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Abstract

Recent years have seen a significant increase in our un-
derstanding of high-dimensional nearest neighbor search
(NNS) for distances like the `1 and `2 norms. By contrast,
our understanding of the `∞ norm is now where it was (ex-
actly) 10 years ago.

In FOCS’98, Indyk proved the following unorthodox re-
sult: there is a data structure (in fact, a decision tree) of
size O(nρ), for any ρ > 1, which achieves approximation
O(logρ log d) for NNS in the d-dimensional `∞ metric.

In this paper, we provide results that indicate that Indyk’s
unconventional bound might in fact be optimal. Specifically,
we show a lower bound for the asymmetric communica-
tion complexity of NNS under `∞, which proves that this
space/approximation trade-off is optimal for decision trees
and for data structures with constant cell-probe complexity.

1 Introduction

Nearest neighbor search (NNS) is the problem of prepro-
cessing a collection of n points, such that we can quickly
find the point closest to a given query point. This is a key
algorithmic problem arising in several areas such as data
compression, databases and data mining, information re-
trieval, image and video databases, machine learning, pat-
tern recognition, statistics and data analysis.

The most natural examples of spaces for which NNS can
be defined are the `dp spaces, denoting the space<d endowed

with the distance ‖x − y‖p =
(∑d

i=1 |xi − yi|p
)1/p

. Sig-
nificant attention has been devoted to NNS in these spaces,
with many deep results surfacing for the Euclidean norm,
`2, and the Manhattan norm, `1. We refer the reader to sur-
veys in [SDI06, Sam06].

The `∞ metric is the odd-man out in this research direc-
tion. The structure of this very natural space, dictated by the
max operator ‖x− y‖∞ = maxdi=1 |xi− yi|, is intriguingly
different from the other `p norms, and remains much less
understood.

In fact, there is precisely one worst-case1 result for
NNS under `∞. In FOCS’98, Indyk [Ind01b] achieves
an NNS algorithm for d-dimensional `∞ with approxima-
tion 4dlogρ log 4de+ 1, which requires space dnρ logO(1) n

and d · logO(1) n query time, for any ρ > 1. For 3-
approximation, Indyk also gives a nlog d+1 storage algo-
rithm. In the important regime of polynomial space, the
algorithm achieves an uncommon approximation factor of
O(log log d).

Applications of `∞. For some applications, especially
when coordinates are rather heterogeneous, `∞ may be a
natural choice for a similarity metric. If the features repre-
sented by coordinates are hard to relate, it is hard to add up
their differences numerically, in the sense of `1 or `2 (the
“comparing apples to oranges” phenomenon). One popular
proposal is to convert each coordinate to rank space, and use
the maximum rank difference as an indication of similarity.
See for example [Fag96, Fag98].

However, the most compelling reasons for studying `∞
are extroverted, stemming from its importance in a theoret-
ical understanding of other problems. For example, many
NNS problems under various metrics have been reduced
to NNS under `∞ via embeddings (maps that preserve dis-
tances up to some distortion). A well-known result of Ma-
toušek states that any metric on n points can be embedded
into `∞ with dimension d = O(cn1/c log n) and distortion
2c− 1 [Mat96]. In particular, if we allow dimension n, the
embedding can be isometric (no distortion). Of course, this
general guarantee on the dimension is too high for many ap-
plications, but it suggests that `∞ is a very good target space
for trying to embed some particular metric more efficiently.

Early embeddings into `∞ with interesting dimension in-
cluded various results for Hausdorff metrics [FCI99], em-
bedding tree metrics into dimensionO(log n) [LLR94], and
planar graphs metrics into dimension O(log n) [KLMN05]
(improving over [Rao99]).

More recently, embeddings have been found into gener-
alizations of `∞, namely product spaces. For a metricM,

1 Heuristic methods have also been devised. On the theoretical side,
[AHL01] analyze a brute-force algorithm for the uniform input distribu-
tion, showing a bound of Θ(nd/ lg n).
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the max-product over k copies ofM is the spaceMk with
the distance function d∞,M(x, y) = maxki=1 dM(xi, yi),
where x, y ∈Mk.

Indyk [Ind02] has extended his original NNS algorithm
from `∞ to max-product spaces. Since max-product spaces
are a generalization of `∞, our lower bound carries over
trivially.

Using this algorithm for max-product spaces, In-
dyk [Ind02] obtained an NNS algorithm for the Frechet met-
ric. In current research, it was shown [AIK08] that algo-
rithms for max-product spaces yield (via a detour through
sum-product spaces) interesting upper bounds for the Ulam
metric and the Earth-Mover Distance. By embedding these
metrics into (iterated) sum-products, one can achieve ap-
proximations that are provably smaller than the best possi-
ble embeddings into `1 or `2.

Thus, the bottleneck in some of the best current algo-
rithms for Frechet, Ulam and EMD metrics is the `∞ metric.
In particular, one obtains the same unusual log-logarithmic
approximation for polynomial space. Our lower bound is a
very timely indication that, if further improvement for these
metrics is possible, it has to avoid max-product spaces.

1.1 Lower Bounds

The unusual structure of `∞ NNS (as evidenced by an
uncommon approximation result) and the current develop-
ments leading to interesting applications plead for a better
understanding of the problem.

The decade that has passed without an improvement
seems to suggest a lower bound is needed. However, the
only existing lower bound is a simple reduction of [Ind01b]
that shows `∞ with approximation better than 3 is as
hard as the partial match problem; see [JKKR04, Pǎt08]
for partial match lower bounds. This does not explain
the most interesting feature of the problem, namely the
space/approximation trade-off. It also leaves open the most
interesting possibility: a constant factor approximation with
polynomial space. (It appears, in fact, that researchers
were optimistic about such an upper bound being achiev-
able [Ind01a].)

