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Abstract

We provide novel methods for efficient dimensionality reduction in kernel spaces. That is, we
provide efficient and explicit randomized maps from “data spaces” into “kernel spaces” of low
dimension, which approximately preserve the original kernel values. The constructions are based
on observing that such maps can be obtained from Locality-Sensitive Hash (LSH) functions, a
primitive developed for fast approximate nearest neighbor search. Thus, we relate the question
of dimensionality reduction in kernel spaces to the already existing theory of LSH functions.

Efficient dimensionality reduction in kernel spaces enables a substantial speedup of kernel-
based algorithms, as experimentally shown in Rahimi-Recht (NIPS’07). Our framework gener-
alizes one of their constructions.

1 Introduction

Kernel functions are a fundamental tool for learning a non-linear classifier. For example, they form
a key component of Support Vector Machines (SVM). A kernel function defines a scalar product in
a high-dimensional Euclidean space. Alternatively, it can be viewed as a lifting of the data space S
into a new feature space, called the kernel space K ⊂ L2. The lifting enables performing complex
classification using only a simple linear separator.

However, the map φ lifting the original space S into the kernel space is usually not explicit and
the dimensionality of the kernel space is very high (or even infinite). As a result, algorithms that
use the mapping φ directly are very inefficient. The classical approach this problem (the kernel
trick) is to design algorithms that rely only on the scalar product in K, given by the kernel function
K(x, y) = φ(x) · φ(y) for all x, y ∈ S (c.f. [16, 18]).

In this work we address this problem more directly, by constructing explicit and efficient maps
of the data space into the kernel space of low dimension. Specifically, our goal is to construct a map
F : S → Rk, for some small value of k, such that, for any x, y ∈ S, the scalar product F (x) · F (y)
is (approximately) equal to K(x, y). This approach, in various forms, has been proposed before,
e.g., in [8, 1, 12, 7, 17].

The approach has multiple benefits (cf. [17]). First, one can compute the large-margin separator
directly, using direct algorithms that are potentially more efficient. Second, the classification itself
can be done much more efficiently. Specifically, in a standard approach, an SVM outputs a classifier1

f(x) =
∑S

i=1 αiK(x, xi), where {x1, . . . xS} are the support vectors. Evaluating f(x) takes time
that is linear in the number of support vectors, which in principle could be as large as the number

1An example x is classified as positive iff f(x) > 0.
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of the data points. In contrast, using the explicit map F , one can compute the weights w of a
linear separator explicitly by letting w =

∑S
i=1 αiF (xi). Then the classifier can be defined as

f(x) = F (x) · w. The latter classifier can be evaluated in only O(k) time, which is independent of
the number of the support vectors.

The existence of a map F into a low-dimensional kernel space for any kernel can be derived
from the random dimension-reduction techniques, such as Johnson-Lindenstrauss lemma. Namely,
if we project the high-dimensional kernel space into a random low-dimensional subspace, then the
scalar product between any pair of unit vectors is preserved up to an additive term of ε. Then
the map F is defined as a composition of the high-dimensional map φ and the random projection.
Arriaga-Vempala [6] further prove that the resulting F also approximately preserves the separation
margin between the two classes. Unfortunately, the aforementioned existential construction is
highly inefficient, since it uses the original high-dimensional mapping φ : S → K. Instead, we
would like to construct a map F directly.

Related work. The problem of designing efficient dimensionality reduction techniques of
kernel spaces has been previously investigated in the literature. Some of the first results were
obtained for a simpler problem of designing the map F that works for a particular purpose (e.g,
linear classification) and for a given dataset. This question can be seen as approximating the kernel
(Gram) matrix Mij = K(xi, xj) of some data set D = {x1, . . . xn} (see, e.g., [8, 7, 1, 12]). For
example, [7] consider the question of constructing F after one draws a small number of samples
from the dataset and has only black-box access to K(x, y). Under this condition, they construct a
low-dimensional map F that preserves linear separability of the kernelized dataset. However, the
constructed F depends on the data distribution2. Furthermore, the constructed mapping preserves
linear separability of the data, but it does not appear to approximate the kernel function itself. Our
more strict condition guarantees usefulness of F for other applications of kernels, such as regression
and clustering. Because of these reasons, [8, 7] asks if it is possible to construct data-independent
F for specific kernels.

