
4 Locality-sensitive hashing using

stable distributions

4.1 The LSH scheme based on s-stable distributions

In this chapter, we introduce and analyze a novel locality-sensitive hashing family.

The family is defined for the case where the distances are measured according to

the ls norm, for any s ∈ [0, 2]. The hash functions are particularly simple for the

case s = 2, i.e., the Euclidean norm. The new family provides an efficient solution

to (approximate or exact) randomized near neighbor problem.

Part of this work appeared earlier in [DIIM04].

4.1.1 s-stable distributions

Stable distributions [Zol86] are defined as limits of normalized sums of independent

identically distributed variables (an alternate definition follows). The most well-

known example of a stable distribution is Gaussian (or normal) distribution.

However, the class is much wider; for example, it includes heavy-tailed distributions.

Definition 4.1 A distribution D over ℜ is called s-stable, if there exists p ≥ 0

such that for any n real numbers v1 . . . vn and i.i.d. variables X1 . . . Xn with

distribution D, the random variable
∑

i viXi has the same distribution as the

variable (
∑

i |vi|
p)1/pX, where X is a random variable with distribution D.

It is known [Zol86] that stable distributions exist for any p ∈ (0, 2]. In particular:

a Cauchy distribution DC , defined by the density function c(x) = 1
π

1
1+x2 , is 1-

stable

a Gaussian (normal) distribution DG, defined by the density function g(x) =
1√
2π

e−x2/2, is 2-stable

We note from a practical point of view, despite the lack of closed form density

and distribution functions, it is known [CMS76] that one can generate s-stable

random variables essentially from two independent variables distributed uniformly

over [0, 1].

Stable distribution have found numerous applications in various fields (see the

survey [Nol] for more details). In computer science, stable distributions were used for

56 Locality-sensitive hashing using stable distributions

“sketching” of high dimensional vectors by Indyk ([Ind00]) and since have found use

in various applications. The main property of s-stable distributions mentioned in the

definition above directly translates into a sketching technique for high dimensional

vectors. The idea is to generate a random vector a of dimension d whose each entry

is chosen independently from a s-stable distribution. Given a vector v of dimension

d, the dot product a.v is a random variable which is distributed as (
∑

i |vi|s)1/sX

(i.e., ||v||sX), where X is a random variable with s-stable distribution. A small

collection of such dot products (a.v), corresponding to different a’s, is termed as

the sketch of the vector v and can be used to estimate ||v||s (see [Ind00] for details).

It is easy to see that such a sketch is linearly composable, i.e., for any p, q ∈ ℜd,

a.(p − q) = a.p − a.q.

4.1.2 Hash family based on s-stable distributions

We use s-stable distributions in the following manner. Instead of using the dot

products (a.v) to estimate the ls norm we use them to assign a hash value to each

vector v. Intuitively, the hash function family should be locality sensitive, i.e. if

two points (p, q) are close (small ||p − q||s) then they should collide (hash to the

same value) with high probability and if they are far they should collide with small

probability. The dot product a.v projects each vector to the real line; It follows

from s-stability that for two vectors (p, q) the distance between their projections

(a.p − a.q) is distributed as ||p − q||sX where X is a s-stable distribution. If we

“chop” the real line into equi-width segments of appropriate size w and assign hash

values to vectors based on which segment they project onto, then it is intuitively

clear that this hash function will be locality preserving in the sense described above.

Formally, each hash function ha,b(v) : Rd → N maps a d dimensional vector v

onto the set of integers. Each hash function in the family is indexed by a choice

of random a and b where a is, as before, a d dimensional vector with entries

chosen independently from a s-stable distribution and b is a real number chosen

uniformly from the range [0, w]. For a fixed a, b the hash function ha,b is given by

ha,b(v) = ⌊a·v+b
w ⌋

4.1.2.1 Collision probability

We compute the probability that two vectors p, q collide under a hash function

drawn uniformly at random from this family. Let fs(t) denote the probability

density function of the absolute value of the s-stable distribution. We may drop

the subscript s whenever it is clear from the context.

