isDs = {j : f−1
s (j) = ∅}.

We now define
g(j) = gs(j) + |{i ∈ Ds : i < j}| − |{i ∈ Is : i < j}|

As the sum of the numbers given to red blocks in the father before site j is at least gs(j) +Ds + Is,
the definition satisfies condition 4 in the definition of g. As g(j) 6= g(j − 1) only when there is a
red block in the father (either because gs(j) 6= gs(j − 1) or because there was an indel operation),
g satisfies condition 3.

We now show that the reconstruction guarantee holds, given the alignment. Let k be a block
which is green in s. Let Gk be the set of children for which k is green. If |Gk| < d− 1, we make no
claim about the result of the place-wise majority, as the coloring procedure 3 colors the k’th block
red in the father. Otherwise applying lemma 4.8 between each one of the children in Gk and s,
gives a set of shifts Ĥk, such that for every j ∈ Sk and site z

f−1
s (kB + z) = f−1

j (kB + z + ĥj) + gs(kB)− gj(kB)

Denote hj = ĥj−gj(kB) and a = f−1
s (kB+z). Assume wlog that x[a] = 1. Let bj = xj [kB+z+hj ]

and b̂j = x̂j [kB + z + ĥj ] for j ∈ Gk, and let b be adversarial.

Pr (x̂[a+ g(a)] = 1) = Pr

∑
j∈Gk

b̂j + b > d/2

 ≥ Pr

∑
j∈Gk

b̂j > d/2

 (1)

≥ Pr

∑
j∈Gk

bj > d/2 + 2
√
d

Pr
(
|j : b̂j 6= bj | <

√
d
)

(2)

However,
∑

j∈G bj is just a sum of indicator variables, with expectation

E
∑
j∈G

bj ≥
∑
j∈G

(1− psj ) ≥
d− 1

2
+ (d− 1)2

√
log d

d

where psj is the substitution probability going from the father to the j’th child, and Psubs is the

bound on the substitution probability. Thus, we have Pr(
∑

j∈G bj < d/2 + 2
√
d) < 1/2d2/3. As for

the second term,

Pr(|j : b̂j 6= bj | >
√
d) = 2−O(d1/6) < 1/2d2/3

using β = 1/d2/3 and d large enough. Putting this together gives that Pr(x̂[j] = 1) > 1− β, and a
similar analysis can be made when x[j] = 0.

Note that the event {
∑

j∈G bj > d/2 + 2
√
d}
⋂
{|j : b̂j 6= bj | <

√
d} only depends on the i.i.d

random variables which correspond to the substitutions, and on the sum of the random variables
aj = b̂j⊕bj , which are dominated by i.i.d random variables. Thus, if we let y[j] = x̂[j+g(j)]⊕x[j],
we have that y is stochastically dominated by a string which has 1 in each position with i.i.d
probability β, as required. �

4.4 Finding Siblings

In this section we finish the induction on levels, by showing that if all the nodes of level `−1 match
the reconstruction guarantee, then one can partition them to dlogd n−` sets of size d, such that every
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set will contain d siblings, or all the children of some node. We begin by defining a new distance,
which is motivated by our reconstruction guarantee

ded(x, y, γ) = min
edγ

(dcor(edγ(x), y))

Where edγ(x) is obtained from x by performing up to γ indel operations.

Claim 4.10 There is an efficient algorithm which computes ded(x, y, γ).

The algorithm is based on dynamic programming.
Note that ded is not a metric, since it does not respect the triangle inequality in general. It is easy

to see that the distance is monotone in γ, that is ded(x, y, γ1) ≤ ded(x, y, γ2) for γ1 ≥ γ2. Moreover,
when ded(x, z, γ1 + γ2) is defined, the distance respects a limited form of triangle inequality

Claim 4.11
ded(x, y, γ1) + ded(y, z, γ2) ≥ ded(x, z, γ1 + γ2)