More recently, Rahimi-Recht [17] provide the only currently known data-independent construc-
tions. They give two constructions for maps F that approximate the kernel space. Their first
construction works for the case when data live in the Euclidean space and the kernel is shift-
invariant, i.e., K(x, y) = K(‖x − y‖2). For S = Rd, their function F maps the data points into
a space of dimension k = O(d · log 1/ε

ε2
) and can be evaluated in a similar time. The construction

proceeds by defining each feature as a sinusoid with a parameter drawn from a distribution defined
by the Fourier transform of the kernel function. Their second construction is designed specifically
for the Laplacian kernel L(x, y) = e−‖x−y‖1 . The latter construction computes each feature in two
steps. First, a randomly-shifted grid is imposed on the space Rd. Then a point x ∈ Rd is encoded
as the id of the grid cell containing x, represented in unary. Their experiments show that both
methods compare favorably with standard methods for classification.

Our contribution. In this paper we propose a theoretical framework for obtaining the desired
low-dimensional map F , which generalizes the second approach of [17]. The key idea is that one can
obtain mappings F from Locality-Sensitive Hashing (LSH) functions, a hashing primitive that has
been initially developed for the nearest-neighbor data structures [15, 5]. A family of LSH functions
is a set of hash functions h such that, for any x, y ∈ S and a random h, the probability that x and
y collide under h (i.e., h(x) = h(y)) is high when x and y are “close” in some underlying metric
and the probability is low when x and y are “far”. Several families of LSH functions for various

2In fact, as [7] prove, this condition is necessary if we have only a black-box access to the kernel function.
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spaces S and distance measures have been developed so far (cf. the survey [5] and the references
therein). We show that the existing LSH families yield efficient low-dimensional explicit maps F
for corresponding spaces S and kernels K.

Our framework recovers the second construction of [17] by using one of the existing LSH families.
However, our framework expresses a more general underlying phenomenon. As a result, we easily
obtain mappings F for other similarity or dissimilarity functions.

2 Approximate Kernels from LSH families

In this section we construct the desired map F : S → Rk that approximates the kernel space for
various data-spaces S and kernel functions K. Our approach is to utilize carefully constructed hash
functions on S, which are in essence “locality-sensitive hashing” functions as defined in [15].

2.1 Definition

We start by defining the notion of a family of kernel hash functions. Before giving a formal
definition, we explain the intuition. Ideally, we would like a distribution over hash functions h
such that Prh[h(x) = h(y)] = K(x, y) for any x, y ∈ S. However, such a guarantee might be hard
to obtain in some cases. Instead, we introduce a relaxed notion, which that we call a family of
ε-approximate kernel hash functions.

Definition 2.1. For ε > 0 and kernel K, a family of ε-approximate K-kernel hash functions (KHF)
is a set H of functions h : S → U for some set U if, for any x, y ∈ S, we have

∣∣∣∣ Pr
h∈H

[h(x) = h(y)]−K(x, y)
∣∣∣∣ ≤ ε.

To understand the definition, consider an example of such a family H for some specific K
and ε = 0. This family H is based on the original LSH scheme of [15]. Consider the hypercube
S = {0, 1}d with the kernel function K(x, y) = (1 − ‖x−y‖1

d )p, where p ∈ N is a fixed positive
integer. We choose a hash function h ∈ H by taking a random set of coordinates i1 . . . ip ∈ [d] (with
replacement), and setting h(x) = xi1 . . . xip , i.e., h is a projection to a random set of p coordinates.
It is immediate to see that H satisfies the above definition for ε = 0.