Communication complexity. As with all known lower
bounds for data structures with large space, we approach
the problem via asymmetric communication complexity. We
consider a setting where Alice holds the query point and
Bob holds the set D on n database points. Assuming for
convenience that the space is discretized, we arrive at the
following formal definition:

Definition 1 (c-NNS). Alice is given a “query point”
q ∈ {−m, . . .m}d, and Bob is given the “dataset” D ⊂
{−m, . . .m}d of size n. Then the c-NNS problem is a
promise problem in which the two players must:

• output 1 if there exists some p ∈ D such that ‖q −
p‖∞ ≤ 1;

• output 0 if, for all p ∈ D, we have that ‖q − p‖∞ ≥ c.

We show the following lower bound on the communi-
cation complexity of this problem, which is asymptotically
optimal by Indyk’s algorithm [Ind01b].

Theorem 2. Fix δ, ε > 0. Consider a dimension d sat-
isfying Ω(log1+ε n) ≤ d ≤ o(n), and an approximation
ratio c satisfying 3 < c ≤ O(log log d). Further define
ρ = 1

2 ( ε4 log d)1/c > 10.
In a deterministic protocol solving c-NNS, either Alice

sends a = Ω(δρ log n) bits, or Bob sends b = Ω(n1−δ).

Data structures. Asymmetric communication lower
bounds imply cell-probe lower bounds for data structures
by constructing the natural communication protocol in
which Alice sends a cell address in each round, and Bob
replies with the cell contents. Thus by a standard analysis
of [MNSW98], our communication lower bound implies:

Corollary 3. Consider any cell-probe data structure solv-
ing d-dimensional near-neighbor search under `∞ with ap-
proximation c = O(logρ log d). If the word size is w =
n1−δ for some δ > 0, the data structure requires space
nΩ(ρ/t) for cell-probe complexity t.

As with all large-space lower bounds known to date, this
bound is primarily interesting for constant query time, and
degrades exponentially with t. We expect this dependence
on t to be far from optimal, but proving a tight lower bound
for superconstant t is well beyond the reach of current tech-
niques.

By another standard reduction to the decision tree model
(see [KN97] and Appendix A), we have the following:

Corollary 4. Let δ > 0 be arbitrary. A decision tree of
depth n1−2δ and node size nδ that solves d-dimensional
near-neighbor search under `∞ with approximation c =
O(logρ log d), must have size nΩ(ρ).

Unlike cell-probe complexity, where the bound degrades
quickly with the query time, the lower bound for decision
trees holds even for extremely high running time (depth)
of n1−δ . A decision tree with depth n and predicate size
O(d logM) is trivial: simply test all database points.

Indyk’s result [Ind01b] is a decision tree with depth
d · logO(1) n and predicate size O(log(n + M)), which
achieves the same trade-off between approximation and
space. Thus, we show that Indyk’s interesting trade-off is
optimal, at least in the decision tree model. In particular, for
polynomial space, the approximation factor of Θ(lg lg d) is
intrinsic to NNS under `∞.



Technical discussion. Perhaps the most innovative com-
ponent of our lower bound is the conceptual step of un-
derstanding why this dependence on the approximation
“should” be optimal. In Section 2, we recast Indyk’s up-
per bound idea in an information-theoretic framework that
explains the behavior of the algorithm more clearly.

This understanding suggests a heavily biased distribution
over the database points, which ellicits the worst behavior.
On each coordinate, the probability of some value x decays
doubly-exponentially with x, more precisely as 2−(2ρ)x . All
d dimensions are independent and identically distributed.

By a standard analysis in communication complexity,
Alice’s communication will fix the query to be in a set S
whose measure in our probability space is bounded from
below. Technically, the crucial step is to determine the prob-
ability that some point in the database lies in the neighbor-
hood of S. The neighborhood N(S) is the Minkowski sum
of the set with the `∞ ball [−1, 1]d. In other words,N(S) is
the set of points that could be a nearest neighbor. To find an
instance for which the algorithm makes a mistake, we must
prove a lower bound on the measure of the neighborhood
N(S), showing that a point will fall in the neighborhood
with good probability.

The crux of the lower bound is not in the analysis of the
communication protocol (which is standard), but in proving
a lower bound for N(S), i.e. in proving an isoperimetric
inequality. Of course, the initial conceptual step of defining
an appropriate biased distribution was the key to obtaining
the isopermetric inequality that we need. The proof is rather
non-standard for an isoperimetric inequality, because we are
dealing with a very particular measure on a very particular
space. Fortunately, a few mathematical tricks save the proof
from being too technical.

The easy steps in communication complexity are de-
scribed in Section 3 (roughly one page). The isoperimetric
inequality is shown in Section 4.

Randomized lower bounds. As explained above, our
lower bound uses distributions on the input rather perva-
sively, but still, it only works for deterministic protocols.
(Fortunately, the upper bound is also deterministic. . . )

It would be a nice technical development to also show
this lower bound for a bounded-error protocol. Unfortu-
nately, this seems beyond the scope of existing techniques.
The trouble is that all analyses of asymmetric communica-
tion games have been unable to employ non-product distri-
butions.

In Section 5, we show the following interesting fact-
let: it is not possible to prove asymmetric communication
lower bounds over product distributions, for the NNS prob-
lem with approximation c > 3. Thus, a randomized lower
bound would need to develop new tools in communication
complexity.