For the two vectors p, q, let u = ||p − q||s and let p(u) denote the probability

(as a function of u) that p, q collide for a hash function uniformly chosen from the

family H described above. For a random vector a whose entries are drawn from a

s-stable distribution, a.p − a.q is distributed as cX where X is a random variable

drawn from a s-stable distribution. Since b is drawn uniformly from [0, w] it is easy

to see that

4.2 Approximate near neighbor 57

p(u) = Pra,b[ha,b(p) = ha,b(q)] =

∫ w

0

1

u
fs(

t

u
)(1 −

t

w
)dt

For a fixed parameter w the probability of collision decreases monotonically with

u = ||p − q||s. Thus, as per the definition, the family of hash functions above is

(R, cR, P1, P2)-sensitive for P1 = p(1) and P2 = p(c).

4.2 Approximate near neighbor

In what follows we will bound the ratio ρ = ln 1/P1

ln 1/P2

, which as discussed earlier is

critical to the performance when this hash family is used to solve the c-approximate

near neighbor problem.

Note that we have not specified the parameter w, for it depends on the value of

c and s. For every c we would like to choose a finite w that makes ρ as small as

possible.

We focus on the cases of s = 1, 2. In these cases the ratio ρ can be explicitly

evaluated. We compute and plot this ratio and compare it with 1/c. Note, 1/c is

the best (smallest) known exponent for n in the space requirement and query time

that is achieved in [IM98] for these cases.

For s = 1, 2 we can compute the probabilities P1, P2, using the density func-

tions mentioned before. A simple calculation shows that P2 = 2 tan−1(w/c)
π −

1
π(w/c) ln(1 + (w/c)2) for s = 1 (Cauchy) and P2 = 1− 2norm(−w/c)− 2√

2πw/c
(1−

e−(w2/2c2)) for s = 2 (Gaussian), where norm(·) is the cumulative distribution func-

tion (cdf) for a random variable that is distributed as N(0, 1). The value of P1 can

be obtained by substituting c = 1 in the formulas above.

For c values in the range [1, 10] (in increments of 0.05) we compute the minimum

value of ρ, ρ(c) = minw log(1/P1)/ log(1/P2), using Matlab. The plot of c versus

ρ(c) is shown in Figure 4.1. The crucial observation for the case s = 2 is that

the curve corresponding to optimal ratio ρ (ρ(c)) lies strictly below the curve 1/c.

As mentioned earlier, this is a strict improvement over the previous best known

exponent 1/c from [IM98]. While we have computed here ρ(c) for c in the range

[1, 10], we believe that ρ(c) is strictly less than 1/c for all values of c.

For the case s = 1, we observe that ρ(c) curve is very close to 1/c, although it

lies above it. The optimal ρ(c) was computed using Matlab as mentioned before.

The Matlab program has a limit on the number of iterations it performs to compute

the minimum of a function. We reached this limit during the computations. If we

compute the true minimum, then we suspect that it will be very close to 1/c,

possibly equal to 1/c, and that this minimum might be reached at w = ∞.

If one were to implement our LSH scheme, ideally they would want to know the

optimal value of w for every c. For s = 2, for a given value of c, we can compute the

value of w that gives the optimal value of ρ(c). This can be done using programs

like Matlab. However, we observe that for a fixed c the value of ρ as a function of

58 Locality-sensitive hashing using stable distributions

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximation factor c

rho
1/c

(a) Optimal ρ for l1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximation factor c

rho
1/c

(b) Optimal ρ for l2

Figure 4.1 Optimal ρ vs c

w is more or less stable after a certain point (see Figure 4.2). Thus, we observe

that ρ is not very sensitive to w beyond a certain point and as long we choose w

“sufficiently” away from 0, the ρ value will be close to optimal. Note, however that

we should not choose an w value that is too large. As w increases, both P1 and P2

get closer to 1. This increases the query time, since k increases as log1/P2
n.

We mention that for the l2 norm, the optimal value of w appears to be a (finite)

function of c.

We also plot ρ as a function of c for a few fixed w values(See Figure 4.3). For

s = 2, we observe that for moderate w values the ρ curve “beats” the 1/c curve

over a large range of c that is of practical interest. For s = 1, we observe that as w

increases the ρ curve drops lower and gets closer and closer to the 1/c curve.