2.2 Kernel maps from approximate kernel hash functions

We now prove how, given a family of ε-approximate kernel hash functions, we obtain the desired map
F lifting data space into an (approximate) low-dimensional kernel space. Intuitively, we construct
F (x) by sampling many hi ∈ H, for some family H of approximate kernel hash functions, and then
concatenating hi(x)’s.

Lemma 2.2. Let ε > 0. Fix a space S that admits a family H of ε-approximate K-kernel hash
functions, for a kernel function K. For any δ > 0, there exists a randomized mapping F : S → Rk,
where k = O( log 1/δ

ε2
), such that, for any x, y ∈ S, we have |F (x) · F (y) − K(x, y)| < 2ε with

probability at least 1− δ.
The time to compute F (x) is bounded by the time to evaluate functions from H times k.
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We note that the image of the mapping F has a very simple form: it is a scaled hypercube{
− 1√

k
, + 1√

k

}k
.

Proof. Draw k functions h from H and call them h1, . . . hk. Consider the function

F (x) =
1√
k
(E(h1(x)), E(h2(x)), . . . E(hk(x))),

where E : U → `2 is an “encoding function”, mapping the universe U into vectors of real numbers.
For now we assume that E is such that E(a) ·E(b) = 1 when a = b and E(a) ·E(b) = 0 when a 6= b;
we will relax this assumption later in the proof. Let χ[A] be the indicator random variable for an

event A, which is equal to 1 iff A is true. Then, we can see that F (x) · F (y) =
Pk

i=1 χ[hi(x)=hi(y)]
k .

Furthermore, by Chernoff bound, we have
∣∣∣∣F (x) · F (y)− Pr

h
[h(x) = h(y)]

∣∣∣∣ ≤ ε/2

with probability at least 1 − δ/3. Finally, using the definition of ε-approximate K-kernel hash
functions H, we deduce that |F (x) · F (y)−K(x, y)| ≤ ε + ε/2 with probability at least 1− δ/3.

It remains to describe the encoding function E. A simple approach is to encode the universe
U in a unary format, that is, map symbols a ∈ U into a vectors of length U with exactly one
coordinate equal to 1. However this is inefficient, since it multiplies the target dimension k by |U |.
Instead, for each coordinate i ∈ [k], we choose a random map Ei : U → {−1, +1}, and take

F (x) =
1√
k
(E1(h1(x)), E2(h2(x)), . . . Ek(hk(x))).

It is easy to see that even after this simplification, |F (x) ·F (y)−K(x, y)| ≤ 2ε with probability
at least 1−δ. Indeed, let c be the number of indexes i such that hi(x) = hi(y). Then F (x)·F (y) is a
sum of c ones and k− c independent random variables chosen uniformly at random from {−1,+1}.
We already showed that |c/k −K(x, y)| ≤ ε + ε/2. By Chernoff bound, the sum of the other k − c
values is at most ε/2 ·k with probability at least 1−δ/3. The conclusion follows from an application
of the triangle inequality.

2.3 Some families of kernel hash functions

We now show how known LSH families of functions yield families of (approximate) kernel hash
functions for various kernels. By Lemma 2.2, we immediately obtain efficient maps F into low-
dimensional kernel spaces, for corresponding kernels. Please refer to [5] for further information
about the LSH functions.

We defer the proofs of the lemmas from this section to the appendix.
Laplacian kernel. Consider the d-dimensional Manhattan space S = `d

1 and the Laplacian kernel
L(x, y) = e−‖x−y‖1/σ. We show that, for any ε > 0, this space admits a family of ε-approximate
L-kernel hash functions based on the LSH functions of [3, 2]. The final resulting map is similar to
the second construction of [17].