The main tool that we want to use is neighbor joining (see e.g. [DMR06]). To use it, we need
the following lemma. Let i, j be two nodes which are siblings, and v, w be arbitrary, such that all
the pairwise distances are well defined. Then

Lemma 4.12 With high probability,

ded(x̂i, x̂j , 4αB) + ded(x̂v, x̂w, 4αB) < ded(x̂i, x̂v, 4αB) + ded(x̂j , x̂w, 4αB)

Note that if i, j are siblings then A (x̂i, x̂j , 4α) > 0.75B2. Moreover, if they are not siblings
there will be another vertex which will violate this equality (say the sibling of i).
Proof: We sketch the proof of this lemma. According to the triangle inequality, for any two vertices
s, t

ded(x̂s, x̂t, 4αB) ≤ ded(x̂s, xs, αB) + ded(xs, xt, 2αB) + ded(xt, x̂t, αB)

and similarly

ded(x̂s, x̂t, 4αB) ≥ ded(xs, xt, 6αB)− ded(x̂s, xs, αB)− ded(xt, x̂t, αB)

The following claim is based on the reconstruction guarantee of x̂v

Claim 4.13 With high probability, A (x̂s, xs, αB) < 2βB2 + αB

Proof: According to the reconstruction guarantee, implementing the alignment defined by the
function gs requires less than α edit operations. Given the alignment defined by g, the hamming
distance between the cells in the green blocks of x̂s and their counterparts in xs is at most 2βB2,
with exponentially good probability in B2. Since there are at most α bad blocks, this can increase
the distance by at most αB. �

Let Rst denote the path on the tree from s to t, and let

pst =
∏
e∈Rst

(1− 2pe)

where pe is the substitution probability of edge e, and we have pe ≤Psubs.

20



Claim 4.14 For any constant ε > 0, with probability 2−Ω(ε2B), we have A (xs, xt, 2αB) < (1 +
ε)2pst+1

2 B2.

Proof: Let z be the common ancestor of s, t. According to Claim 4.1, with high probability there
were at most αB indel operations on the path from z to s, and on the path from z to t. Conditioning
on this event, both vertices can be aligned according to z. In this case, what we get is a simple
hamming distance, which has exponentially good concentration. �

We take ε = β, which adds an error of the magnitude generated by Claim 4.13. We also need
a lower bound on the distance, under the same condition A (xs, xt, 2αB) > 0.75B2

Claim 4.15 For any constant ε > 0, with probability 2−Ω(ε2B), we have A (xs, xt, 6αB) > (1 −
ε)pst−1

2 B2, as long as α log(B/α)� ε2.

Proof: Fix an alignment of s, t. The probability that the distance is less than (1 − ε)pstB2 is at
most 2−Ω(ε2B2), where the probability is taken over the substitutions, insertions and deletions of
the random process which generated the tree. As there are at most(

B2

6αB

)
≤ (B/α)6αB = 26αB log(B/α) < 2O(ε2B2)

different alignment, it is possible to take a union bound for constant ε. �

Again we take ε = β.
Finally, Lemma 4.12 is proven by noticing that when β, α/B are small enough compared to the

minimal substitution probability, and all the distances are small, we have that with high probability

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) (3)

≤ log

(
2 A (x̂i, x̂j , 4α)

B2
− 1

)
+ log

(
2 A (x̂v, x̂u, 4α)

B2
− 1

)
(4)

≤ log(1 + β)pij(1 + 4β)(1 + 2α/B)(1 + β)pvw(1 + 4β)(1 + 2α/B) (5)

≤ log(1− β)piv(1− 4β)(1− 2α/B)(1− β)pjw(1− 4β)(1− 2α/B) (6)

≤ ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α) (7)

where we substituted ε = β, and used that

(1−Pmin) >
(1 + β)(1 + 4β)(1 + 2α/B)(1 + β)(1 + 4β)(1 + 2α/B)

(1− 4β)(1− 2α/B)(1− β)(1− 4β)(1− 2α/B)

which holds as we choose α, β such that Pmin > 20β + 8α/B.
This complete proof of Lemma 4.12. �

Given Lemma 4.12, it is straightforward to see the correctness of Algorithm 5. If a set S contains
all the children of a single vertex, they will pass all tests. Otherwise, if S contains i, j which are
not siblings, and v is a sibling of i, then according to Lemma 4.12, for every w, the test will fail, as
ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) < ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α).