4.3 Exact Near Neighbor

LSH can also be used to solve the randomized version of the exact near neighbor

problem. To use it for the exact near neighbor, we use the “Strategy 2” of the

basic LSH scheme, and keep only the R-near neighbors of q. Thus, the running

time depends on the data set P. In particular, the running time is slower for “bad”

data sets, e.g., when for a query q, there are many points from P clustered right

outside the ball of radius R centered at q (i.e., when there are many approximate

near neighbors).

4.3 Exact Near Neighbor 59

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

p
x
e

r

c=1.1
c=1.5
c=2.5

c=5
c=10

(a) ρ vs w for l1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

p
x
e

r

c=1.1
c=1.5
c=2.5

c=5
c=10

(b) ρ vs w for l2

Figure 4.2 ρ vs w

4.3.1 Parameters k and L of the LSH scheme

There are two steps for choosing the parameters k and L that are optimal for a

data set. First, we need to determine the bounds on k and L that guarantee the

correctness of the algorithm. Second, within those bounds, we choose the values k

and L that would achieve the best expected query running time.

Next, we derive the bounds that need to be satisfied by k and L to guarantee the

correctness of the algorithm. We need to ensure that our data structure reports a

R-near neighbor with a probability at least 1 − δ. To analyse what condition this

implies, consider a query point q and an R-near neighbor p of q. Let P1 = p(R).

Then, Prg∈G [g(q) = g(p)] ≥ P k
1 . Thus, q and p fail to collide for all L functions gi

with probability at most (1 − P k
1)L. Requiring that the point q collides with p on

some function gi is equivalent to saying 1 − (1 − P k
1)L ≥ 1 − δ, which implies that

L ≥
log 1/δ

− log(1 − P k
1)

(4.1)

Since we want to choose L as small as possible (for a fixed k), the best value for

L is L =
⌈

log 1/δ

− log(1−P k
1

)

⌉

.

Thus, one is free to choose only k since it is the only remaining degree of freedom

in choosing parameters k and L.

To understand better how the choice of k affects the query running time, we

decompose the running time into two terms, Tg and Tc. Tg is the time necessary for

computing L functions gi for the query point q as well as for retrieving the buckets

gi(q) from hash tables; the expression for Tg is Tg = O(dkL).

60 Locality-sensitive hashing using stable distributions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

p
x
e

c

r=1.5
r=3.5
r=10

1/c

(a) ρ vs c for l1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

p
x
e

c

r=1.5
r=3.5
r=10

1/c

(b) ρ vs c for l2

Figure 4.3 ρ vs c

The second term, Tc, represents the time for computing the distance to all points

encountered in the retrieved buckets; Tc is equal to O(d · #collisions), where

#collisions is the number of points encountered in the buckets g1(q), . . . gL(q) for

a query point q. The expected value of Tc is

E[Tc] = O(d · E[#collisions]) = O(dL ·
∑

p∈P
pk(‖q − p‖)) (4.2)

Intuitively, Tg increases as a function of k, while Tc decreases as a function of

k. The latter is due to the fact that higher values of k magnify the gap between

the collision probabilities of “close” and “far” points, which (for proper values of

L) decreases the probability of collision of far points. Thus, typically there exists

an optimal value of k that minimizes the sum Tg + Tc (for a given query point q).

Note that there might be different optimal k’s for different query points, therefore

the goal would be optimize the mean query time for all query points.

4.4 LSH in practice: E2LSH

In this section we present a practitioner’s view on how to implement the LSH

scheme for solving the R-near neighbor reporting problem in practice. Specifically,

we describe a concrete method for choosing algorithm’s parameters, as well as

present some implementation details that both clarify steps of the scheme and

demonstrate how to optimize the scheme in practice.

4.4 LSH in practice: E2LSH 61

The section is based on the package E2LSH (Exact Euclidean LSH), version 0.1,

which is authors’ current implementation of LSH scheme [AI04]. E2LSH solves the

exact near neighbor reporting problem.

