
Learning Polynomials with Neural Networks

Alexandr Andoni
Microsoft Research

Rina Panigrahy
Microsoft Research

Gregory Valiant
Stanford University

Li Zhang
Microsoft Research

September 19, 2017

Abstract

We study the effectiveness of learning low degree polynomials using neural networks by the
gradient descent method. While neural networks have been shown to have great expressive
power, and gradient descent has been widely used in practice for learning neural networks,
few theoretical guarantees are known for such methods. In particular, it is well known that
gradient descent can get stuck at local minima, even for simple classes of target functions. In
this paper, we present several positive theoretical results to support the effectiveness of neural
networks. We focus on two-layer neural networks where the bottom layer is a set of non-linear
hidden nodes, and the top layer node is a linear function, similar to Barron [5]. First we show
that for a randomly initialized neural network with sufficiently many hidden units, the generic
gradient descent algorithm learns any low degree polynomial, assuming we initialize the weights
randomly. Secondly, we show that if we use complex-valued weights (the target function can still
be real), then under suitable conditions, there are no “robust local minima”: the neural network
can always escape a local minimum by performing a random perturbation. This property does
not hold for real-valued weights. Thirdly, we discuss whether sparse polynomials can be learned
with small neural networks, with the size dependent on the sparsity of the target function.

1 Introduction

Neural networks have drawn signification attention from the machine learning community, in part
due to the recent empirical successes (see the surveys Bengio [7, 9]). Neural networks have led to
state-of-the-art systems for crucial applications such as image recognition, speech recognition, nat-
ural language processing, and others; see, e.g., [12, 10, 17]. There are several key concepts that have
been instrumental in the success of learning the neural networks, including gradient descent, parallel
implementations, carefully-designed network structure (e.g., convolutional networks), unsupervised
pre-training (e.g., auto-encoders, RBMs) [11, 14, 8], among others.

With the flurry of empirical successes and anecdotal evidence suggesting (sometimes conflicting)
principles in the design and training of neural networks, there seems to be a need for a more solid
theoretical understanding of neural networks. Perhaps the most natural starting point for such
investigations is the question of when a neural network provably learns a given target function. A
classical result is that, if the target function is linear, the perceptron algorithm will learn it. This
is equivalent to saying that gradient descent on a neural network with a single node (or layer) can
successfully learn a linear function.

1

But what can we prove about gradient descent on networks with more than one layer? In full
generality, this question is nearly hopeless: standard complexity-theoretic results strongly suggest
there are no efficient algorithms for learning arbitrary functions (let alone gradient descent), even
for target functions representable by very low-depth networks (circuits) [3]. Nevertheless, we may
hope to prove concrete results in restricted settings whose structure is reminiscent of the structure
present in practical settings.

In this work, we consider learning bounded degree polynomials by neural networks. Polynomi-
als are an expressive class of functions since they can be used to approximate many “reasonable”
functions, for example, any Lipshitz function can be well-approximated by a bounded degree poly-
nomial (see, e.g., Andoni et al. [2]). We establish provable guarantees for gradient descent on
two-layer neural networks (i.e., networks with one hidden layer of neurons) for learning bounded
degree polynomials. Our main result shows this setting can learn any bounded degree polynomial,
provided the neural network is sufficiently large. Specifically, suppose the target function f is a de-
gree d polynomial over an n-dimensional variable x ∈ Cn, with x distributed according to a product
distribution (for our main results, the distribution can be Gaussian or uniform distributions over
the reals). The two-layer network with m hidden units outputs a function g(x) =

∑m
i=1 αiφ(wi ·x),

where αi ∈ C, wi ∈ Cn are network parameters, and φ is a non-linear activation function (e.g.,
a sigmoid). It has been known [5] that, when m ≈ nd, there exists some choice of parameters
wi, αi so that the network g closely approximates the function f . We show that, in fact, with high
probability, even if the bottom layer (wi’s) is set to be random, there is a choice for top layer (αi’s)
such that the neural network approximates the target function f . Hence, the perceptron algorithm,
when run on only the top layer while keeping the bottom layer fixed, will learn the correct weights
αi.

Learning polynomials. Analyzing gradient descent on the entire network turns out to be
more challenging as, unlike when the bottom layer is fixed, the error function is no longer convex.
We show that even if gradient descent is run on the entire network, i.e. on both top and bottom
layers, the neural network will still find the network parameters αi and wi, for which the network
approximates the target function f . This can be interpreted as saying that the effect of learning the
bottom layer does not negatively affect the overall learning of the target function. Indeed, we show
that the learning of the top layer (αi’s) happens sufficiently fast, in particular before the bottom
layer (wi’s) significantly changes. This insight may be useful in analyzing gradient descent for the
neural networks with multiple layers.

We further explore the landscape of the gradient descent by showing a conceptually compelling,
though incomparable result: we show that for sufficiently large networks, in a large region of the
parameter space, there are no robust local optima. That is, for any point in the parameter space
that satisfies some mild conditions on the weights, with constant probability, a random perturbation
will reduce the error by a non-negligible factor. Hence even when the gradient descent is stuck at
a local minimal, a random perturbation would take it out. Because of the conditions on the
weights of the neural network, we can not use this theorem to conclude that gradient descent plus
random perturbation will always converge to the global optima from any initial neural network
initialization; nevertheless, this provides a rigorous, and conceptually compelling explanation for
why the existence of local optima do not deter the usage of neural networks in practice.

We stress that the random perturbation on the weights is complex-valued but the input can still
be real valued. In contrast, the same “robustness” result does not hold when the random perturba-
tion is strictly real; in this case there are robust local minima such that a random perturbation will

2

increase the error. Intuitively, the complex-valued weights give extra dimensions, and hence nicer
geometry, to the local structure of the space of neural networks, which allows it to escape from a
local minimum. We find this result intriguing and hope it can further motivate the construction of
new types of neural networks.

Learning sparse polynomials. It is natural to ask whether, in the case of a target function
that is “simpler” (e.g., because it can be represented by a small number of hidden units), the
gradient descent can actually learn it more efficiently. “More efficiently” here can mean both: 1)
with a smaller network, 2) at a faster convergence rate. To study this general question, we suggest
the following concrete open problem. Define the sparsity of a polynomial as the number of its
nonzero monomial terms. We know, thanks to Barron [5], a k-sparse degree-d polynomial can be
represented by a neural network with nk · dO(d) hidden nodes, but can gradient descent learn such
a polynomial by a neural network with only (nk · dd)O(1) hidden nodes, and in a similar amount of
time?

We note here we require the target function to be a k-sparse degree-d polynomial, more re-
strictive than requiring the target to be representable by a small network as in Barron [6]. This
might be an easier problem, especially given that recent work has shown that one can indeed learn,
for Gaussian or uniform distribution, any sparse polynomial in nk · dO(d) time [2], albeit via an
algorithm that does not resemble gradient descent. We should emphasize that it is important to
consider well-behaved distribution such as Gaussian or uniform distributions. Otherwise, if we al-
low arbitrary distribution, the sparsity assumption may not be helpful. For example, in the boolean
case (where x is distributed over the boolean cube), this is at least as hard as ”learning parity with
noise” and ”learning juntas” – problems that we suspect do not admit any efficient algorithms and
are even used as cryptographic primitives [1, 15, 13, 4].

While we do not have the answer to this natural but challenging question, we give some indica-
tions why this may indeed be possible. In particular we show that, if the target function depends
only on k � n variables, then the neural network will learn a function that also depends on these
k variables. Additionally, we provide some strong empirical evidence that such small networks are
capable of learning sparse polynomials.

With the recent success of neural networks in practice, there is an increasing demand of insights
and tools for analyzing gradient descent for learning neural networks. Our work represents one
such effort. We note that Saxe et al. [16] is another recent work in this space.

We will only sketch proof ideas in this abstract. The full details can be found in the supple-
mentary material.

2 Preliminaries

We will mostly use complex-valued inputs and network parameters, to simplify the description.
Most results generalize to other distributions.

For a complex number c ∈ C, write c as its conjugate, and define its norm as |c| =
√
cc. For a

matrix (or a vector) P , write P ∗ as the adjoint of P , i.e., (P ∗)ij = Pji.
We denote by C(r) the uniform distribution of complex number with norm exactly r, N(σ2)

the real Gaussian distribution with mean 0 and variance σ2, and U(r) the uniform distribution
on [−r, r]. For a distribution P, denote by Pn the n-fold product distribution. For any given
distribution D and two functions f, g : Cn 7→ C, define the inner product 〈f, g〉D = Ex∼D[f(x)g(x)]
and the norm ‖f‖D =

√
〈f, f〉D =

√
Ex∼D |f(x)|2.