Note that in the current description we use the lemma nO(d2) times. One can show that given
the high probability event of Claim 4.1, and the reconstruction guarantee, the failure probability of
Lemma 4.12 can be made 2−O(log2 n), so this is not a problem. Also, it is easy to find more efficient
algorithms which find siblings.

10The selection of the next cluster of degree d cousins can be done much more efficiently – in time O(n2). We omit
the details to keep the presentation simpler.
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Algorithm 5: Partition L, the nodes of level `, into sets of siblings

for every10 set S ⊂ L, with |S| = d do1

for every i, j ∈ S, and v, w ∈ L \ S do2

if ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) > ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α) then3

S is not a set of siblings. Continue to the next set ;4

Add S to the partition5

Algorithm 6: Reconstruction of a full binary tree with height n log d. Let L` will be the set
of vertices of level ` log d.

Let L0 be the set of all vertices;1

for level` = log d, 2 log d, . . . n log d do2

Initialize L` = ∅ for every11 set S ⊂ L`−1, with |S| = d do3

for every i, j ∈ S, and v, w ∈ L \ S do4

if ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) > ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α) then5

S is not a set of degree log d cousins. Continue to the next set ;6

L` ← L` ∪ {Reconstruct Binary Node(S)};7

5 Phylogeny on Balanced Binary Trees

In this section, we present the algorithm for doing phylogenetic reconstruction on binary balanced
trees, thereby proving Theorem 1.2.

5.1 Intuition and the reconstruction algorithm

We start by discussing the differences between the d-ary case and the binary one. For d a power of
2, let Th(x1, . . . xd) be defined as

Th(x1, . . . xd) =


1,

∑
xi ≥ 2d/3

0,
∑
xi ≤ d/3

uniform ∈ {0, 1}, d/3 <
∑
xi < 2d/3

The algorithm for reconstructing a complete binary tree is given in Figures 6, and 7. The
algorithm is very similar to the one used for d-ary trees, with two differences:

1. The reconstruction procedure still requires d nodes. Thus, we reconstruct log d levels at a
time, by taking degree log d cousins instead of just siblings.

2. When reconstructing a single node (Figure 7) we use the threshold function Th instead of
using majority.

Intuitively, Algorithm 6 picks groups of d degree-log d siblings at a time, in a manner very similar
to the degree-d case above. The main change is in Algorithm 6 — the reconstruction procedure for
obtaining the sequence of a grandparent from its d degree-log d grandchildren. As before, we select
a random grandchild and try to align the rest of the grandchildren to it. The major difference is

11Again, the selection of the next cluster of degree log d cousins can be done much more efficiently – in time O(n2).
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Algorithm 7: Reconstruction of a single node in a binary tree. Inputs: S = {x̂1, . . . , x̂d}
Let s denote a random descendent in S ;1

for each block k do2

Gk = {x̂s[kB : kB +B]} ;3

hs = 0 ;4

for each t 6= s do5

if exists a shift −4α < ht < 4α such that6

|x̂s[kB : kB +B]⊕ x̂t[kB + ht : kB +B + ht]| < 1
4B then

Set Gk ← Gk ∪ {x̂t[kB + ht : kB +B + ht]} ;7

Set x̂[kB : kB +B] = ThB∈GkB8

in the application of the threshold function instead of a simple majority. If the k-th block is red in
one of the grandchildren, we assume that this block is controlled by the adversary. As before we
want to be able to tolerate the corruption of one of the grandchildren with high probability.