2 Review of Indyk’s Upper Bound

Decision trees. Due to the decomposability of `∞ as a
maximum over coordinates, a natural idea is to solve NNS
by a decision tree in which every node is a coordinate
comparison. A node v is reached for some set Qv ⊆
{−m, . . . ,+m}d of queries. If the node compares coor-
dinate i ∈ [d] with a “separator” x, its two children will be
reached for queries inQ` = Qv∩{q | qi < x}, respectively
in Qr = Qv ∩ {q | qi > x} (assume x is non-integral to
avoid ties).

Define [x, y]i =
{
p | pi ∈ [x, y]

}
. Then, Q` = Qv ∩

[−∞, x]i and Qr = Qv ∩ [x,∞]i.
If the query is known to lie in some Qv , the set of

database points that could still be a near neighbor is Nv =
D ∩

(
Qv + [−1, 1]d

)
, i.e. the points inside the Minkowski

sum of the query set with the `∞ “ball” of radius one. For
our example node comparing coordinate i ∈ [d] with x, the
children nodes have N` = Nv ∩ [−∞, x+ 1]i, respectively
Nr = Nv ∩ [x− 1,+∞]i.

Observe that N` ∩ Nr = Nv ∩ [x − 1, x + 1]i. In
some sense, the database points in this slab are being “repli-
cated,” since both the left and right subtrees must consider
them as potential near neighbors. This recursive replication
of database points is the cause of superlinear space. The
contribution of Indyk [Ind01b] is an intriguing scheme for
choosing a separator that guarantees a good bound on this
recursive growth.

pi

x− 1 x x + 1

N`
Nr

Q` Qr

v

` r

Figure 1. A separator x on coordinate i.

Information progress. Our first goal is to get a handle on
the growth of the decision tree, as database points are repli-
cated recursively. Imagine, for now, that queries come from
some distribution µ. The reader who enjoys worst-case al-
gorithms need not worry: µ is just an analysis gimmick, and
the algorithm will be deterministic.

We can easily bound the tree size in terms of the mea-
sure of the smallest Qv ever reached: there can be at most
1/minv Prµ[Qv] distinct leaves in the decision tree, since
different leaves are reached for disjoint Qv’s. Let IQ(v) =
log2

1
Prµ[Qv] ; this can be understood as the information



learned about the query, when computation reaches node
v. We can now rewrite the space bound as O

(
2maxv IQ(v)

)
.

Another quantity that can track the behavior of the deci-
sion tree is HN (v) = log2 |Nv|. Essentially, this is the “en-
tropy” of the identity of the near neighbor, assuming that
one exists.

At the root λ, we have IQ(λ) = 0 and HN (λ) = lg n.
Decision nodes must reduce the entropy of the near neigh-
bor until HN reaches zero (|Nv| = 1). Then, the algorithm
can simply read the single remaining candidate, and test
whether it is a near neighbor of the query. Unfortunately,
decision nodes also increase IQ along the way, increasing
the space bound. The key to the algorithm is to balance this
tension between reducing the entropy of the answer, HD,
and not increasing the information about the query, IQ, too
much.

In this information-theoretic view, Indyk’s algorithm
shows that we can (essentially) always find a separator that
decreases HN by some δ but does not increase IQ by more
than ρ · δ. Thus, HD can be pushed from lg n down to 0,
without ever increasing IQ by more than ρ lg n. That is,
space O(nρ) is achieved.

Searching for separators. At the root λ, we let i ∈ [d]
be an arbitrary coordinate, and search for a good separator
x on that coordinate. Let π be the frequency distribution
(the empirical probability distribution) of the projection on
coordinate i of all points in the database. To simplify ex-
pressions, let π(x : y) =

∑y
j=x π(j).

If x is chosen as a separator at the root, the entropy of
the near neighbor in the two child nodes is reduced by:

HN (λ)−HN (`) = log2
|Nλ|
|N`|

= log2
|D|

|D∩[−∞,x+1]i| = log2
1

π(−∞:x+1)

HN (λ)−HN (r) = log2
1

π(x−1:∞)

Remember that we have not yet defined µ, the assumed
probability distribution on the query. From the point of view
of the root, it only matters what probability µ assigns to Q`
and Qr. Let us reason, heuristically, about what assign-
ments are needed for these probabilities in order to generate
difficult problem instances. If we understand the most dif-
ficult instance, we can use that setting of probabilities to
obtain an upper bound for all instances.

First, it seems that in a hard instance, the query needs to
be close to some database point (at least with decent prob-
ability). In our search for a worst case, let’s just assume
that the query is always planted in the neighborhood of a
database point; the problem remains to find this near neigh-
bor.

Assume by symmetry that HN (`) ≥ HN (r), i.e. the
right side is smaller. Under our heuristic assumption that
the query is planted next to a random database point, we can

lower bound Prµ[Qr] ≥ π(x + 1,∞). Indeed, whenever
the query is planted next to a point in [x+ 1,∞]i, it cannot
escape from Qr = [x,∞]i. Remember that our space guar-
antee blows up when the information about Qv increases
quickly (i.e. the probability of Qv decreases). Thus, the
worst case seems to be when Prµ[Qr] is as low as possible,
namely equal to the lower bound.

Thus, we have convinced ourselves that it’s reasonable
to define µ such that:

Pr
µ

[Q`] = π(−∞ : x+1); Pr
µ

[Qr] = π(x+1,∞) (1)

We apply the similar condition at all nodes of the decision
tree. Note that there exists a µ safisfying all these con-
ditions: the space of queries is partitioned recursively be-
tween the left and right subtrees, so defining the probability
of the left and right subspace at all nodes is a definition of µ
(but note that µ with these properties need not be unique).