3

Polynomials. For any J = (J1, · · · , Jn) ∈ Nn, write a monomial xJ = xJ11 · · ·xJnn . Define

|J | =
∑

k Jk. For a polynomial p(x) =
∑

J bJx
J where bJ ∈ C, its degree deg(p)

∆
= maxbJ 6=0 |J |.

All the degree d polynomials form an nd-dimensional linear space. For any given distribution D, a
polynomial basis P1, P2, . . . is orthonormal w.r.t. D if 〈Pi, Pj〉D = 1 if i = j and is zero otherwise.

We will use the following basic but important fact that monomials form an orthonormal basis
for D = C(1)n.

Fact 2.1. 〈wJ , wJ ′〉C(r)n = r2|J | if J = J ′ and 0 otherwise.

For Gaussian and uniform distributions, the corresponding orthonormal bases are the Hermite
and Legendre polynomials respectively.

Neural networks. Assume φ : C 7→ C is an analytic function without poles. Write φ(z) =∑
j≥0 ajz

j . For any w ∈ Cn, define φw : Cn 7→ C as

φw(x) = φ

(∑
k

wkxk

)
=
∑
j

aj

(∑
k

wkxk

)j
:=
∑
J

aJw
JxJ . (2.1)

The (two-layer) neural network is defined as a function of the form g(x) =
∑

i αiφ
wi(x). Here

φ is called the activation function, and each φwi — a hidden unit. We refer to αi’s as the “upper
layer” and wi’s as the “lower layer”.

In this paper, we will consider activation functions φ(z) = ez and its truncated version φd(z) =∑d
k=0 z

k/k!, i.e. ez with higher than degree d terms truncated (in this case, we call it a truncated
neural network). While a more common φ is the sigmoid function, the particular form of φ is not
that important as long as it has “good” coverage of all the degrees in its Taylor series (see, for
example, the discussion in Barron [5]), and for analysis convenience, it is defined everywhere on
the complex plane. Our particular choice is just for the sake of a cleaner analysis.

Learning. Here learning is defined to construct the representation of an unknown (or target)
function, from some function family F , by given random samples. In this paper, we focus
on learning low degree polynomials, where the input distribution is drawn from C(1)n. We will
comment when the results can be extended to the other distributions. Learning the neural network
via gradient descent proceeds by minimizing the error ‖f − g‖2D as a function of weights ws and
αs’s of φ. To focus on the main ideas, we will assume that there are enough samples such that
the empirical estimate of gradient is sufficiently accurate. So we will be working with the model
where we do have the access to the gradient.

3 Random Initialization of Neural Network

In this section we prove that any polynomial can be represented using a linear combination of a
sufficient number of hidden units with weights wi initialized randomly. This is a strengthening of
[5], who showed that there exist some weights wi, for which a linear combination of the hidden
units yields a given polynomial. In addition, we show that the weights at the top node has small
norm. Compared to the representability result in Barron [5], we require more units, O(n2d), rather
than O(nd) there.

4

Theorem 3.1. [Representation Theorem] Let φ(z) = ez and the distribution D = C(1)n. For
m ≥ O(n2d/ε2), we choose m random w1, w2, . . . , wm from the distribution C(1/

√
n)n. Then,

with high probability, for any polynomial p of degree d and norm 1, there exist α1, . . . , αm where∑
i |αi|2 = O(n2d/m) such that ‖

∑
i αiφ

wi − p‖D ≤ ε.
The result also holds whenever D is Gaussian distribution N(1), or the uniform distribution

U(1).

To prove the theorem, we consider general φ and D first and then instantiate them by estimating
the relevant parameters. The following is immediate from (2.1) and Fact 2.1.

Observation 3.2. For any x ∈ Cn and any J ∈ Nn, Ew∼C(r)n w
Jφw(x) = aJr

2|J |xJ .

In the following, we will show, constructively, that for the given set of units, how to pick the
top layer weights to approximate any given p. Define for any polynomial p(x) =

∑
J bJx

J , r ≥ 0,
and weight vector w, Tp,r(w) =

∑
J cJ(r)bJw

J , where cJ(r) , 1/(aJr
2|J |). By Observation 3.2, for

any x,
Ew∼C(r)n [Tp,r(w)φw(x)] = p(x) . (3.1)

Hence Tp,r(w)φw is centered around p in the functional space. We can apply standard concen-
tration bound to show that the average over m such terms, with w chosen independently and m
large enough, one can approximate p(x) arbitrarily close. More precisely, suppose that w1, . . . , wm
are sampled from C(r)n. Let η(x) denote the error 1

m

∑m
i=1 Tp,r(w)φwi(x)− p(x). We obtain,

Ew1,...,wm ‖η‖2D ≤
1

m
Ew∼C(r)n |Tp,r(w)|2‖φw‖2D . (3.2)

Let a(d) = min|J |≤d |aJ |, and define ‖p‖1 =
∑

J |bJ |. When w is from C(r)n for r ≤ 1, we have

|Tp,r(w)| ≤
∑
J

|cJ(r)bJw
J | =

∑
J

|bJwJ/(aJr2|J |)|

by deg(p) = d

=
∑
J

|bJ/(aJr|J |)| ≤ 1/(a(d)rd)
∑
J

|bJ |

= ‖p‖1/(a(d)rd) . (3.3)

Denote by βD(d, r) = Ew∼C(r)n ‖φw‖2D/r2d and γD(d) = max‖p‖D=1 ‖p‖1. Plugging (3.3) into
(3.2), we have

Lemma 3.3. Whenever m ≥ γD(d)2βD(d, r)/(εa(d))2, with high probability Ew1,...,wm ‖η‖D ≤ ε for
any p where deg(p) ≤ d and ‖p‖D = 1.

Note that the number of required hidden units is determined by various parameters dependent
on φ and D.

Now consider φ(z) = ez. Then a(d) ≥ 1/d!. Suppose that D = C(1)n. Then βD(d, r) =
O(e2

√
nr/r2d). Taking r = O(1/

√
n), we have βD(d, 1/

√
n) = O(nd). Further, ‖p‖D =

∑
J |bJ |2, so

γD(d) = O(
√
nd). Plugging these parameters into Lemma 3.3, we have m = O(n2d/ε2). In addition

αi = Tp,r(wi)/m, so

m∑
i=1

|αi|2 = 1
m2

m∑
i=1

|Tp,r(wi)|2 ≤
‖p‖21

ma(d)r2d
= O(n2d/m) .

5

The same bounds can be derived for the distributions such as standard Gaussian distribution
in Rn and the uniform distribution in [0, 1]n. This proves Theorem 3.1.

4 Gradient Descent for Polynomials

In this section we show that gradient descent on a two-layer neural network can learn a polynomial
function, given enough hidden units and small enough learning rate. The statement relies on the
fact that the weights have been initialized randomly. The formal statement is in Theorem 4.2.

First we prove a warm up (simpler) statement: if we run gradient descent only in the upper
layer (and leave intact the weights in the lower layer), then the gradient descent will converge to
a network approximating the polynomial up to a small error. We use the representation theorem
from the previous section. In this simpler statement, we also assume that we have access to the
exact value of the gradient.

Then we show a more general statement, which reaches the same conclusion even if we run the
generic gradient descent (i.e., on the entire network), assuming that the number of hidden units is
sufficiently large. The main intuition behind the result is that the top-layer weights converge to a
good state (as in the simplified theorem) before the modifications in the lower layer change enough
to affect the overall representability. In particular, one step of a gradient descent will update the
weights αi of all the hidden units at once. Hence the “total speed” of convergence of weights αi is
essentially proportional to the number of hidden units, whereas the speed of change of each wi is
not. Once we have enough hidden units, namely nO(d), the speed of convergence of αi is sufficiently
high to overtake the changes to the weight wi of any particular hidden unit.

Theorem 4.1. Fix some degree-d polynomial f of norm 1, and desired error ε > 0. Consider
a two-layer neural network with m = Ω(n2d/ε2) hidden units. We initialize the αi’s such that
‖α‖ ≤ 1 (e.g., α = 0 would do), and choose the weights wi randomly from C(1/

√
n)n. Consider the

algorithm where we run the gradient descent on the weights in the upper layer (keeping weights in
lower layer fixed), with access to exact gradient. Then, for a learning rate λ < 1/m, the algorithm

will converge to a network g such that ‖g − f‖ ≤ ε in O
(

n2d

λε2m

)
steps.