As explained before, the distance estimation algorithm may tolerate fairly high random recon-
struction errors, since they are easily accounted for. Thus we have no problem tolerating a random
reconstruction error β that is fairly high, say β > Psubs. In fact β cannot be smaller than Psubs,
since if a mutation occurs on the edge to one of the immediate children of the grandparent we
cannot expect to recover from the error. On the other hand, the distance estimation and neighbor
joining algorithms are very sensitive to adversarial reconstruction errors. Here adversarial recon-
struction errors are thought to occur after all the probabilistic choices have been made. We denote
the adversarial error rate by γ. We want γ to be very small. In particular here we will show how
to make γ < Psubs

3.
Assuming only one (or a small constant number) of the grandchildren is controlled by the

adversary, we want him to have very low control over the probability that the reconstruction is
correct. Thus we want his expected influence to be bounded by γ. It is here that the second
important modification plays a role. Instead of taking the majority over the leaves (i.e. threshold-
(1/2)), we use a threshold-(1/3) function Th. Suppose we had used the threshold-(1/2) function.
Assuming there is a mutation next to the root of the depth-log d tree (a probability-Psubs event)
the number of leaves that disagree with the root is roughly d/2. Hence an adversary that controls
even one leaf has a high chance of influencing the majority. Unlike 1/2, the number 1/3 does not
have a finite binary representation. Hence if the number of leaves that disagree with the root is
close to d/3 it means that many mutations must have occured (a low probability event!). Hence
an adversary controlling just a small number of leaves is very unlikely to affect the outcome of Th,
which is the cruicial property we need.

5.2 Correctness proof outline

The structure of the correctness proof is similar to the d-ary case. However, in the binary case the
reconstruction guarantee is different. Let g : [K̂] 7→ [−r, . . . , r] ∪ {⊥} be the alignment function
between the reconstructed node x̂ and the original node x. The behavior of g with respect to the
red blocks is the same, but the behavior with respect to green blocks is different (property 5 of g
in Section 4.2). Consider the string y which is aligning x̂ according to g, that is y[j] = x̂[j + g(j)],
or y[j] = ⊥ if g(j) = ⊥. Let z[j] = x[j] ⊕ y[j], or ⊥ if y[j] = ⊥. As in the d-ary case, we require
that the part of z which does not contain ⊥ is stochastically dominated by a string which has 1
in each place with i.i.d probability β. However, here we also require that the part of z which does
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not involve the symbol ⊥ stochastically dominates a string which has 1 in each place with i.i.d
probability β − γ.

Formally, if the length of z is `, there exists two random variables zup, zdown ∈ {0, 1,⊥}` such
that the joint distribution zdown, z, zup satisfies the following properties:

1. The symbol ⊥ occurs in the same places: if z[j] = ⊥, also zdown[j] = zup[j] = ⊥, and if
z[j] 6= ⊥, also zdown[j] 6= ⊥ and zup[j] 6= ⊥

2. If z[j] = 0 then zdown[j] = 0, and similarly if z[j] = 1 then zup[j] = 1.

3. The marginal distribution on zdown × zup where z[j] 6= ⊥ is i.i.d such that zup[j] = 1 with
probability β; zup[j] = 1 whenever zdown[j] = 1, and P[zup[j] = 1|zdown[j] = 0] = γ.

Throughout the construction we will maintain the invariant that β is small. More specifically,
we will have

β < Psubs
2/3.

We will show that γ can be maintained very small. Specifically, we will show how to maintain

γ < Psubs
3.

It should be noted that for a sufficiently small constant Psubs a bound γ < Psubs
c can be realized

with any constant c > 1.
Given this guarantee, there are three differences between the binary case and the d-ary case,

which will be described in the following sections.

5.3 Red and green trees

Recall that the red and green trees were introduced to control the (red) locations that have been
affected by indels making matching them to their cousins by a shift of magnitude α potentially
impossible. Since the reconstruction is done in batches of d nodes, we need to modify the algorithm
that controls errors (Algorithm 3) slightly to obtain Algorithm 8. In Algorithm 3 indels that
occurred going from t’s parent to t in block k caused block k in t to become red. In Algorithm
8 we charge indels that occur between a node t and its depth-log d grandchildren to t. We do
this since the number of indels occuring between t and two of its descendants t1 and t2 are no
longer independent. For example, if an indel occurs between t and its immediate child, with high
probability the same indel will occur between t and half of its descendants.