Note that E2LSH uses a few addition optimizations to improve the search per-

formance, in addition to what is described below. Please refer to the manual [AI04]

for more information.

4.4.1 Data structure construction

Before constructing the data structure, E2LSH first computes the parameters k, L

as a function of the data set P, the radius R, and the probability 1−δ as outlined in

earlier sections. In what follows, we consider L as a function of k, and the question

remains only of how to choose k.

For choosing the value k, the algorithm experimentally estimates the times Tg

and Tc as a function of k. Remember that the time Tc is dependent on the query

point q, and, therefore, for estimating Tc we need to use a set S of sample query

points (the estimation of Tc is then the mean of the times Tc for points from S).

The sample set S is a set of several points chosen at random from the query set.

(The package also provides the option of choosing S to be a subset of the data set

P.)

Note that to estimate Tg and Tc precisely, we need to know the constants hidden

by the O(·) notation in the expressions for Tg and Tc. To compute these constants,

the implementation constructs a sample data structure and runs several queries on

that sample data structure, measuring the actual times Tg and Tc. Note that Tg

and Tc depend on k. Thus, k is chosen such that Tg + T̃c is minimal (while the data

structure space requirement is within the memory bounds), where T̃c is the mean

of the times Tc for all points in the sample query set S: T̃c =
∑

q∈S
Tc(q)

|S| .

Once the parameters k, m,L are computed, the algorithm constructs the data

structure containing the points from P.

4.4.2 Bucket hashing

Recall that the domain of each function gi is too large to store all possible buckets

explicitly, and only non-empty buckets are stored. To this end, for each point

p, the buckets g1(p), . . . gL(p) are hashed using the universal hash functions. For

each function gi, i = 1 . . . L, there is a hash table Hi containing the buckets

{gi(p) | v ∈ P}. For this purpose, there are 2 associated hash functions t1 : Z
k →

{0, . . . , tableSize − 1} and t2 : Z
k → {0, . . . , C}. The function t1 determines for

a LSH bucket the index of the point in the hash table. The second hash function

identifies the buckets in chains.

The collisions within each index in the hash table are resolved by chaining. When

storing a bucket gi(p) = (x1, . . . xk) in its chain, instead of storing the entire

vector (x1, . . . xk) for bucket identification, we store only t2(x1, . . . xk). Thus, a

bucket gi(p) = (x1, . . . xk) has only the following associated information stored

62 Locality-sensitive hashing using stable distributions

in its chain: the identifier t2(x1, . . . , xk), and the points in the bucket, which are

g−1
i (x1, . . . xk) ∩ P.

The reasons for using the second hash function t2 instead of storing the value

gi(p) = (x1, . . . xk) are twofold. Firstly, by using a fingerprint t2(x1, . . . xk), we

decrease the amount of memory for bucket identification from O(k) to O(1).

Secondly, with the fingerprint it is faster to look up a LSH bucket in the chain

containing it. The domain of the function t2 is chosen big enough to ensure with a

high probability that any two different buckets in the same chain have different t2
values.

All L hash tables use the same primary hash function t1 (used to dermine the

index in the hash table) and the same secondary hash function t2. These two hash

functions have the form

t1(a1, a2, . . . , ak) =
((

∑k
i=1 r′iai

)

mod P
)

mod tableSize

t2(a1, a2, . . . , ak) =
(

∑k
i=1 r′′i ai

)

mod P

where r′i and r′′i are random integers, tableSize is the size of the hash tables, and

P is a prime.

In the current implementation, tableSize = |P|, ai are represented by 32-bit

integers, and the prime P is equal to 232 − 5. This value of the prime allows fast

hash function computation without using modulo operations. Specifically, without

loss of generality, consider computing t2(a1) for k = 1. We have that:

t2(a1) = (r′′1a1)mod
(

232 − 5
)

= (low [r′′1a1] + 5 · high [r′′1a1])mod (232 − 5)

where low[r′′1a1] are the low-order 32 bits of r′′1a1 (a 64-bit number), and

high[r′′1a1] are the high-order 32 bits of r′′1a1. If we choose r′′i from the range

{1, . . . 229}, we will always have that α = low [r′′1a1] + 5 · high [r′′1a1] < 2 ·
(

232 − 5
)

.