Proof. As in preliminaries, g denotes the function produced by the neural network: g(x) =∑m
i=1 αiφ(wti · x). Abusing notation, we will think of all functions in the base of monomials xJ .

In particular, g in the function space is a sum of m vectors p1 . . . pm, where pi = φwi depends on
vector wi: g =

∑m
i=1 αipi.

The gradient descent minimizes the quantity E = 〈e, e〉 = e∗ ·e, for the error function e = f −g.
We would like to take gradient with respect to αi, but E is not analytic with respect to e. Instead
we rely on Wirtinger calculus, and consider the following gradient:1(

∂e
∂αi

)∗
· e = −pi∗e = −〈pi, e〉.

In one step of the gradient descent the new function g′ is

g′ =
∑
i

pi · (αi + λ〈pi, e〉),

1We essentially consider the variables and their conjugates as independent variables, and then take derivative with
respect to α∗i .

6

and the new error function:

e′ = f − g′ = e− λ
∑
i

pi〈pi, e〉 =

(
I − λ

∑
i

pip
∗
i

)
e,

where I is the identity matrix. Let P be the matrix whose columns are pi’s. Then
∑

i pip
∗
i = PP ∗.

After l iterations of the gradient descent, the error is

e(l) = (I − λPP ∗)le(0),

where e(0) is the starting error function.
We apply the representation Theorem 3.1 to e(0) to obtain e(0) = x + r, where ‖r‖ ≤ ε, and x

can be expressed as x =
∑

i aipi, with ‖a‖2 ≤ O(n2d/m) for a , (a1, . . . am)t. Note that x = Pa.
Then we can rewrite the above as:

e(l) = (I − λPP ∗)l(r + Pa) = (I − λPP ∗)lr + (I − λPP ∗)lPa.

Let’s see what happens after one iteration to the second term: (I − λPP ∗)Pa = Pa− λPP ∗Pa =
P (I − λP ∗P)a. Hence, (I − λPP ∗)lPa = P (I − λP ∗P)la.

Let a(l) , (I − λP ∗P)la, i.e., e(l) = Pa(l). Suppose ‖Pa(l)‖ ≥ ε. Then, we have that

‖a(l+1)‖2 = (a(l+1))∗a(l+1)

= ((I − λP ∗P)a(l))∗(I − λP ∗P)a(l)

= ‖a(l)‖2 − 2λ‖Pa(l)‖2 + λ2‖P ∗Pa(l)‖2. (4.1)

As we have that ‖P‖ ≤
√
m and λ‖P‖2 ≤ 1, we conclude that ‖a(l+1)‖2 ≤ ‖a(l)‖2−λ‖Pa(l)‖2 ≤

‖a(l)‖2 − λε2.

Finally, note that we can have at most ‖a
(0)‖2
λε2

steps, as ‖a(l)‖ ≥ 0 always. Thus, after that

many steps, we must have that ‖Pa(l)‖ ≤ ε, and hence ‖e(l)‖ ≤ ‖r‖+ ‖Pa(l)‖ ≤ 2ε. Since ‖a(0)‖2 ≤
O(n2d/m), we obtain a total of O

(
n2d

ε2λm

)
steps.

We now continue to our main result, which shows that the gradient descent on the entire network
will converge as well, given enough hidden units and small enough learning rate. The proof of the
theorem appears in the supplementary material.

Theorem 4.2 (General gradient descent). Fix target error ε > 0 and degree d ≥ 1. Suppose the
weights α are initialized to zero and wi’s are random C(1/

√
n)n. Assume the number of hidden

units is m = Ω(n6d/ε3) and the learning rate is λ ≤ 1/4m. Then, given a degree-d polynomial f(x)
of unit norm, the gradient descent will converge to a net, which approximates f up to error ε. The

number of steps required is O
(

n2d

λε2m

)
, and the number of samples required is M = mO(1).

5 Random Perturbation at Local Minima

The results of the previous section show that for a sufficiently large neural network, with high
probability over the random initialization of the weights, the gradient descent will learn a degree
d polynomial. In this section, we prove a conceptually compelling, though incomparable result:

7

we show that for sufficiently large networks, in a large region of the parameter space, while there
may exist local minima, there are no robust local minima. That is, for any point in the specified
parameter space, as long as the error is not vanishingly small, with constant probability a random
perturbation will reduce the error by at least 1/nO(d) factor (see Theorem 5.1). Because of the
conditions on the parameters, we can not use this theorem to conclude that gradient descent will
always converge to the global optima from any initial neural network initialization. Nevertheless,
this provides a rigorous explanation for why local optima may not be so damaging for neural
networks in practice. Furthermore, this perspective may prove useful for going beyond the results
of the previous section, for example for addressing the harder questions posed in the later Section 6.

We stress that this result relies crucially on the fact that we allow complex valued weights. In
fact we also show such a result is not true when the weights are real-valued.

We now state the main result of this section. Define the fourth-norm ‖α‖4 = (
∑

i |αi|4)1/4.

Theorem 5.1. There exist constant c1, c2, c3, c4 > 0 such that for a truncated neural network g =∑
i αiφ

wi
d where m = Ω(nc1d), ‖wi‖ = O(log n), and ‖α‖4 = O(‖α‖/nc2d), if ‖e‖D = Ω(‖α‖nc3d),

then a perturbation of each wsj drawn from C(1/
√
n) reduces the total error by a factor of at least

1 + 1/nc4d, with constant probability.

Note that by Theorem 3.1, when m is large enough, m = nΩ(d), the conditions in the theorem
can all be met.

We first sketch the proof idea. Under a given distribution D, for a target function f and a
neural network g, consider the error function ‖e‖2D = ‖g − f‖2D. For a local perturbation g + ∆g
of g, ‖g + ∆g − f‖2D = ‖e‖2D + 2 Re(〈∆g, e〉D) + ‖∆g‖2D. Hence the change in error is ∆‖e‖2D =
2 Re(〈∆g, e〉D) +‖∆g‖2D. We shall show that, with constant probability, the linear term is negative
and overwhelms the quadratic term if the perturbation is sufficiently small. The proof consists of
two steps. First we consider a single hidden unit. We show that a local perturbation can create
non-negligible correlation with any bounded degree polynomial. Secondly we show that, by the
anti-concentration inequality2, when we perturb many hidden units independently, the aggregated
correlation is still large and, when the number of hidden units is large enough, exceeds the quadratic
term, which can be bounded by the standard concentration bound.

Our claim applies when the error function e = g− f has bounded degree d, which is the reason
the result applies to networks with a truncated activation function φd where φd(z) =

∑
0≤j≤d ajz

j .
For the simplicity of notation, we will simply write it as φ(z).

Here it is important that w is complex. The distribution D on x can be over the reals, for
example, D can be standard Gaussian distribution N(1)n in Rn or the uniform distribution U(1)n

over [−1, 1]n. We first show our statement for D = C(1)n. Then we extend it to the case when
D = N(1)n or U(1)n. We will only sketch the main steps of proofs in this section.

We give further details of the proof; the missing proofs are in the supplementary material.

5.1 Random perturbation of one hidden unit

We first show that for a single hidden unit, a random perturbation will create large correlation
with any bounded degree polynomial. Recall that φw(x) =

∑
J aJw

JxJ , and a(d) = min|J |≤d |aJ |.
For x ∈ Cn, we define ‖x‖∞ = maxj |xj |. We denote by ∆δφ

w = φw+δ − φw as the perturbation of
a hidden unit φw by δ. We have

2This is where we need the condition on ‖α‖4.

8

Theorem 5.2. For any x ∈ Cn, Eδ∈C(r)n [∆δφ
w(x)] = 0. For any η such that deg(η) ≤ d, and

‖η‖D ≥ 1, we have that for any 0 < r ≤ 1 and ‖w‖∞ ≤ rL,

Eδ∈C(r)n
[
Re(〈∆δφ

w, η〉D)2
]

= Ω
(

r2da(d)2

nd(L+1)2d

)
.