The analysis of Algorithm 8 is very similar to the analysis of Algorithm 3. The only difference
is that in the initialization the nk,t are generally larger in Algorithm 8. However, is easy to see
that the process in Algorithm 8 is dominated by the process in Algorithm 3 with Pid replaced with
2d ·Pid. Thus we get the following analogue of Lemma 4.2:

Lemma 5.1 With high probability, in each node of the tree there are at most α blocks which are
not green, assuming α ≥ 1200 log d

log 1/(2B2·d·Pid)
.

5.4 Distance estimation

Given this guarantee, we need to prove an analog of Lemma 4.12. That is, when i, j are siblings
and the distances are well defined then
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Algorithm 8: Recursively coloring a depth-log d grandfather y given the d grandchild nodes

Initialization:1

for each vertex t, and each block k do2

if the maximum number of insertions and deletions going from t to any of its depth-log d3

grandchildren in block k is nk,t > 0 then
Color block k in t red, and give it the number nk,t > 0 ;4

Recursively coloring a grandfather y given the d grandchild nodes:5

Let s be a random grandchild ;6

for every child t 6= s do7

for every maximal consecutive sequence of red blocks in the t’th grandchild,8

i, i+ 1, . . . , i+ k do
temporarily color blocks i− 1, i+ k + 1 red in the grandchild t, and give them the9

number 1.

for k = 1 to B do10

if the k’th block in s is red, and has number i then11

Color the k’th block in the grandfather red, and add number i to it.12

else13

if exist t1 6= t2 in which the k’th block is red then14

Color the k’th block in the grandfather red, and give it number 1.15

Lemma 5.2 With high probability,

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) < ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α)

Proof:(Sketch) The lemma has two main parts:

1. Showing that the edit distance operations and the red blocks do not change the distance by
much. This is done using the triangle inequality (Claim 4.11)

2. Showing that the distance guarantee on the good blocks is good enough.

The first part is very similar to the proof of Lemma 4.12. As for the second part, by choosing
ε = γ in claims 4.14, 4.15, we get that the equation 3 changes to

ded(x̂i, x̂j , 4α) + ded(x̂v, x̂w, 4α) ≤ log

(
2 A (x̂i, x̂j , 4α)

B2
− 1

)
+ log

(
2 A (x̂v, x̂u, 4α)

B2
− 1

)
≤ log(1− βi)(1− βj)pij(1 + 2α/B)(1 + 2γ)(1− βv)(1− βw)pvw(1 + 2γ)(1 + 2α/B)(1 + γ)

≤ log(1− βi)(1− βv)piv(1− 2α/B)(1− 2γ)(1− βj)(1− βw)pjw(1− 2α/B)(1− 2γ)(1− γ)

≤ ded(x̂i, x̂v, 4α) + ded(x̂j , x̂w, 4α)

and this holds given that

1−Pmin ≥
(1− γ)(1− 2γ)2(1− 2α/B)2

(1 + γ)(1 + 2γ)2(1 + 2α/B)2

which is again true if Pmin > 4α/B + 10γ. �
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5.5 Meeting the recursive guarantee

Finally, we need to show that if the grandchildren meet the reconstruction guarantee, so does the
grandfather. In the d-ary case, this was done in Lemma 4.9. In the binary case, the behavior
of red blocks is similar, but we need an estimate on the adversary’s influence, which replaces (1)
in the proof of the lemma. It is here that the main difference between the d-ary and the binary
case occurs. The reconstruction process as taking grandchildren nodes with z1, . . . , zd ∈ {0, 1,⊥}`
representing their reconstruction errors and uses Algorithm 7 to generate the grandparent node
with z representing its reconstruction errors. By the recursive guarantee, it is useful to think of the
zi’s as representing two types of errors: a fairly large random noise βi < Psubs