This means that

t2(a1) =

{

α , if α < 232 − 5

α −
(

232 − 5
)

, if α ≥ 232 − 5

For k > 1, we compute progressively the sum
(

∑k
i=1 r′′i ai

)

mod P keeping always

the partial sum modulo
(

232 − 5
)

using the same principle as the one above. Note

that the range of the function t2 thus is {1, . . . 232 − 6}.

4.4.3 Memory Requirement for LSH

The data structure described above requires O(nL) memory (for each function

gi, we store the n points from P). Since, L increases as k increases, the memory

requirement could be large for a large data set, or for moderate data set for which

4.4 LSH in practice: E2LSH 63

optimal time is achived with higher values of k. Therefore, an upper limit on memory

imposes an upper limit on k.

Because the memory requirement is big, the constant in front of O(nL) is very

important. In E2LSH, with the best variant of the hash tables, this constant is 12

bytes. Note that it is the structure and layout of the L hash tables that dictates

memory usage.

Below we show two variants of the layout of the hash tables that we deployed.

We assume that:

the number of points is n ≤ 220;

each pointer is 4 bytes long;

tableSize = n for each hash table.

One of the most straightforward layouts of a hash table Hi is the following.

For each index l of the hash table, we store a pointer to a singly-linked list of

buckets in the chain l. For each bucket, we store its value h2(·), and a pointer to a

singly-linked list of points in the bucket. The memory requirement per hash table

is 4 · tableSize + 8 · #buckets + 8 · n ≤ 20n, yielding a constant of 20.

To reduce this constant to 12 bytes, we do the following. Firstly, we index all

points in P, such that we can refer to points by index (this index is constant across

all hash tables). Refering to a point thus takes only 20 bits (and not 32 as in the

case of a pointer). Consider now a hash table Hi. For this hash table, we deploy a

table Y of 32-bit unsigned integers that store all buckets (with values h2(·)) and

points in the buckets (thus, Y is a hybrid storage table since it stores both buckets’

and points’ description). The table has a length of #buckets + n and is used as

follows. In the hash table Hi, at index l, we store the pointer to some index el of

Y ; el is the start of the description of the chain l. A chain is stored as follows: h2(·)

value of the first bucket in chain (at position el in Y) followed by the indices of the

points in this bucket (positions el + 1, . . . el + n1); h2(·) value of the second bucket

in the chain (position el +n1+1) followed by the indices of the points in this second

bucket (positions el + n1 + 2, . . . el + n1 + 1 + n2); and so forth.

Note that we need also to store the number of buckets in each chain as well as the

number of points in each bucket. Instead of storing the chain length, we store for

each bucket a bit that says whether that bucket is the last one in the chain or not;

this bit is one of the unused bits of the 4-byte integer storing the index of the first

point in the corresponding bucket (i.e., if the h2(·) value of the bucket is stored at

position e in Y , then we use a high-order bit of the integer at position e + 1 in Y).

For storing the length of the bucket, we use the remaining unused bits of the first

point in the bucket. When the remaining bits are not enough (there are more than

232−20−1 − 1 = 211 − 1 points in the bucket), we store a special value for the length

(0), which means that there are more than 211 − 1 points in the bucket, and there

are some additional points (that do not fit in the 211 − 1 integers alloted in Y after

the h2(·) value of the bucket). These additional points are also stored in Y but at a

different position; their start index and number are stored in the unused bits of the

64 Locality-sensitive hashing using stable distributions

remaining 211−2 points that follow the h2(·) value of the bucket and the first point

of the bucket (i.e., unused bits of the integers at positions e + 2, . . . e + 211 − 1).

4.5 Experimental Results

In this section we present some preliminary experimental results on the performance

of E2LSH.

For the comparison, we used the MNIST data set [Cun]. It contains 60,000 points,

each having dimension 28×28 = 784. The points were normalized so that each point

has its l2 norm equal to 1.