From (1), we can compute the information revealed
about the query:

IQ(`)− IQ(λ) = log2
Pr[Qλ]
Pr[Q`]

= log2
1

π(−∞:x+1)

IQ(r)− IQ(λ) = log2
1

π(x+1:∞)

Remember that our rule for a good separator was ∆IQ ≤ ρ ·
∆HN . On the left side, IQ(`)−IQ(λ) = HN (λ)−HN (`),
so the rule is trivially satisfied. On the right, the rule asks
that: log2

1
π(x+1:∞) ≤ ρ · log2

1
π(x−1:∞) . Thus, x is a good

separator iff π(x+ 1 :∞) ≥
[
π(x− 1 :∞)

]ρ
.

Finale. As defined above, a good separator satisfies the
bound on the information progress, and guarantees the de-
sired space bound of O(nρ). We now ask what happens
when no good separator exists.

We may assume by translation that the median of π is 0,
so π([1 : ∞]) ≤ 1

2 . If x = 1 1
2 is not a good separator, it

means that π(3 : ∞) <
[
π(1 : ∞)

]ρ ≤ 2−ρ. If x = 3 1
2

is not a good separator, then π(5 : ∞) <
[
π(3 : ∞)

]ρ ≤
2−ρ

2
. By induction, the lack of a good separator implies that

π(2j+ 1 :∞) < 2−ρ
j

. The reasoning works simmetrically
to negative values, so π(−∞ : −2j − 1) < 2−ρ

j

.
Thus, if no good separator exists on coordinate i, the

distribution of the values on that coordinate is very con-
centrated around the median. In particular, only a frac-
tion of 1

2d of the database points can have |xi| ≥ R =
1 + 2 logρ log2

n
4d . Since there is no good separator on any

coordinate, it follows that less than d · n2d = n
2 points have

some coordinate exceeding R. Let D? be the set of such
database points.

To handle the case when no good separator exists, we can
introduce a different type of node in the decision tree. This
node tests whether the query lies in an `∞ ball of radius



R+ 1 (which is equivalent to d coordinate comparisons). If
it does, the decision tree simply outputs any point inD\D?.
Such a point must be within distance 2R + 1 of the query,
so it is an O(logρ log d) approximation.

If the query is outside the ball of radius R + 1, a near
neighbor must be outside the ball of radius R, i.e. must be
in D?. We continue with the recursive construction of a de-
cision tree for point set D?. Since |D?| ≤ |D|/2, we get a
one-bit reduction in the entropy of the answer for free. (For-
mally, our µ just assigns probability one to the query being
outside the ball of radiusR+1, because in the “inside” case
the query algorithm terminates immediately.)

Intuition for a lower bound. After obtaining this
information-theoretic understanding of Indyk’s algorithm,
the path to a lower bound should be intuitive. We will con-
sider a distribution on coordinates decaying like 2−ρ

j

(we
are free to consider only the right half, making all coor-
dinates positive). Database points will be generated i.i.d.,
with each coordinate drawn independently from this distri-
bution.

In the communication view, Alice’s message sends a cer-
tain amount of information restricting the query space to
some Q. The entropy of the answer is given by the measure
of Q+ [−1, 1]d (each of the n points lands in Q+ [−1, 1]d

independently with the same probability). The question that
must be answered is how much biggerQ+[−1, 1]d is, com-
pared to Q. We show an isoperimetric inequality proving
that the least expanding sets are exactly the ones gener-
ated by Indyk’s algorithm: intersections of coordinate cuts
{pi ≥ x}.

Then, if Alice’s message has o(ρ lg n) bits of informa-
tion, the entropy of the near neighbor decreases by o(lg n)
bits. In other words, n1−o(1) of the points are still candi-
date near neighbors, and we can use this to lower bound the
message that Bob must send.

3 The Communication Lower Bound

We denote the communication problem c-NNS by the
partial function F . We complete the function F by set-
ting F̄ (q,D) = F (q,D) whenever F (q,D) is defined (i.e.,
when we are either in a yes or no instance), and F̄ (q,D) =
? otherwise. Note that the domain of F̄ is X × Y , where
X = {0, 1, . . .m}d and Y =

(
{0, 1, . . .m}d

)n
.

An [a, b]-protocol is a protocol by which Alice sends a
total of a bits and Bob sends a total of b bits. To prove
Theorem 2, assume that there exists some [a, b]-protocol Π
computing the function F̄ : X × Y → {0, 1, ?}.

As explained already, our lower bound only applies to
deterministic (zero error) protocols. However, at many
stages it requires conceptual use of distributions on the input
domains X and Y . These distributions are defined below.

We start with the following variant of the richness lemma
of [MNSW98, Lemma 6] for randomized protocols.

Lemma 5. Consider a problem f : X × Y → {0, 1},
and some probability distributions ηX , ηY over sets X,Y
respectively. Suppose Prx∈X,y∈Y [f(x, y) = 0] ≥ Ω(1).

If f has a randomized two-sided error [a, b]-protocol,
then there is a rectangle X × Y of f of sizes at least
ηX(X ) ≥ 2−O(a) and ηY (Y) ≥ 2−O(a+b) in which the
density (i.e., conditional measure) of ones is at most ε. Also,
the protocol outputs value 0 on X × Y .

First define the following measure (probability distribu-
tion) π over the set {0, 1, . . .m}: for i = 1, 2, . . . c, let
π({i}) = 2−(2ρ)i and π({0}) = 1 −

∑
i≥1 π({i}) ≥ 1/2.