2/3 as represented by
ziup, and a small adversarial error may be subtracted with probability ≤ γ. The βi’s may depend
on the edge lengths and may vary among the zi’s. On the other hand, we assume that the same
γ � βi is fixed throughout the entire reconstruction. Since the stochastic domination is i.i.d on all
the locations j = 1, .., `, it is enough to show that the recursive guarantee is preserved location-wise.
From now on, we fix a location j. We need to prove the following recursive guarantee:

• If zi[j] = ⊥ for at most one i ∈ {1, .., d}, then there is a β < Psubs
2/3 such that z[j]

stochastically dominates zdown[j] and is dominated by zup[j] where Pr[zup[j] = 1] = β and
Pr[zup = 1|zdown[j] = 0] = γ.

Thus the adversary is given full control over one of the d grandchildren (the one where zi[j] = ⊥),
and is given control over each of the other grandchildren with probability < γ, our goal is to show
that if we apply the procedure from Algorithm 7 the probability of the adversary gaining control
over the root value z[j] is tiny (< γ).

Consider the process where each zi[j] = zidown[j] is sampled independently to be 1 with prob-
ability βi, and then the mutations m1[j], . . . ,md[j] in the phylogenic tree on location j between
z1, . . . , zd and z are sampled (possibly with the adversary’s interference). The reconstruction works
correctly with probability

p0 := Pr

[
d∑
i=1

zi[j]⊕mi[j] ≤ d

3

]
+

1

2
Pr

[
d

3
<

d∑
i=1

zi[j]⊕mi[j] <
2d

3

]
.

The first term accounts for the case when the total number of disagreements between z[j] and its
(reconstructed) descendants is at most d/3, and the second term accounts for the case when this
number is between d/3 and 2d/3. For simplicity assume that 1/

√
Psubs is a power of 2. Set

d := 1/
√

Psubs.

We have d2γ2 < γ/4, and hence the probability that the adversary gains control over two of the
zi[j]’s is bounded by γ/4.

It is not hard to see that assuming that at most one zi[j] = ⊥,

Claim 5.3
Pr[#{i’s such that zi[j] 6= 0} ≥ 20] < γ/4.

Thus all but less than 20 grandchild nodes are reconstructed correctly. This estimate includes
potential interventions by the adversary who may control 2 of the zi[j]’s. The number of edges
between z and the grandchildren is 2d− 2� 1/Psubs, and thus with high probability the number
of mutations on these nodes is very small:
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Claim 5.4
Pr[# of mutations in the subtree ≥ 7] < γ/4.

There are 30 edges in the first four layers of the tree. Hence the probability of having a mutation
in one of these edges is bounded by

30 ·Psubs < Psubs
2/3 /2,

for a sufficiently small constant Psubs. If there are no mutations in the first four levels, and
assuming the conclusion of Claim 5.4, we have

d∑
i=1

mi[j] ≤ 2−5d · 7 =
7d

32
.

Putting this together with Claim 5.3, we see that except with probability < Psubs
2/3 /2 + γ/2 <

Psubs
2/3,

d∑
i=1

zi[j]⊕mi[j] ≤
d∑
i=1

mi[j] +
d∑
i=1

zi[j] <
7d

32
+ 20 <

d

3

for a small constant Psubs. Thus the event of the grandparent value being reconstructed incorrectly
is bounded by a probability β < Psubs

2/3.
The most important part is estimating the probability γ′ that the adversary can manipulate

the reconstruction output, and showing that it is bounded by γ. Since the adversary controls at
most two inputs, the probability that he will be able to change the output is bounded by

Pr

[
d∑
i=1

zi[j]⊕mi[j] ∈ (d/3− 2, d/3 + 2) ∪ (2d/3− 2, 2d/3 + 2)

]
.