Proof sketch. Clearly for any x, ∆δφ
w(x) can be written as a polynomial in δ without constant

term. By Fact 2.1, Eδ∈C(r)n [∆δφ
w(x)] = 0. This implies that Eδ∈C(r)n [〈∆δφ

w, η〉D] = 0,
Write B(w) = 〈φw, η〉D. As η is a polynomial with degree d, so is B(w). By the above, we have

Eδ∈C(r)n [B(w + δ)] = B(w) . (5.1)

We lower bound Eδ∈C(r)n [|B(w + δ) − B(w)|2] as follows. We first show the case when w = 0.
Then we apply the “shifting” lemma (Lemma 5.4) to complete the proof.

Lemma 5.3. For 0 ≤ r ≤ 1, Eδ∈C(r)n [|B(δ)−B(0)|2] ≥ r2da(d)2.

Lemma 5.4. Suppose that f is a degree d polynomial on n variables. Let v = (v1, . . . , vn) such
that ‖v‖∞ ≤ L. Let fv(x) = f(v + x). Then ‖fv‖2 ≤ nd(L+ 1)2d‖f‖2.

By the above two lemmas, we can show that

Eδ∈C(r)n [|〈∆δφ
w, η〉D|

2] = Ω
(
r2da(d)2/(nd(L+ 1)2d)

)
,

and further transfer this bound to (Re 〈∆δφ
w, η〉D)2, to complete the proof.

We note that the above theorem holds for large range of r and w. But to suppress the second
order term, we will only need the theorem in the range where r = O(1/

√
n) and ‖w‖ = O(log n).

5.2 Random perturbation of many hidden units

Now consider a neural network g(x) =
∑m

i=1 αiφ
wi(x), where each ‖wi‖ = O(log n). Let g′(x) =∑m

i=1 αiφ
wi+δi(x), where each δi is i.i.d. from C(1/

√
n)n.

‖e′‖2D − ‖e‖2D = ‖(g′ − g) + e‖2D − ‖e‖2D
= ‖g′ − g‖2D + 2 Re(〈g′ − g, e〉D) . (5.2)

First consider ‖g′− g‖2D = ‖
∑m

i=1 αi∆δiφ
wi‖2D. We can view ∆δφ

w as a vector in the functional
space, so each ∆δiφ

wi is a random vector. We have shown that Eδi [∆δiφ
wi] = 0, and for ‖wi‖ =

O(log n) and r = O(1/
√
n), Eδi∼C(r)n ‖∆δiφ

wi‖2D = O(nO(1)). Since ∆δiφ
wi ’s are independent, by

standard concentration bound, with high probability

‖g′ − g‖2D = O(nO(1)‖α‖2) . (5.3)

For the linear term Re(〈g′ − g, e〉D), by using Theorem 5.2 and anti-concentration inequality,
we can show that when ‖α‖4 ≤ ‖α‖/ncd, with constant probability, say 1/4,

Re(〈g′ − g, e〉D) = −Ω(‖α‖‖e‖D/nO(d)) . (5.4)

Combining (5.2,5.3,5.4), we have whenever ‖α‖4 ≤ ncd‖α‖ and ‖α‖ ≤ ‖e‖D/nO(d), we have
that ‖e′‖2D ≤ ‖e‖2D − ‖α‖‖e‖D/nO(d) with constant probability. Hence, we have proved the main
theorem.

9

5.3 Extension to distributions on reals

The above proof can also be extended to the case where the x is not complex but chosen from a
Gaussian distribution N(1)n in Rn or uniform distribution U(1)n on [−1, 1]n. This follows from
the following observation that relates the norm of a polynomial under different distributions.

Observation 5.5. Let P (x) be a degree d polynomial. Then ‖P‖D = Ω(1/dd/2)‖P‖C(1)n and

O(dd/2‖P‖C(1)n), where D = N(1)n or U(1)n.

The above observation implies that if we replace C(1)n by N(1)n or U(1)n, the bound in
Theorem 5.2 is only affected by a factor dependent on d only (dd or 2d). Since we assume d to be
constant, we have:

Corollary 5.6. The same statement in Theorem 5.1 holds when D = N(1)n or D = U(1)n.

5.4 Robust local minima for real weights

The perturbation theorem 5.1 uses random perturbation in the complex plane to escape a local
minimum. It is natural to ask whether real-valued perturbation would be sufficient instead. We
show that this is not the case: there are examples, where a real-valued perturbation does not
improve the error. This suggest that using complex perturbations may be useful.

Lemma 5.7. Consider a network with activation function φ(z) =
∑d

l=0 alz
l, where al ≥ 0, on a

neural network with one layer of hidden units, with real weights; the input distribution is x ∈ U(1)n.
There exist a set of network parameters where the gradient is zero and a random perturbation on
the weights {wi}i goes in the direction away from the target function, i.e., ‖e′‖D > ‖e‖D with high
probability.

Proof. We will give a construction of a set of parameters, which are a local minimum for the gradient
descent, and a real-valued random perturbation of weights is expected to increase the error. This
point is where all hidden units have identical weights wi = 0 and αi = 1/m (for m hidden units),
so that

∑
αi = 1.

We show why local perturbation does not reduce error, except with a very small probability. Let
δi be the perturbation in weight wi; for concreteness, suppose each perturbation is uniform from
[−λ, λ] for some λ� 1/m. Let ∆g = g′− g denote the change in the output function of the neural
net. We argue that Eδi [∆g] is non-zero. Note that the change ∆g can be written as a polynomial
in the change in the weights δij . Fix one particular hidden unit i, and fixed j ∈ [n], and consider
the term corresponding to second Legendre polynomial in xj , L2(xj) (remember that the Legendre
polynomials are the basis for our input distribution, so we are considering one “coordinate” in the
polynomial basis). We claim that its coefficient is positive: in fact it is a (positive) combination of
even powers of δi,j′ for all j′ ∈ [n]. In particular, say in a term al(δix)l, we have contribution to
L2(xj) only from terms of the form δJxJ , where vector J is even (any other term has correlation
0 with L2(xj)).

We can now choose e = g − f so that 〈e,∆g〉 is positive by choosing f(x) = g(0)−
∑

j L2(xj).
Then the change in 〈e, e〉 is: ∆〈e, e〉 = 〈e′, e′〉 − 〈e, e〉 = 2〈e,∆g〉 + 〈∆g,∆g〉. The error strictly
increases with probability 1. It is also clear why the gradient is zero: ∂g

∂wij
, when all wi = 0, is

composed only of a linear in x terms, whereas e = g − f is has no constant or linear terms.

We remark that the above holds even if we perform a small random perturbation on the weights
αi as well (it suffices that αi and perturbed versions remain positive).

10

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

Iteration

T
ra

in
in

g
 E

rr
o

r
Learning n−Sparse Quadratic Polynomials Over n Variables

n=10

n=20

n=40

n=80

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

Iteration

T
ra

in
in

g
 E

rr
o
r

Learning n−Sparse Cubic Polynomials Over n Variables

n=10

n=20

n=40

n=80

Figure 1: In the above plots the neural networks had 5n hidden units, and the polynomials were
chosen by selecting each of the n monomials uniformly at random from the O(n2) (in the quadratic
case), or O(n3) (in the cubic case) possible monomials.

6 Learning sparse polynomials

In this section we study whether smaller neural networks are sufficient for learning sparse polyno-
mials (containing few monomials). As an intermediary step towards this goal, we will also consider
the setting where the polynomial only depends on a small subset of the n variables (and hence is
also sparse). These questions can be viewed as clean and potentially theoretically tractable special
cases of the general question of understanding the relation between the representation complexity
and the learning complexity of neural networks for some given class of functions.

6.1 Learning n-sparse polynomials

Can a neural network with O(n) hidden units learn a quadratic or cubic polynomial that has
≈ n monomials? We provide strong empirical evidence (see Fig. 1) suggesting that, for the case
of n-sparse polynomials over n variables, a neural network with O(n) hidden units can learn the
function. We train the net using 5n hidden units while varying n through the values 10, 20, 40, and
80. The polynomial is constructed using randomly chosen n monomials. The plots show that the
training error drops significantly after a reasonable number of iterations that depends on n.

6.2 Learning polynomials over few variables

As an intermediary step towards the sparse polynomial case, we investigate whether a small neural
network suffices to learn a sparse polynomial which also depends only on k variables. Here, a
simpler goal may be to prove that gradient descent learns the polynomial using only kO(d) hidden
units instead of nO(d). We are unable to prove this but provide some evidence in this direction.
First we show (Lemma 6.1) that assuming x ∈ C(1)n, at the termination of the gradient descent,
the final function output by the net will depend on the k relevant variables only. We show a similar
result for the (more realistic) case where x ∈ N(1)n, for a specific transfer function ψ, built using
Hermite polynomials. We will use HJ(x) to denote the Hermite polynomial over x corresponding
to a vector J of degrees in the n variables in x. (Some details are deferred to full version.)