For simplicity, we denote πi = π({i}). Similarly, define the
measure µd over {0, 1, . . .m}d as µd({(x1, x2 . . . xd)}) =
π({x1}) · π({x2}) · · ·π({xd}).

In our hard distribution, we generate q at random from
{0, 1, . . .m}d according to the distribution µd. Also, we
take the set D by choosing n points i.i.d. from µd.

Claim 6. If we choose q and D as above, then
Pr[F̄ (q,D) 6= 0] ≤ e− log1+ε/3 n.

Proof. Consider q and some p ∈ D: they differ in the jth

coordinate by at least c with probability at least 2π0πc ≥ πc
(when one is 0 and the other is c). Thus, Pr[‖q − p‖∞ <

c] ≤ (1− πc)d ≤ e−πcd ≤ e− log1+ε/2 n. By a union bound
over all p ∈ D, we get that ‖q − p‖∞ ≥ c for all p ∈ D

with probability at least 1− e− log1+ε/3 n.

Claim 7. There exists a combinatorial rectangle Q×D ⊂
{0, 1, . . .m}d × ({0, 1, . . .m}d)n on which the presumed
protocol outputs 0, and such that µd(Q) ≥ 2−O(a) and
µd·n(D) ≥ 2−O(a+b).

The claim follows immediately from the richness
lemma 5, applied to the function F ′ that is the function the
presumed protocol Π actually computes. In particular, note
that since the protocol is deterministic, F ′(q,D) = F̄ (q,D)
whenever F̄ (q,D) ∈ {0, 1}, and F ′(q,D) is either 0 or 1
when F̄ (q,D) = ?.

Since the protocol computes all of Q × D correctly, it
must be that F̄ (q,D) ∈ {0, ?} for all q ∈ Q and D ∈ D. It
remains to prove the following claim.

Claim 8. Consider any set Q ⊆ {0, 1, . . .m}d and
D ⊆ ({0, 1, . . .m}d)n of size µd(Q) ≥ 2−δρ logn and
µd·n(D) ≥ 2−O(n1−δ). Then, there exists some q ∈ Q
and D ∈ D such that F̄ (q,D) = 1 (i.e., there exists a point
p ∈ D such that ‖q − p‖∞ ≤ 1).

The claim is based on the following lemma that we prove
in Section 4. This lemma is a somewhat involved isoperi-
metric inequality on space with our distributions, and it is
the core component of our lower bound.



Lemma 9. Consider any set S ⊆ {0, 1, . . .m}d. Let N(S)
be the set of points at distance at most 1 from S under `∞:
N(S) = {p | ∃s ∈ S : ‖p− s‖∞ ≤ 1}. Then µd(N(S)) ≥
(µd(S))1/ρ.

Proof of Claim 8. Let N = N(Q) be the set of points at
distance at most 1 from Q. By the above lemma, µd(N) ≥
(µd(Q))1/ρ ≥ 1/nδ . We need to prove that there exists a set
D ∈ D that intersects with N . For D ∈ ({0, 1, . . .m}d)n,
let σ(D) = |D ∩N |.

Suppose D would be chosen at random from
({0, 1, . . .m}d)n (instead of D). Then ED [σ(D)] ≥
n · n−δ = n1−δ . By Chernoff bound, σ(D) < 1 happens
only with probability at most e−Ω(n1−δ).

Thus, if we restrict to D ∈ D, we obtain PrD[σ(D) <
1 | D ∈ D] ≤ PrD[σ(D)<1]

Pr[D∈D] = e−Ω(n1−δ) · 2O(n1−δ) <

e−Ω(n1−δ).
Concluding, there exists someD ∈ D such that |N(Q)∩

D| ≥ 1, and thus there exists some q ∈ Q and some p ∈ D
such that ‖q − p‖∞ ≤ 1.

Finally, Claims 7 and 8 imply that either a =
Ω(δρ log n) or b = Ω(n1−δ). This concludes the proof of
Theorem 2.

4 An Isoperimetric Inequality (Lemma 9)

We prove the following lemma, where we use the nota-
tion from the previous section.

Lemma 9. Consider any set S ⊆ {0, 1, . . .m}d. Let N(S)
be the set of points at distance at most 1 from S under `∞:
N(S) = {p | ∃s ∈ S : ‖p− s‖∞ ≤ 1}. Then µd(N(S)) ≥
(µd(S))1/ρ.

The core of the lemma is the following one-dimensional
isoperimetic inequality. The rest of the Lemma 9 results by
an induction on the dimension.

Theorem 10. Let ρ be a large positive integer, and for i =
1 . . .m, πi = 2−(2ρ)i , π0 = 1− (π1 + · · ·+πm). Then for
any non-negative real numbers β0, . . . , βm satisfying

π0β
ρ
0 + π1β

ρ
1 + · · ·+ πmβ

ρ
m = 1

the following inequality holds (where we set β−1 =
βm+1 = 0)

m∑
i=0

πi max {βi−1, βi, βi+1} ≥ 1 (2)

Before proving Theorem 10, we complete the proof of
Lemma 9 assuming this one-dimensional theorem. Let’s
prove first the case of d = 1. We have a set S ⊂

{0, 1, . . .m}, and let βi = 1 iff i ∈ S. Then µ1(S) =
π(S) =

∑
πiβi =

∑
πiβ

ρ
i . The set N(S) =

{
i ∈

{0, 1, . . .m} | max{βi−1, βi, βi+1} = 1
}

has measure, by
Theorem 10,

µ1(N(S)) =
m∑
i=0

πi max{βi−1, βi, βi+1} ≥ (µ1(S))1/ρ.