We will show that assuming the conclusions of Claims 5.3 and 5.4

d∑
i=1

zi[j]⊕mi[j] /∈ (d/3− 2, d/3 + 2) ∪ (2d/3− 2, 2d/3 + 2), (8)

and thus γ′ < γ/2 < γ.
Define the following subset of the unit interval:

S := {x ∈ [0, 1] | x =

7∑
i=1

ηi2
−ti , where ηi = ±1 and ti > 0 is an integer}.

Thus S is the set of numbers that have a representation using a signed sum of at most 7 inverse
powers of 2. It is not hard to see that there is a constant τ > 0 such that |x − 1/3| > τ and
|x− 2/3| > τ for all x ∈ S. We select Psubs sufficiently small, so that d = 1/

√
Psubs > 23/τ .

Observe that assuming the conclusion of Claim 5.4 we have

d∑
i=1

mi[j] = x · d,

where x ∈ S, and assuming Claim 5.3 we have∣∣∣∣∣
d∑
i=1

zi[j]⊕mi[j]− d/3

∣∣∣∣∣ ≥
∣∣∣∣∣
d∑
i=1

mi[j]− d/3

∣∣∣∣∣+
d∑
i=1

zi[j] > τ · d− 20 > 3,
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and hence
d∑
i=1

zi[j]⊕mi[j] /∈ (d/3− 2, d/3 + 2).

A similar argument with 2d/3 instead of d/3 concludes the proof of (8).
It should be noted that the use of the d/3 threshold instead of the more “natural” d/2 threshold

for the majority vote is crucial in our analysis. With probability as high as Psubs one of the edges
adjacent to the root contains a mutation, and hence about one half of the mi[j]’s are 1. Hence an
adversary controlling even a single leaf may influence the value of the majority. On the other hand,
since 1/3 does not have a “nice” binary representation, a sequence of mutations such that about
one third of the mi[j]’s are 1 is unlikely. In the proof we used the fact that 1/3 is removed from
the set S. At the same time 1/2 is contained in the set S, making τ = 0.

6 Phylogeny on General Binary Trees

In this section, we show how our results generalize to binary trees with arbitrary topologies, in
particular, to trees without a restriction on the depth, thereby proving Theorem 1.3. To obtain
this result, we rely on the algorithm of [MHR08], that performs phylogeny reconstruction in the
standard CFN model (where there are no insertions and deletions). In particular, we show that we
can use the algorithm from [MHR08] in an essentially black-box fashion.

We give a brief overview of the [MHR08] algorithm. Their algorithm constructs the tree iter-
atively, maintaining a forest induced from T . At each step, the algorithm joins two trees of the
forest into a single tree. In the process, they create internal nodes, for which one computes a
“reconstructed trace” from the nodes in same tree. To connect the trees, the algorithm then uses
empirical evaluations of the distance between traces of the nodes. The traces are reconstructed via
now-classical recursive majority procedure of [Mos98, Mos01, Mos03, Mos04b].

We use the [MHR08] algorithm with two modifications. The first one is that we use our trace
reconstruction (computation of learned characters) from Algorithm 7 instead of the recursive ma-
jority rule used in MHR. The second modification is to replace their distance estimation with our
distance estimation, ded, and applying the trace reconstruction procedure from previous sections.

We now state the guarantees that are achieved by (a modified version of) [MHR08] algorithm. In
particular, we consider the MHR algorithm, with trace reconstruction that uses threshold function
Th instead of majority Maj (in step (4)(h)(ii) in TREE-MERGE algorithm). Call this algorithm
MHR-TH.

We also need the notion of an (M, ε)-approximator: a quantity D̂ is a (M, ε)-approximator of
D if: |D̂ − D| ≤ ε when D < M and D̂ > M − ε when D ≥ M . Also, for two random variables
x, y ∈ {+1,−1}, the MHR-distance is12

dPr(x, y) = − log (2 Pr[x = y]− 1) .

Theorem 6.1 ([MHR08], see Theorem 4.5) Consider an arbitrary binary tree T on n leafs,
with a reversible CFN model on k sites. Suppose the substitution probability of each edge is 12ε ≤
pe ≤ λ− 6ε, for some ε > 0, where λ ≤ λ0 for λ0 being the phase transition of the CFN model.