Lemma 6.1. If x ∈ C(1)n and the target function f does not depend on a variable xi, then:
whenever the gradient descent converges to a point with zero gradient, the output g does not depend

11

on xi. This also holds for the input distribution x ∈ N(1)n, provided one uses a special activation
function ψw(x) =

∑
J aJHJx

JwJ .

Proof. The main idea is that if a variable, say x1, is not used in f , then the error e can be written as
a sum of two polynomials, one that does not involve x1 and another that has x1 in every monomial
and these two are orthonormal.

Let e = f − g = f −
∑

s αiψ(wi · x). By expanding the polynomial ψ and gathering terms that
are dependent on x1 and others we get e = q(x2, x3, .., xn) + h(x) where h(x) =

∑
i αi

∑
J cJw

J
i x

J

where each J has non zero degree in x1 (that is J1 is non zero) and q does not depend on either x1

(or its weights wi,1). All we need to show that
∑

i |〈
∂e

∂wi,1
, e〉|2 is non-zero. So the partial derivative

of the error with respect to wi,1 is

∂e
∂wi,1

= ∂
∂wi,1

(
∑
l

αl
∑
J

cJw
J
kx

J) = αi
∑
J

cJJ1w
J
i x

J/wi,1 .

Therefore ∑
i

wi,1
∂e

∂wi,1
=
∑
i

αi
∑
J

cJJ1w
J
i x

J =
∑
J

J1

∑
i

αicJw
J
i x

J

and hence

〈
∑
i

wi,1
∂e

∂wi,1
, e〉

= 〈
∑
J

J1(
∑
i

αicJw
J
i)xJ ,

∑
J

(
∑
i

αicJw
J
i)xJ〉

=
∑
J

J1|
∑
i

αicJw
J |2 ,

which must be non-zero as h =
∑

i αi
∑

J cJw
J
i x

J =
∑

J(
∑

i αicJw
J
i)xJ is non-zero (each J1 is

non-zero).
This means that

∑
iwi,1〈

∂
∂wi,1

e, e〉 is non-zero. Thus at least one of the 〈 ∂
∂wi,1

e, e〉 is non-zero,

which means that the gradient descent has not converged yet.
A similar proof works for the case when x is real and we instead use a modified polynomial ψ

where each monomial is replaced by a Hermite polynomial. The proof is based on the orthonormality
of these polynomials over N(1)n.

Further we point out that neural networks are able to learn polynomials based on their best
possible sparsity under any orthonormal transform; i.e., the notion of sparsity is independent of
the chosen coordinate system. This is because the neural net works with dot products of the input
point.

Observation 6.2. If a neural network can learn a k-sparse polynomial in time T (k, d, n), then it
can learn also learn any polynomial that is k-sparse under any orthonormal transform in the same
time complexity.

Proof. This follows from the rotational invariance of the gradient descent process when g is a
function of wti .x over the different hidden units i. That is rotating the coordinate system does not
change the gradient descent process.

12

In order to show the gradient descent succeeds with kO(d) units, we need to assume a “High-
Rank Condition” (a variant of the condition in Theorem 3.1) for similar analysis to Section 4 to
hold. But we are currently unable to prove the “high-rank condition” and leave it as an open
question.

References

[1] Alekhnovich, Michael. More on average case vs approximation complexity. In Proceedings of
the Symposium on Foundations of Computer Science (FOCS), 2003.

[2] Andoni, Alexandr, Panigrahy, Rina, Valiant, Gregory, and Zhang, Li. Learning sparse polyno-
mial functions. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
2014.

[3] Applebaum, Benny, Ishai, Yuval, and Kushilevitz, Eyal. Cryptography in ncˆ0. SIAM Journal
on Computing, 36(4):845–888, 2006.

[4] Applebaum, Benny, Barak, Boaz, and Wigderson, Avi. Public-key cryptosystem from different
assumptions. In Proceedings of the Symposium on Theory of Computing (STOC), 2010.

[5] Barron, Andrew R. Universal approximation bounds for superpositions of a sigmoidal function.
IEEE Transactions on Information Theory, 39(3):930–945, 1993.

[6] Barron, Andrew R. Approximation and estimation bounds for artificial neural networks. Ma-
chine Learning, 14:115–133, 1994.

[7] Bengio, Y. Learning deep architectures for ai. Foundations and Trends in Machine Learning,
2009.

[8] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy layer-wise training of deep
networks. In NIPS, 2007.

[9] Bengio, Yoshua. Deep learning of representations: Looking forward. arXiv preprint
arXiv:1305.0445, 2013.

[10] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. Maxout networks.
In ICML, 2013.

[11] Hinton, G. E., Osinderoand, S., and Teh, Y. A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527–1554, 2006.

[12] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional
neural networks. In NIPS, 2012.

[13] Peikert, Chris. Public-key cryptosystems from the worst-case shortest vector problem. In
Proceedings of the Symposium on Theory of Computing (STOC), 2009.

[14] Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. Efficient learning of sparse representa-
tions with an energy-based model. NIPS, 2006.

13

[15] Regev, Oded. On lattices, learning with errors, random linear codes, and cryptography. In
STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pp. 84–93, New York, NY, USA, 2005. ACM. ISBN 1-58113-960-8. doi: http://doi.acm.org/
10.1145/1060590.1060603.

[16] Saxe, Andrew M, McClelland, James L, and Ganguli, Surya. Dynamics of learning in deep
linear neural networks. NIPS Workshop on Deep Learning, 2013.

[17] Wan, Li, Zeiler, Matthew, Zhang, Sixin, LeCun, Yann, and Fergus, Rob. Regularization of
neural networks using dropconnect. In ICML, 2013.

14

A Derivation of (3.2)

Ew1,...,wm ‖η‖2D

= Ew1,...,wm

Ex∼D

∣∣∣∣∣ 1

m

m∑
i=1

Tp,r(wi)φ
wi(x)− p(x)

∣∣∣∣∣
2


= Ex∼D

Ew1,...,wm

∣∣∣∣∣ 1

m

m∑
i=1

Tp,r(wi)φ
wi(x)− p(x)

∣∣∣∣∣
2


by indepence of wi’s and 3.1

= Ex∼D

[
1

m
Ew∼C(r)n |Tp,r(w)φw(x)− p(x)|2

]
=

1

m
Ex∼D

[
Ew∼C(r)n |Tp,r(w)φw(x)|2 − |p(x)|2

]
by (3.1)

≤ 1

m
Ex∼D

[
Ew∼C(r)n |Tp,r(w)φw(x)|2

]
=

1

m
Ew∼C(r)n |Tp,r(w)|2‖φw‖2D . (A.1)

Let a(d) = min|J |≤d |aJ |, and define ‖p‖1 =
∑

J |bJ |. When w is from C(r)n for r ≤ 1, we have

B Missing Proofs from Section 4.2

Proof of Theorem 4.2. First we estimate the change in parameters in a gradient descent step. Note
that all estimate are now approximate because we do not have the precise gradient. Let ξv be the
error from sampling for a network parameter v; we bound these later.

Define δi,j be the derivate of pi with respect to wij ; this vector is a function of wi. Then we
have that the Wirtinger derivate of the error is:(

∂e

∂wij

)∗
· e = −(αiδi,j)

∗ · e.

Hence, one step of gradient descent updates weight vector as w′ij = wij +λα∗i (δi,j)
∗ · e+λξwij . This

gives a new vector

p′i = pi + λα∗i
∑
j

δ′i,jδ
∗
i,j · e+ λ

∑
j

δ′i,jξwi,j ,

where δ′i,j is the derivate of pi wrt wij at some value [wij , w
′
ij] for each coordinate. Let ∆i =∑

j δ
′
i,jδ
∗
i,j ; then p′i = pi + λα∗i∆ie+ λξpi , where ξpi =

∑
j δ
′
i,jξwi,j .

Claim B.1. We have that ‖δi,j‖, ‖δ′i,j‖ ≤ ‖pi‖, and therefore

‖∆i‖ ≤
√
n · ‖pi‖.