Now let’s prove the induction step. Consider S ⊂
{0, 1, . . .m}d, and, for i ∈ {0, 1, . . .m}, let Si =
{(s2, s3, . . . sd) | (i, s2, . . . sm) ∈ S} be the set of points
in S that have the first coordinate equal to i. Then, letting
βρi = µd−1(Si), we have that

m∑
i=0

πiβ
p
i =

∑
i

πiµd−1(Si) = µd(S).

We can lower bound the measure of N(S) as

µd(N(S)) ≥
m∑
i=0

πi ·max

 µd−1(N(Si−1))
µd−1(N(Si))
µd−1(N(Si−1))

where we assume, by convention, that S−1 = Sm+1 = 0.
By inductive hypothesis, µd−1(N(Si)) ≥

(µd−1(Si))1/ρ = βi for all i. Thus, applying Theo-
rem 10 once again, we conclude,

µd(N(S)) ≥
∑
i

πi max{βi−1, βi, βi+1} ≥ (µd(S))1/ρ.

This finishes the proof of Lemma 9.

4.1 The 1D Case (Theorem 10)

Let Γ =
{

(β0, . . . , βm) ∈ Rm+1 | π0β
ρ
0 + π1β

ρ
1 + . . .

+πmβρm = 1
}

, and denote by f (β0, . . . , βm) the left hand
side of (2). Then f is a continuous function on the compact
set Γ ⊂ Rm+1, so it achieves its minimum. Call an (m+1)-
tuple (β0, . . . , βm) ∈ Γ optimal if f (β0, . . . , βm) is mini-
mal. Our proof strategy will be to show that if (β0, . . . , βm)
is optimal, then βi = 1.

We consider several possible configurations for sizes of
βi’s in an optimal β in three separate lemmas, and prove
they are not possible. We then conclude the theorem by
showing these configurations are all the configurations that
we need to consider.

Lemma 11. If there exists an index i ∈ {1, . . . ,m− 1}
such that βi−1 > βi < βi+1, then β̄ = (β0, . . . , βm) is not
optimal.

Proof. Define a new vector β̄′ =
(β0, . . . , βi−2, βi−1 − ε, βi + δ, βi+1 − ε, βi+2, . . . , βm),
where ε, δ > 0 are chosen suitably so that β̄′ ∈ Γ, and
βi−1 − ε > βi + δ < βi+1 − ε. It’s easy to see that
f
(
β̄
)
> f

(
β̄′
)
, which contradicts the optimality of β̄.



Lemma 12. If there exists an index i ∈ {1, . . . ,m} such
that βi−1 > βi ≥ βi+1, then β̄ =(β0, . . . , βm) is not opti-
mal.

Proof. Let β =
(
πi−1β

ρ
i−1+πiβ

ρ
i

πi−1+πi

)1/ρ

and define β̄′ =

(β0, . . . , βi−2, β, β, βi+1, . . . βm). Then β̄′ ∈ Γ, and
βi−1 > β > βi.

We claim that f(β̄) > f(β̄′). Comparing the expressions
for f

(
β̄
)

and f
(
β̄′
)

term by term, we see that it’s enough
to check that

πi max {βi−1, βi, βi+1}+ πi+1 max {βi, βi+1, βi+2} >

> πi max {β, βi+1}+ πi+1 max {β, βi+1, βi+2}

where the terms involving πi+1 appear unless i = m.
For i = m, the inequality becomes βi−1 > β which holds
by assumption. For i = 1, . . . ,m− 1, the above inequality
is equivalent to

πi(βi−1 − β) > πi+1 · (max {β, βi+2} −max {βi, βi+2})

which, in its strongest form (when βi ≥ βi+2), is equivalent
to πi(βi−1 − β) > πi+1(β − βi). The last inequality is
equivalent to

(
πiβi−1 + πi+1βi

πi + πi+1

)ρ
>
πi−1β

ρ
i−1 + πiβ

ρ
i

πi−1 + πi

which we can rewrite as(
ci + t

ci + 1

)ρ
− ci−1 + tρ

ci−1 + 1
> 0, (3)

where ci = πi/πi+1 ≥ 2(2ρ)i+1−(2ρ)i (for i > 0 we have
equality and for i = 0 we have inequality because p is
large), and t = βi/βi−1 ∈ [0, 1). Let F (t) denote the
left hand side of inequality (3) (which we are left to prove).
Note that F (0) > 0, because:(

ci
ci + 1

)ρ
=

(
1− 1

ci + 1

)ρ
≥ 1− ρ

ci + 1

> 1− 1
ci−1 + 1

=
ci−1

ci−1 + 1

where we have used Bernoulli’s inequality (1− x)n ≥ 1−
nx for 0 < x < 1/n and ci + 1 > 2(2ρ)i+1−(2ρ)i > ρ ·
(2(2ρ)i + 1) = ρ( 1

πi−1
ci−1 + 1) > ρ(ci−1 + 1). Now we let

t ∈ (0, 1) and write F (t) = F (0) + tρG(t), where

G(t) =
1

(ci + 1)ρ

((
ρ

1

)
cρ−1
i

1
t

+
(
ρ

2

)
cρ−2
i

1
t2

+ · · ·+
(

ρ

ρ− 1

)
ci

1
tρ−1

)
+

+
(

1
(ci + 1)ρ

− 1
ci−1 + 1

)
.

If G(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are
done. Otherwise,G(t) < 0, and in this case it easily follows
that G(1) < G(t) < 0, hence F (t) = F (0) + tρG(t) >
F (0) + G(1) = F (1) = 0, as desired. This concludes the
proof of the lemma.

Lemma 13. If there is an index i ∈ {0, 1 . . . ,m− 1} such
that βi−1 ≤ βi < βi+1, then β = (β0, β1, . . . , βm) is not
optimal.