Furthermore, suppose we have query access to a (M, ε/4)-approximator of the dPr distance, for
M = cMλ+ cMε, for some absolute constant cM > 1.

Then the MHR-TH algorithm reconstructs the tree T from the observed sites on the leafs, with
high probability. The algorithm runs in polynomial time.

12In [MHR08], there is also a normalization factor of 0.5, which of course does not affect the algorithm.
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Now we show how to obtain theorem 1.3. We use the following algorithm, termed MHR-INDEL.
It is the algorithm from [MHR08], where the trace reconstruction (step (4)(h)(ii) of TREE-MERGE)
is performed using Algorithm 7. Also all distances are computed using ded(·, ·, 4α ·M/Pmin) (for
both leafs and reconstructed traces of internal nodes).

To prove the correctness guarantee of algorithm MHR-INDEL, we use Theorem 6.1 with the
following parameters ε = Pmin /12, and λ = Psubs +6ε ≤ λ0.

We first introduce an intermediary algorithm, termed MHR-IDEAL-INDEL. Consider the same
mutation process INDEL-REV. Now suppose all trace reconstructions are ideal: for a node v that
is reconstructed from a subtree T , a site j from v is reconstructed from corresponding sites in the
nodes in T , using the thresholding function Th. (If not all nodes in T contain the site j — a
situation possible due to insertions/deletions — then use the nodes where the site is available.) We
also define the following ideal distance dindel, between two strings x, y ∈ {0, 1}k, which we assume
share l sites Sx in x and Sy in y, given by the bijective map m : Sx → Sy:

dindel =
1

l

(
−
∑
i∈Sx

log(2 Pr[xi = ym(i)]− 1) + (k − l)M

)
.

In other words, the dindel is just the average of the standard dPr distance over all sites, except that
for unshared sites, we use the max distance M .

We claim that the MHR-IDEAL-INDEL (i.e., under the mutation process INDEL-REV, and
dindel distance) succeeds in recovering the phylogeny tree T with high probability. Indeed, first we
notice that all independence conditions in MHR hold true (for each site separately, and hence for
the entire sequences). Second, consider any two sequences x, y. If they are at distance dPr ≥M − ε
in the MHR-TH algorithm, then they are at distance dindel ≥M − ε in the MHR-IDEAL-IDEAL
algorithm as well (since this holds for each site separately and dindel is just an average). Otherwise,
x and y belong to nodes that are at distance at most M/Pmin ≤ 2cM ·Psubs /Pmin. Consider all
the nodes C, at distance 2M from x (note that y ∈ C). Then, with high probability (over indel
mutations), k −O(log n) = k(1− o(1)) sites of x are present in each node in C. Each site behaves
like a standard CNF model, with Threshold reconstruction. Hence, if we restrict to the sites shared
by all of C, then, the algorithm that would use these sites in the computation of dindel would
behave exactly the same as MHR-TH. Now the actual dindel involves more sites, not all shared
inside C, but the effect on the distance is only 1− o(1), and hence it is a (M, ε/4)-approximator to
the previous distance.

Finally, we observe that the distance computations in our actual algorithm MHR-INDEL are
good approximators to the distances in the above idealized MHR-IDEAL-INDEL, with high prob-
ability (over indel and substitution mutations). Indeed, in Section 5, we showed the recursive
guarantee for each reconstructed trace. The reconstruction guarantee says that each trace is re-
constructed according to the thresholding function Th, except that a fraction of sites fall pray to
adversary: in fact, at most αB + γk sites are controlled by adversary (these includes the sites
where z[j] = ⊥ and z[j] is controlled by the adversary with probability γ). The number of such
sites is αB + γk � ε/8 · k. For the rest of the sites, which are ≥ k · (1 − ε/8), we can apply a
standard concentration bound, concluding that the empirical distance ded(·, ·, 4α ·M/Pmin) is a
(M, ε/4)-approximator to dindel(·, ·).
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