Proof. We have that ‖∆i‖2 is at most n times the max square-norm of δi,j(wi) where max is over
all j and vectors wi. Note that δi,j(wi), at any evaluation point wi, satisfies

‖δi,j(wi)‖2 =

∫ ∣∣∣∣ ∂

∂wi,j
φ(wtix)

∣∣∣∣2 dx ≤ ‖φ(wtix)‖2 ·max
y∈C

∣∣∣∣ d

dy
φ(y) · 1

φ(y)

∣∣∣∣2 = ‖pi‖2

15

for φ(y) = ey.

We will write the new matrix P ′ as P + λΥ, where Υ is composed of column vectors {α∗i∆ie+
ξpi}i.

We now plug these derivations into the time dynamics of the gradient descent. Let the su-
perscript (l) denote variables at the end of round l; e.g., P (l) is the matrix P after round l:
P (l) = P (l−1) + λΥ(l).

Overall, we have that:

e(l+1) = e(l) − λP (l)(P (l))∗e(l) − λP (l)ξ(l+1)
α − λα(l+1)Υ(l+1)

where α
(l+1)
i = α

(l)
i +λ〈p(l)

i , e
(l)〉+λξ(l+1)

αi . To simplify the expressions, define Ψ(l+1) , −λ(P (l)ξ
(l+1)
α +

α(l+1)Υ(l+1)).
We obtain:

e(l+1) =
(
I − λP (l)(P (l))∗

)
e(l) + λΨ(l+1). (B.1)

Again, suppose we decompose e(0) = z + r(0), where r(0) has norm ε, and z is expressed as

z =
∑

i a
(0)
i p

(0)
i , for ‖a(0)‖22 ≤ O(n2d/m), by the representation Theorem 3.1. For general time step

l, we would like to decompose
e(l) = P (l)a(l) + r(l),

where
a(l) ,

(
I − λ(P (l−1))∗P (l−1)

)
a(l−1).

Indeed, rewriting Eqn. B.1. we have

e(l+1) =
(
I − λP (l)(P (l))∗

)
P (l)a(l) +

(
I − λP (l)(P (l))∗

)
r(l) + λΨ(l+1).

Since P (l+1) = P (l) + λΥ(l+1), we thus have:

e(l+1) =P (l+1)
(
I − λ(P (l))∗P (l)

)
a(l) (B.2)

+ (λ2Υ(l+1)(P (l))∗P (l) − λΥ(l+1))a(l) (B.3)

+
(
I − λP (l)(P (l))∗

)
r(l) + λΨ(l+1). (B.4)

which is of the promised form
e(l+1) = P (l+1)a(l+1) + r(l+1),

if we define

r(l+1) , (λ2Υ(l+1)(P (l))∗P (l) − λΥ(l+1))a(l) +
(
I − λP (l)(P (l))∗

)
r(l) + λΨ(l+1). (B.5)

It remains to bound the norm of each term of the equation Eqn. B.2. We will prove the bound
by induction on the number of levels l. Note that there are a few quantities to keep track of:
α, a, P, r, wi. The initial conditions are:

• ‖α(0)‖ ≤ 1;

• ‖a(0)‖2 ≤ O(n2d/m);

16

• ‖w0‖ = 1, and ‖P (0)‖ ≤
√
m;

• ‖r(0)‖ ≤ ε

We prove by induction that, conditioned on ‖P (i)a(i)‖ ≥ ε for i < l, and for l ≤ O(n2d

mε2λ
):

• ‖α(l)‖ ≤ 1 + l ·O(λ
√
mnd), and hence ‖α(l)‖ ≤ 1 +O(n3d

ε2
√
m

) ≤ O(1/ε2);

• ‖a(l)‖2 ≤ O(n2d/m) − lλ · ε2 (this is the main “progress” quantity), hence also ‖e(l)‖ ≤
‖P (l)‖ · ‖a(l)‖ ≤ O(nd);

• ‖w(l)
i ‖ ≤ 1 + λl, and hence ‖P (l)‖ ≤ 2

√
m;

• ‖r(l)‖ ≤ ε+ l · λ ·O(n/ε3); therefore, ‖r(l)‖ ≤ 2ε.

We now prove the inductive step. The bound on α(l) is immediate as α
(l+1)
i = α

(l)
i +λ〈p(l)

i , e
(l)〉+

λξ
(l+1)
α for each i ∈ [m]. Also, ‖w(l+1)

i ‖ ≤ ‖w(l)
i ‖+ λ(‖α‖‖pi‖‖e‖+ ‖ξwi,j‖) ≤ 1 + lλO(

√
n). We use

strong upper bound on ξ errors in below (see proof of Lemma B.2).
The bound on a(l+1) follows from the definition of a(l) and that ‖P (l)a(l)‖ ≥ ε. Namely, as in

the weaker theorem proof, we have:

‖a(l+1)‖2 = ‖a(l)‖2 − 2λ‖P (l)a(l)‖2 + λ2‖(P (l))∗P (l)a(l)‖2. (B.6)

Thus, ‖a(l+1)‖2 ≤ ‖a(l)‖2 − λε2 as long as λ‖(P (l))∗P (l)a(l)‖2 ≤ ‖P (l)a(l)‖2, which is satisfied if
λm ≤ 1/4.

The final part is to bound the residual r(l+1), defined in Eqn. B.5:

‖r(l+1)‖ ≤ (λ2‖Υ(l+1)‖‖P (l)‖2 + λ‖Υ(l+1)‖)‖a(l)‖+ (‖I − λ(P (l))∗P (l)‖)‖r(l)‖+ λ‖Ψ(l+1)‖,

or, simplifying given the bounds on P (l), λ and ‖a(l)‖:

‖r(l+1)‖ ≤ ‖r(l)‖+ (2λ‖Υ(l+1)‖) ·O(nd/
√
m) + λ‖Ψ(l+1)‖, (B.7)

It remains to bound spectral norms of Υ(l+1) and Ψ(l+1). For this, we also need to bound the
value of ξv for each variable v. We will prove the following lemma:

Lemma B.2. For each variable v ∈ {Υ(l+1),Ψ(l+1)}, we have that, given M = mO(1) samples

‖ξv‖ ≤ ‖v − ξv‖.

We will prove this lemma later, and for now complete the proof of the theorem:

‖Υ(l+1)‖ ≤ 2‖α(l)‖ ·max
i
‖∆(l)

i ‖ · ‖e
(l)‖ ≤ O(1)

ε2
· n ·O(nd) (B.8)

and
‖Ψ(l+1)‖ ≤ 2‖α(l)‖‖α(l+1)‖ ·max

i
‖∆(l)

i ‖ ≤
O(1)
ε4
· n. (B.9)

Plugging this into the bound on r(l+1), namely Eqn. (B.7), we obtain:

‖r(l+1)‖ ≤ ‖r(l)‖+ λ ·O(nd
√
m

) ·
(
nd+1/ε2

)
+ λ ·O(εn/ε4)

≤ r(0) + (l + 1)λ ·O(n/ε3).

17

This finishes the proof of the inductive hypothesis. Again, in at most l ≤ O
(

n2d

λε2m

)
steps, we

must have that ‖P (l)a(l)‖ ≤ ε (otherwise norm ‖a(l)‖ would become negative — an impossibility).
In this case, we have that

‖e(l)‖ ≤ ‖P (l)a(l)‖+ ‖r(l)‖,

which, by the above, is at most ‖e(l)‖ ≤ ε+2ε = 3ε. Rescaling ε completes the proof of the theorem.
It remains to prove Lemma B.2.

Proof. Proof of Lemma B.2 We prove concentration bounds, using the following Bernstein inequal-
ity: for any set of iid random variables X1, . . . XM , bounded by B, we have that Pr[1

M

∑
Xi > t] ≤

exp[− Mt2/2
E[X2

i]+Bt
].

Now consider a one-dimensional variable u = αi, and du = (∂e∂u)∗ · e. We need to bound

the max value of du. First, note that φ(wix) ≤ e‖wix‖. For a random vector x ∈ C(1)n, we
have that ‖wx‖ ≤ ‖w‖ · O(

√
log nd) = O(

√
log nd) with probability at least 1 − m−Ω(1). Hence

φ(wix) ≤ eO(
√
d logn) with high probability. Hence, it’s not hard to see that |du| ≤ n2d with high

probability. The second moment is then bounded by |du|2.
Hence ξαi is upper bounded by 1/n2d with probability at least 1−m−Ω(1). Same can be proven

for each ξwi,j . Hence ‖ξpi‖ ≤ 2nmaxj ξwi,j ≤ 2n/n2d. Finally, bounds on ‖ξΥ(l+1)‖ and ‖ξΨ(l+1)‖
follow from straight-forward calculations.