Proof. We proceed as in the previous lemma.

Let β =
(
πiβ

ρ
i +πi+1β

ρ
i+1

πi+πi+1

)1/ρ

, and define β̄′ =

(β0, . . . , βi−1, β, β, βi+2, . . . , βm). As before, β̄′ ∈ Γ and
βi < β < βi+1. We claim that f(β̄) > f(β̄′). Comparing
the expressions for f

(
β̄
)

and f
(
β̄′
)

term by term, we see
that it’s enough to check that

πi−1 max {βi−2, βi−1, βi}+ πi max {βi−1, βi, βi+1} >

> πi−1 max {βi−2, βi−1, β}+ πi max {βi−1, β, β}

where the terms involving πi−1 appear unless i = 0. If
i = 0, the above inequality becomes βi+1 > β and we are
done. For i = 1, . . .m− 1, the inequality is equivalent to

πi(βi+1 − β) > πi−1 · (max {β, βi−2} −max {βi, βi−2})

which, in its strongest form (when βi ≥ βi−2) is equivalent
to πi(βi+1 − β) > πi−1(β − βi). The latter inequality is
equivalent to(

πiβi+1 + πi−1βi
πi + πi−1

)ρ
>
πi+1β

ρ
i+1 + πiβ

ρ
i

πi+1 + πi

which we can rewrite as(
ci−1t+ 1
ci−1 + 1

)ρ
− cit

ρ + 1
ci + 1

> 0, (4)

where ci = πi/πi+1 as before, and t = βi/βi+1 ∈ [0, 1).
Let F (t) denote the left hand side of (4) (which we are left
to prove). Note that F (0) > 0, because(

1
ci−1 + 1

)ρ
>

1
(2ci−1)ρ

=
1

πρi−1

· 2−ρ·(2ρ)
i−ρ

> 2−ρ·(2ρ)
i−ρ ≥ 2(2ρ)i−(2ρ)i+1

=
1
ci
>

1
ci + 1

Now we let t ∈ (0, 1) and write F (t) = F (0) + tρG(t),
where

G(t) =
1

(ci−1 + 1)ρ

((
ρ

1

)
ci−1

1
t

+
(
ρ

2

)
c2i−1

1
t2

+ · · ·+
(

ρ

ρ− 1

)
cρ−1
i−1

1
tρ−1

)
+

+
((

ci−1

ci−1 + 1

)ρ
− ci
ci−1 + 1

)
.



If G(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are
done. Otherwise, G(t) < 0, in which case it easily follows
that G(1) < G(t) < 0, hence F (t) = F (0) + tρG(t) >
F (0) + G(1) = F (1) = 0, as desired. This concludes the
proof of the lemma.

To prove Theorem 10, assume β̄ = (β0, . . . , βm) ∈ Γ is
optimal. By Lemmas 11 and 12, it follows that β0 ≤ β1 ≤
· · · ≤ βm. Now Lemma 13 implies that β0 = β1 = · · · =
βm, so since β̄ ∈ Γ, we have βi = 1, and hence the minimal
value of f over Γis f (1, 1, . . . , 1) = 1.

This concludes the proof of the Theorem 10.

5 Lower Bounds for High Approximation

In this section, we present an argument why it is difficult
to prove any non-trivial lower bounds for randomized NNS
problems for high approximation. Namely, we show that
the current techniques are not able to prove communication
complexity lower bounds for randomized NNS problems
for an approximation bigger than 3. The approximation fac-
tor of 3 seems to be fundamental here. For approximation
less than 3, we actually know lower bounds for NNS under
`∞, by reduction to the partial match problem.

Our arguments apply to NNS over any metric. Let us
consider a metric M with distance function dM and the
following problem.

Definition 14 (NNS under M). Fix R > 0, α > 0. Sup-
pose Alice is given a point q ∈ M, and Bob is given the
dataset D ⊂ M of size n. Then, in the R-Near Neighbor
Search problem, Alice and Bob compute the following func-
tion N(q,D):

• N(q,D) = 1 if there exists some p ∈ D such that
dM(x, y) ≤ R;

• N(q,D) = 0 if for all p ∈ D, we have that dM(x, t) ≥
αR.

As before, when neither is the case, we set N(x, y) = ?.
In a randomized [a, b]-protocol Π, Alice sends at most a

bits, Bob sends at most b bits, and they produce the correct
answer with probability at least 0.9.

An almost ubiquitous technique to prove a lower bound
for the communication complexity is by applying Yao’s
minimax principle. The principle says that if there ex-
ists a randomized [a, b]-protocol, then for any distribu-
tion µ on M×Mn, there exists some deterministic pro-
tocol Πµ succeeding on 0.9 mass of the distribution µ:
E(q,D)∈µ [Πµ(x, y) = N(x, y)] ≥ 0.9 Thus one just need
to exhibit a “hard” distribution where no deterministic pro-
tocol succeeds. Most candidates for the “hard” distribution
µ are product distributions, namely µ = µq × µD, where

µq and µD are independent distributions on q ∈ M and
D ∈Mn respectively.

Indeed, to the best of our knowledge, all known asym-
metric communication complexity lower bounds are proven
via this approach with product distributions. It seems quite
challenging to prove asymmetric communication complex-
ity lower bounds for distributions that are non-product.

We prove that it is not possible to prove lower bound
for the NNS problem with product distributions when the
approximation is bigger than 3. In fact, the argument ap-
plies even to one-way protocol lower bounds, where one-
way protocols are [a, 0]-protocols in which just Alice sends
a message of length a.