We show how to pick a hash function h ∈ H. Fix parameters p = 2/ε and t = σ · p. Then
construct p random functions fi, i = 1 . . . p, by imposing a randomly shifted regular grid of side
length t. Formally, we choose s1, . . . sd at random from [0, t), and define

fi(x1, . . . , xd) , (b(x1 − s1)/tc, . . . , b(xd − sd)/tc).
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The kernel hash function h is simply a concatenation of fi chosen as above: h(x) = (f1(x), f2(x), . . . fp(x)).

Lemma 2.3. Let ε > 0. Suppose h is a hash function chosen as above. Then, for any x, y ∈ `d
1,

we have
∣∣Prh[h(x) = h(y)]− L(x, y)

∣∣ ≤ ε.

We note that the same result holds for the Laplacian kernel in the Euclidean space (instead of
`1), namely L2(x, y) = e−‖x−y‖2/σ. To obtain the family, we use the exact same hash functions as
above except that, for each fi, we rotate its grid at random beforehand.
Near-Gaussian kernel. Consider the d-dimensional Euclidean space S = `d

2 and the kernel
Kerfc(x, y) = erfc(‖x−y‖2/σ)

2−erfc(‖x−y‖2/σ) , where erfc(x) = 2√
π

∫∞
x e−t2dt is the Gauss error function. As we

show in a moment, this function approximates well the Gaussian kernel e−‖x−y‖22/σ2
.

A KHF for Kerfc follows from the LSH family in [4], which generates a hash function h(x) as
follows. Set t = O( 1

ε2
log 1/ε) and w = 1

2
√

2

√
tσ. First pick a random projection from Rd to Rt,

denoted by the matrix A. Then, in the projected t-dimensional space, pick U = 2O(t log t) grids of
balls of radius w, where a grid u ∈ [U ] of balls is the (infinite) set of balls with centers at 4w ·Zd+su

for a random translation su ∈ [0, 4w)d. Finally, define h(x) as the index of the ball with the smallest
u ∈ [U ] that contains the point Ax, the projection of x.

Lemma 2.4. Let ε > 0. Suppose h is a hash function chosen as above. Then, for any x, y ∈ `d
2,

we have
∣∣Prh[h(x) = h(y)]−Kerfc(x, y)

∣∣ ≤ ε. The function h can be evaluated in time 2Õ(1/ε2).

We note that this same family can be used for the Gaussian kernel G(x, y) = e−‖x−y‖22/σ2
,

although we do not achieve an approximation for arbitrary value of ε > 0. However, the following
lemma proves that the above family is 0.16-approximate family of G-kernel hash functions.

Lemma 2.5. Suppose h is a hash function chosen as above for fixed t = O(1) and w = O(1). Then,
for any x, y ∈ `d

2, we have
∣∣Prh[h(x) = h(y)]−G(x, y)

∣∣ ≤ 0.16. The function h can be evaluated in
constant time.

Jaccard kernel. Consider the space of sets over some universe W , namely S = {A : A ⊆ W},
under the kernel KJ(A,B) = |A∩B|

|A∪B| .
Here, a KHF follows from the standard min-hash functions designed by [9, 10]. A hash function

is chosen as follows. Pick a random permutation π on the ground universe W . Then, define
hπ(A) = min{π(a) | a ∈ A}. The family is 0-approximate kernel hash function.
Geodesic kernel. Consider a hypersphere in d-dimensional space S = Sd−1 with the kernel
Kθ(x, y) = 1 − θ(x,y)

π , where θ(x, y) is the angle between vectors x and y which is proportional to
the geodesic distance from x to y on the hypersphere.