We note that we need to apply a union bound over all possible parameters of the network in
advance. Since there are only O(mn) parameters, oversampling by a factor of O(mn) suffices.

C Missing proofs from Section 5

C.1 Random perturbation of one hidden unit

We first show that for a single hidden unit, a random perturbation will create large correlation
with any bounded degree polynomial. Recall that φw(x) =

∑
J aJw

JxJ , and a(d) = min|J |≤d |aJ |.
For x ∈ Cn, we define ‖x‖∞ = maxj |xj |. We denote by ∆δφ

w = φw+δ − φw as the perturbation of
a hidden unit φw by δ. We prove Theorem 5.2.

Proof of Theorem 5.2. Clearly for any x, ∆δφ
w(x) can be written as a polynomial in δ without

constant term. By orthogonality, Eδ∈C(r)n [∆δφ
w(x)] = 0. This implies that Eδ∈C(r)n [〈∆δφ

w, η〉D] =
0,

Write B(w) = 〈φw, η〉D. As η is a polynomial with degree d, so is B(w). By the above, we have

Eδ∈C(r)n [B(w + δ)] = B(w) . (C.1)

To lower bound Eδ∈C(r)n [|B(w + δ)−B(w)|2], we proceed in two steps. We first show the case
when w = 0. Then we apply the “shifting” lemma (Lemma C.2) to complete the proof.

Lemma C.1. For 0 ≤ r ≤ 1, Eδ∈C(r)n [|B(δ)−B(0)|2] ≥ r2da(d)2.

18

Proof. Write η(x) =
∑

J bJx
J . Then B(w) =

∑
J aJbJw

J . Hence B(δ)−B(0) =
∑

J 6=(0,...,0) aJbJδ
J ,

and Eδ∈C(r)n [|B(δ) − B(0)|2] ≥ r2d
∑

J 6=(0,...,0) |aJ |2|bJ |2 ≥ r2da(d)2. The last inequality is by the

definition of a(d) and by
∑

J 6=(0,...,0) |bJ |2 = ‖η‖2 ≥ 1.

The following “shifting” lemma shows that the norm of f does not change too much if we shift
f to new origin with bounded `∞ norm.

Lemma C.2. Suppose that f is a degree d polynomial on n variables. Let v = (v1, . . . , vn) such
that ‖v‖∞ ≤ L. Let fv(x) = f(v + x). Then ‖fv‖2 ≤ nd(L+ 1)2d‖f‖2.

Proof. Suppose that f(x) =
∑
|J |≤d bJx

J . For a monomial xJ and for x ∈ C(1)n, |(x + v)J | ≤
(L+ 1)|J |. Hence

‖fv‖2 = Ex∼C(1)n [|f(x+ v)|2]

= Ex∼C(1)n [|
∑

bJ(x+ v)J |2]

by Cauchy-Schwartz and deg(f) ≤ d

≤ Ex∼C(1)n [
∑
|bJ |2

∑
|J |≤d

|(x+ v)J |2]

≤
∑
|bJ |2nd(L+ 1)2d = nd(L+ 1)2d‖f‖2 .

We can apply a scaling and replacing v by −v and obtain the following: for any 0 < r ≤ 1 and
v = (v1, . . . , vn) with ‖v‖∞ ≤ rL, we have

Ex∼C(r)n [|f(x+ v)|2] ≥ 1/(nd(L+ 1)2d) Ex∼C(r)n [|f(x)|2] . (C.2)

Now for any w, consider the polynomial f(x) = B(x)−B(w). By Lemma C.1, Eδ∈C(r)n [|B(δ)−
B(0)|2] ≥ r2da(d)2. By (C.1) Eδ∈C(r)n [B(δ)] = B(0), we further have

Ex∈C(r)n [|f(x)|2] ≥ Ex∈C(r)n [|B(x)−B(0)|2] ≥ r2da(d)2 . (C.3)

Now applying (C.2), we have that whenever |wi| ≤ rL for all i,

Ex∼C(r)n [|B(w + x)−B(w)|2]

= Ex∼C(r)n [|fw(x)|2]

≥ 1/(nd(L+ 1)2d) Ex∼C(r)n [|f(x)|2]

≥ r2da(d)2/(nd(L+ 1)2d) , by(C.3).

Now we have lower bounded Eδ∈C(r)n [|〈∆δφ
w, η〉D|2], we can transfer this bound to (Re 〈∆δφ

w, η〉D)2

by the following observation.

Eδ∈C(r)n [(Re(〈∆δφ
w, η〉D))2]

= Eδ∈C(r)n [(〈∆δφ
w, η〉D + 〈∆δφw, η〉D)2]/4

= Eδ∈C(r)n [2|〈∆δφ
w, η〉D|

2 + 〈∆δφ
w, η〉2D + 〈∆δφw, η〉D

2
]/4

by Eδ∈C(r)n [(∆δφ
w(x)η(x))2] = 0 for any x ∈ Cn

= Eδ∈C(r)n [|〈∆δφ
w, η〉D|

2]/2 .

19

We have proven Theorem 5.2.

We note that the above theorem holds for large range of r and w. But to suppress the second
order term, we will only need the theorem in the range where r = O(1/

√
n) and ‖w‖ = O(log n).

C.2 Random perturbation of many hidden units

Now consider a neural network g(x) =
∑m

i=1 αiφ
wi(x), where each ‖wi‖ = O(log n). Let g′(x) =∑m

i=1 αiφ
wi+δi(x), where each δi is i.i.d. from C(1/

√
n)n. Suppose that e(g) = g − p is the error

function. Recall we consider the truncated φd. Any error function e is a degree d polynomial. Now
consider e′ := e(g′) = (g′ − g) + e.

‖e′‖2D − ‖e‖2D = ‖(g′ − g) + e‖2D − ‖e‖2D
= ‖g′ − g‖2D + 2 Re(〈g′ − g, e〉D) . (C.4)

We consider these two terms separately. First consider ‖g′ − g‖2D = ‖
∑m

i=1 αi∆δiφ
wi‖2D. We

can view ∆δφ
w as a vector in the functional space, so each ∆δiφ

wi is a random vector. Early on we
have shown that Eδi [∆δiφ

wi] = 0. In addition, for ‖wi‖ = O(log n) and r = O(1/
√
n),

Eδi∼C(r)n ‖∆δiφ
wi‖2D = O(nO(1)) . (C.5)

Since ∆δiφ
wi ’s are independent, by standard concentration bound, with high probability

‖g′ − g‖2D = O(nO(1)‖α‖2) ,

where ‖α‖ =
√∑

i |αi|2.
Now consider the linear term Re(〈g′ − g, e〉D). We will use Theorem 5.1 and anti-concentration

inequality to show that with constant probability, say 1/4,

Re(〈g′ − g, e〉D) = −Ω(‖α‖‖e‖D/nO(d)) . (C.6)

Consider independent random variables Yi = Re(〈αi∆δiφ
wi , e〉D) where δi ∼ C(1/

√
n)n. Again

E[Yi] = 0 and σ2
i = E[Y 2

i] = nO(1). By Theorem 5.1, σ2
i = Ω(S2) where

S =
√
r2da(d)2/(2nd(L+ 1)2d) = 1/nO(d) ,

for r = 1/
√
n and L = O(

√
n log n). Let N be the standard Gaussian variable. By Berry-Esseen

inequality, we have

Prob

∑αiYi < −t
√∑

i

|αiσi|2

− Prob[N < −t]

≤ (
∑
i

|αiσi|3)/(
∑
i

|αiσi|2)3/2 = nO(d)(‖α‖4/‖α‖)3/2 .

So if ‖α‖4 ≤ ‖α‖/ncd for sufficiently large constant c > 0, with constant probability (C.6) holds.
Combining (C.4,C.6, we have whenever ‖α‖4 ≤ ncd‖α‖, ‖α‖ ≤ ‖e‖D

√
S/nO(1) = ‖e‖D/nO(d),

with constant probability, ‖e′‖2D ≤ ‖e‖2D − ‖α‖‖e‖D/nO(d). Hence, we have proved the main
theorem.

20

C.3 Extension to distributions on reals

The above proof can also be extended to the case where the x is not complex but chosen from a
Gaussian distribution N(1)n in Rn or uniform distribution U(1)n on [−1, 1]n. This follows from
the following observation that relates the norm of a polynomial under different distributions.