Lemma 15. Consider the problem N for approximation
α. Consider any product distribution µ = µq × µD on
M×Mn, and suppose for any [a, 0]-protocol Π, we have
Eµ [Π(x, y) 6= N(x, y)] < 0.9. Then either α ≤ 3 or
a = O(log n) or there exists (q,D) in the support of µ such
that N(q,D) = ?.

Proof. Assume that α > 3 and that a ≥ C log n for some
big constant C. Let Q be the support of µq and D be
the support of µD. We will prove that there exists some
(q̃, D̃) ∈ Q×D such that N(q̃, D̃) = ?.

We will use a characterization of [KNR99] for one-way
protocols for product distributions to construct q̃, D̃.

First we need to give a definition. Consider the matrix
M of size |Q| × |D| where Mij = N(qi, Dj), where qi
is the ith element of Q in, say, lexicographic order, and
same with Dj . The VC-dimension of M is the maximum
v ∈ N such that there exists Dj1 , . . . Djv ∈ D such that for
any boolean vector z ∈ {0, 1}v , there exist qz ∈ Q with
N(qz, Djk) = zk for all k ∈ [v].

Since a ≥ C log n, the result of [KNR99] implies that
the VC-dimension of the matrixM is at least v ≥ log2 n+2
(choosing C accordingly). Then, take a set of z’s that is
Z ⊂ {1} × {0, 1}v−1 and has size |Z| ≥ n + 1. Sup-
pose Z = {z(1), z(2), . . . , z(n+1)} and let qz1 . . . qzn+1 be
the queries such that, for all i = 1 . . . n + 1, we have that
N(qz(i) , Djk) = z

(i)
k for all k ∈ [v]. In particular, for

D = Dj1 , we have that N(qz, D) = 1, i.e., there exists
pz ∈ D, for each z ∈ Z, such that dM(qz, pz) ≤ R. By
pigeonhole principle, there exists some p ∈ D and distinct
z′, z′′ ∈ Z such that dM(qz′ , p) ≤ R and dM(qz′′ , p) ≤ R.
Thus, by triangle inequality, dM(qz′ , qz′′) ≤ 2R. How-
ever, since z′ 6= z′′, there is some j ∈ {2, . . . v} such that
z′j 6= z′′j . In other words, wlog, dM(qz′ , Dj) ≤ R and
dM(qz′′ , Dj) ≥ αR > 3R. But this is not possible since,
by triangle inequality, dM(qz′′ , Dj) ≤ dM(qz′′ , qz′) +
dM(qz′ , Dj) ≤ 2R+R = 3R — a contradiction.
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A Decision Trees Lower Bound

We formally define what we mean by a decision tree for a
data structure problem (see also [KN97]). Consider a partial
problem F : I → {0, 1} with I ⊂ X × Y , where X is the
set of “queries” and Y is the set of “datasets”.

For y ∈ Y , a decision tree Ty is a complete binary tree
in which:
• each internal node v is labeled with a predicate func-

tion fv : X → {0, 1}. We assume fv comes from
some set F of allowed predicates.

• each edge is labeled with 0 or 1, indicating the answer
to the parent’s predicate.

• each leaf is labeled with 0 or 1, indicating the outcome
of the computation.

Evaluating Ty on x is done by computing the root’s pred-
icate on x, following the corresponding edge, computing the
next node’s predicate, and so on until a leaf is reached. The
label of the leaf is the output, denoted Ty(x).

We let the size s of the tree to be the total number of the
nodes. The depth d of the tree is the longest path from the
root to a leaf. The predicate size is w = dlog2 Fe.

We say that problem F can be solved by a decision tree
of size s, depth d, and predicate size w iff, for any y, there
exists some tree Ty of size at most s, depth at most d, and
node size at most w, such that Ty(x) = F (x, y) whenever
(x, y) ∈ I.

Our result on the decision tree lower bound follows from
the following folklore lemma, which converts an efficient
decision tree solving a problem F into an efficient commu-
nication protocol.



Lemma 16. Consider any (promise) problem F : I →
{0, 1}, where I ⊂ X × Y . Suppose there exists a decision
tree of size s, depth d, and node size w.

If Alice receives x ∈ X and Bob receives y ∈ Y , there
exists a communication protocol solving the problem F , in
which Alice sends a total of a = O(log s) bits and Bob
sends b = O(dw log s) bits.

Proof. Before the protocol, Bob constructs his decision tree
Ty . Suppose, for a moment, that the decision tree is bal-
anced, that is d = O(log s). Then, Alice and Bob can run
the following “ideal” protocol. In round one, Bob sends the
predicate fr of the root r of the decision tree. Alice com-
putes fr(x) (a bit) and sends it back. Then Bob follows
the corresponding edge in the tree, and sends the predicate
of the corresponding child, etc. We obtain communication
a ≤ d and b ≤ w · d.

In general, however, the decision tree TD is not balanced.
In this case, Alice and Bob can simulate a standard binary
search on a tree. Specifically, Bob finds a separator edge
that splits the tree in two components, each of size at least
s/3. Let this separating edge be (u, v). In round one, Alice
and Bob want to detect whether, in the ideal protocol, Alice
would eventually follow the edge (u, v). To determine this,
Bob sends the predicates for all nodes on the path from the
root r to u. Alice evaluates these predicates on x and sends
back a 1 if she would follow the edge (u, v), and 0 other-
wise. Then, the players recurse on the remaining part of the
tree; they are done after O(log s) such rounds.

In the end, Alice sends only a = O(log s) bits, i.e. one
bit per round. Bob sends O(d · w) bits per round, and thus
b = O(dw log s).