Here, a KHF follows from the “random hyperplane” hash function designed by Charikar [11]
(inspired by [14]). A hash function is chosen as follows. Pick a random unit-length vector u ∈ Rd,
and define hu(x) = sign(u · x). The hash function can also be viewed as partitioning the space into
two half-spaces by a randomly chosen hyperplane passing through the center. The resulting family
is a family of 0-approximate Kθ-kernel hash functions.
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A Proofs of the KHF property of families from Section 2.3

Proof of Lemma 2.3. The proof follows directly from Lemma 4.1.1 in [2], which states that for any
fi, i = 1 . . . p,

1− ‖x− y‖1/t ≤ Pr
fi

[fi(x) = fi(y)] ≤ e−‖x−y‖1/t.

Since Prh[h(x) = h(y)] =
∏p

i=1 Prfi [fi(x) = fi(y)], the probability of collision under h is

(1− ‖x− y‖1/t)p ≤ Pr
h

[h(x) = h(y)] ≤ e−‖x−y‖1p/t.

If we let ∆ = ‖x− y‖1/σ, then ‖x− y‖1/t = ∆/p. We use the approximation 1− ξ ≥ e−ξe
−ξ2

1−ξ for
ξ ≤ 1

2 and e−ξ ≥ 1− ξ. Then, for ∆/p ≤ 1/2, we obtain
∣∣∣∣Pr

h
[h(x) = h(y)]− e−‖x−y‖1/σ

∣∣∣∣ ≤ e−∆−e−∆·e−p
(∆/p)2

1−∆/p ≤ e−∆

(
1−

(
1− p

(∆/p)2

1−∆/p

))
≤ 2

p
max
∆≥0

∆2

e∆
.

Since max∆≥0 ∆2/e∆ ≤ 1 and p = 2/ε, the above quantity is upper-bounded by ε. For ∆ > p/2 =
1/ε, the conclusion follows immediately since, in this case, e−‖x−y‖1/σ < ε.

Proof of Lemma 2.4. We use the analysis of this hash function presented in [4]. First, Lemma 3.1
of [4] proves that the entire space Rt will indeed be covered by balls with probability at least
1 − 2−Ω(t log t) ≥ 1 − ε/4. Second, we argue that after the projection into Rt is performed, the
incurred distortion of ‖x − y‖2 is negligible. Indeed, let ∆ = ‖x − y‖2. Johnson-Lindenstrauss
lemma says that ∆′ = ‖Ax − Ay‖2 is within a multiplicative factor of 1 + ε/8 of ∆. Then,
|Kerfc(x, y) − Kerfc(Ax,Ay)| = |Kerfc(∆) − Kerfc(∆′)| = |K ′

erfc(ξ)| · |∆ − ∆′| ≤ ε/3 where ξ ∈
[∆(1− ε/8),∆(1 + ε/8)].

Finally, Eqn. (1) in [4] states that

Pr[h(Ax) = h(Ay)|‖Ax−Ay‖2 = ∆′] =
I(∆′/2, w)

1− I(∆′/2, w)
,

where I(∆′/2, w) is the probability that a random point chosen from a ball of radius w has its first
coordinate at least as big as ∆′/2. We can approximate the distribution of the first coordinate
of a random point from a ball as a Gaussian of variance 1

t w
2 (cf. [13]). The probability that a

random Gaussian of variance 1
t w

2 is greater than ∆′/2 is precisely 1
2 erfc(∆′ ·

√
t

2
√

2w
). Thus, we

obtain that |I(∆′/2, w) − 1
2 erfc(∆′ ·

√
t

2
√

2w
)| ≤ O(1/t) ≤ ε/20 (cf. [13]). This further implies that

∣∣ I(∆′/2,w)
1−I(∆′/2,w) −Kerfc(∆′)

∣∣ ≤ ε/4.
In the end, we conclude that |Prh[h(x) = h(y)]−Kerfc(x, y)| ≤ ε.

Proof of Lemma 2.5. We observe that max∆∈[0,∞)

∣∣∣e−∆2 − erfc(0.4∆)
2−erfc(0.4∆)

∣∣∣ ≤ 0.158. The lemma then
follows by Lemma 2.4 for ε = 0.001.
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