Observation C.3. Let P (x) be a degree d polynomial. Then ‖P‖D = Ω(1/dd/2)‖P‖C(1)n and

O(dd/2‖P‖C(1)n), where D = N(1)n or U(1)n.

Proof. This follows from transforming from the monomial basis to the Hermite basis (for Gaussian
distribution) or Legendre basis (for uniform distribution) and vice versa. Note that the Hermite
polynomials have coefficients at most dd and Legendre polynomial at most 2d.

We only show the statement in Theorem 5.1 holds under the Gaussian distribution. Note that
any polynomial P can be viewed as a vector of coefficients u in the monomial basis, which is
orthonormal for the distribution C(1)n, and can also be viewed as a vector of coefficients v in the
Hermite basis, which is orthonormal for the distribution N(1)n. These coefficient vectors are nd

dimensional and further from the above observation, it follows that they are related by a matrix
v = Au where the condition number of A and A−1 are at most dd. So for any two u1, u2, we have
that 〈u1, u2〉N(1)n = 〈Au1, Au2〉C(1)n . Therefore

E|〈∆g, η〉N(1)n |
2 = E|〈A∆g,Aη〉C(1)n |

2

= E|〈∆g,A†Aη〉C(1)n |
2

= Ω(S2‖A†Aη‖2C(1)n)

= Ω(S2/dO(d))‖η‖2C(1)n

= Ω(S2/dO(d))‖η‖2N(1)n

The last two inequalities follows from that A’s condition number is bounded by dO(d). Hence
we have shown that the statement in Theorem 5.1 holds for D = N(1)n. The other arguments
extend to D = N(1)n (and U(1)n) easily. So we have

Corollary C.4. The same statement in Theorem 5.1 holds when D = N(1)n or D = U(1)n.

C.4 Local perturbation algorithm

While we do not know if the gradient descent (with perturbations at critical points) will find
the correct set of weights, Theorem 5.1 ensures that we will at least move closer to f by 1/nd.
This suggests an iterative algorithm (Algorithm 1), which combines the gradient descent and local
perturbation, for learning polynomials using the neural network. It is important to note that we
do not know whether the algorithm below actually learns a polynomial since the precondition for
Theorem 5.1 may not be satisfied as the algorithm explores the space of parameters.

D Background on Complex Gradient Descent

We will now describe the gradient descent process over parameters that are complex. The gradient
descent minimizes the quantity E = 〈e, e〉 = e∗ · e, for the error function e = f − g.

21

Algorithm 1 Iterative neural network learning algorithm

1: N = 0
2: while ‖P‖D > δ do
3: Initialize a neural net N ′ with sufficiently many hidden units and all weights set to 0.
4: Perform gradient descent (with local perturbation at critical points).
5: If no progress is made even after the local perturbation then P = P −N ′ and N = N +N ′.
6: end while
7: Output N .

Let u denote a parameter in the neural network – this could either be the weights αi in the
upper layer or wij in the lower layer. Let p denote

(
∂e
∂u

)
. We would like to take gradient with

respect to u, but E is not analytic with respect to e. Instead we rely on Wirtinger calculus, and
consider the following gradient:3 (

∂e

∂u

)∗
· e = p∗e = 〈p, e〉.

Hence, in one step of gradient descent, the new value of u is given by u′ = u− λ〈p, e〉 the new
function g′ (upto a first order approximation) is

g′ = g +
∂g

∂u
δu = g − ∂e

∂u
δu = g + p · λ〈p, e〉,

and the new error function:

e′ = f − g′ = e+ (g − g′) = e− λp〈p, e〉 = (I − λpp∗)e,

where I is the identity matrix of dimension of e.
Note that if 〈u, e〉 is non-zero then < e, e > has strictly decreased (for small enough λ). To see

this note that < e′, e′ >= e∗(I − λpp∗)∗(I − λpp∗)e. For small enough λ ingnoring terms in λ2 we
get that 〈e′, e′〉 = e∗(I − 2λpp∗)e = 〈e, e〉 − 2λ|〈p, e〉|2.

Thus to ensure progress in the gradient descent it suffices to ensure that 〈 ∂e∂u , e〉 is non zero.

More generally, if there are many parameters u1, .., um with partial derivaties
(
∂e
∂ui

)
denote by

pi. then in one step of gradient descent, the new value of ui is given by u′i = ui − λ〈pi, e〉 the new
function g′ (upto a first order approximation) is

g′ = g +
∑
i

∂g

∂ui
δui = g −

∑
i

∂e

∂ui
δui = g +

∑
i

pi · λ〈pi, e〉,

And as before is P is the matrix with rows as pi’s then 〈e′, e′〉 = e∗(I − 2λPP ∗)e = 〈e, e〉 −
2λ(
∑

i |〈pi, e〉|2). Thus to ensure progress we need that to show that
∑

i |〈pi, e〉|2 is non-zero.

3We essentially consider the variables and their conjugates as independent variables, and then take derivate with
respect to u∗.

22

E Missing material from Section 6

E.1 A potential strategy for proving that kO(d) units may be sufficient

Now we will give some evidence, an outline of a potential proof strategy, to show that kO(d) may
be suffcient for learning f that depends on only k variables. Note that the crucial property in the
proof in Section 4 for the success of gradient descent is the representation theorem: the theorem
states that if you have nO(d) hidden units they together have a high enough rank so that any
polynomial can be expressed as a linear combination with bounded weights. We will refer to this
as a High-Rank-Condition.

Definition E.1 (High-Rank-Condition). We will say that a given set of hidden units φw1 , . . . φwm

satisfy the High-Rank-Condition if (with high probability) for any polynomial p with degree d and
norm 1, there exist α1, . . . , αm where

∑
s |αs|2 = nO(d) such that ‖

∑
i αiφ

ws − p‖D ≤ ε.

Even for non-sparse polynomials we could prove the High-Rank-Condition only for a random
initialization of the weights in the lower layer. In order to guarantee its validity throughout the
gradient-descent process we had to artificially inflate m so that the weights essentially do not change
much from the initial values. Thus we just managed to create a setting where we could ensure the
condition through out the process. We believe that even if one allows the weights in the lower
layers to change significantly over time, the High-Rank-Condition is likely to still continue to hold.
This would be a more natural proof strategy for the success of gradient descent, even for non-sparse
polynomials.

If f depends only on k variables, then again a variant of the High-Rank-Condition would suffice
to prove that kO(d) units suffice. The variant requires that the hidden units projected to polynomials
on the k relevant variables have a high rank.

Definition E.2 (Sparse-High-Rank-Condition). For a given set of k variables out of the n variables
in x, and a function f(x) let Π(f) denote the function f projected onto the k variables by setting
the remaining ones to 0. We will say that a given set of hidden units φw1 , . . . φwm satisfy the
Sparse-High-Rank-Condition with respect to the set of k variables if (with high probability) for
any polynomial p with degree d and norm 1 on these k variables, there exist α1, . . . , αm where∑

s |αs|2 = kO(d) such that ‖
∑

i αiΠ(φws)− p‖D ≤ ε.

If, throughout the gradient descent process, the functions output by the hidden units satisfy the
Sparse-High-Rank-Condition then this may lead to a proof that kO(d) units suffice. This is because
Lemma 6.1 already tells us that at the end of the gradient descent the function depends only on
the k variables of interest; and if they have high rank with respect to degree d polynomials on
the k-variables it must be possible to make an (infinitesimally) small change in the weights in the
upper layer so that one reduces the error when projecting to polynomials in the k variables. For
Any new dependency created on the irrelevant variables there is a direction of change in the lower
layers so that the dependency eventually disappears (as shown in Lemma 6.1). So one will need to
ensure that their a direction for both the upper and lower layer weights so that the improvement
in the projection is not undone the new dependency in the irrelevant variables.

23

	Introduction
	Preliminaries
	Random Initialization of Neural Network
	Gradient Descent for Polynomials
	Random Perturbation at Local Minima
	Random perturbation of one hidden unit
	Random perturbation of many hidden units
	Extension to distributions on reals
	Robust local minima for real weights

	Learning sparse polynomials
	Learning n-sparse polynomials
	Learning polynomials over few variables

	Derivation of (3.2)
	Missing Proofs from Section 4.2
	Missing proofs from Section 5
	Random perturbation of one hidden unit
	Random perturbation of many hidden units
	Extension to distributions on reals
	Local perturbation algorithm

	Background on Complex Gradient Descent
	Missing material from Section 6
	A potential strategy for proving that kO(d) units may be sufficient