We compared the performance of E2LSH and ANN [AM]. The latter provides an

efficient implementation of a variant of the kd-tree data structure. It supports both

exact and approximate nearest neighbor search (we used the former).

To compare the running times of ANN and E2LSH, we need to have E2LSH find

the nearest neighbor, as opposed to the near neighbor. We achieve this by solving

the near neighbor problem for one value of R. We chose this value to ensure that

all but, say, 3% of the data points have their nearest neighbor within distance R.

To find such R, it suffices to find, say, the 97%-percentile of the distances from

points to their nearest neighbor (this can be approximated fast by sampling). In

our case, we chose R = 0.65. Then, to find the nearest neighbor, we find the R-near

neighbors and report the closest point.

We note that, in general, the value of R obtained using the above method might

not lead to an efficient algorithm. This is because, for some data sets, the number of

R-near neighbors of an average query point could be very large, and sifting through

all of them during the query time would be inefficient. For such data sets one needs

to build data structures for several values of R. During the query time, the data

structures are queried in the increasing order of R. The process is stopped when a

data structure reports an answer.

Another parameter that is required by E2LSH is the probablity of error δ. We set

it to 10%. Lower probability of error would increase the running times, although

not very substantially. E.g., using two separate data structures in parallel (or,

alternatively, doubling the number of hash functions L), would reduce the error

from 10% to at most (10%)2 = 1%.

To perform the running time comparisons, we ran the algorithms on random

subsets of the original data sets of size 10000, 30000 and 50000. The actual times

per query are reported in Figure 4.4.

As can be observed, the running times of E2LSH are much lower than the times

of ANN. Additional experiments (not reported here) indicate that the times do not

decrease substantially if ANN is allowed to report c-approximate nearest neighbor

for small values of c (say, c < 1.5). On the other hand, setting c to a large value

(say, c = 10) reduces running times of ANN drastically, since the search procedure

is stopped at a very early stage; the resulting running times become comparable to

E2LSH. At the same time, the actual error of ANN is remarkably low: it reports

4.5 Experimental Results 65

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10000 30000 50000

E2LSH
ANN

Figure 4.4 Experiments: LSH vs ANN.

the exact nearest neighbor for about 2/3 of the query points. The fact that kd-trees

search procedure (using priority queues) reports “good” nearest neighbors, even

if the search is interrupted very early, has been observed earlier in the literature

(e.g., see [Low04]). Note, however, that any guarantees for this method are only

empirical, while, for the R-near neighbor search problem, E2LSH provides rigorous

guarantees on the probability of missing a near neighbor.

66 Locality-sensitive hashing using stable distributions

References

[AI04] A. Andoni and P. Indyk. E2lsh: Exact euclidean

locality-sensitive hashing. Implementation available at

http://web.mit.edu/andoni/www/LSH/index.html, 2004.

[AM] S. Arya and D. Mount. Ann: Library for approximate nearest neighbor

searching. available at http://www.cs.umd.edu/~mount/ANN/.

[CMS76] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for

simulating stable random variables. J. Amer. Statist. Assoc., 71:340–344,

1976.

[Cun] Y. Le Cunn. The mnist database of handwritten digits. Available at

http://yann.lecun.com/exdb/mnist/.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive

hashing scheme based on p-stable distributions. Proceedings of the ACM

Symposium on Computational Geometry, 2004.

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbor: towards remov-

ing the curse of dimensionality. Proceedings of the Symposium on Theory of

Computing, 1998.

[Ind00] P. Indyk. Stable distributions, pseudorandom generators, embeddings and

data stream computation. Annual Symposium on Foundations of Computer

Science, 2000.

[Low04] D. Lowe. Fast high-dimensional feature in-

dexing for object recognition. Slides available at

http://www.cs.ubc.ca/~nando/nipsfast/slides/fast04.pdf, 2004.

[Nol] J. P. Nolan. An introduction to stable distributions. available at

http://www.cas.american.edu/~jpnolan/chap1.ps.

[Zol86] V.M. Zolotarev. One-Dimensional Stable Distributions. Vol. 65 of Trans-

lations of Mathematical Monographs, American Mathematical Society, 1986.

