
Learning Sparse Polynomial Functions

Alexandr Andoni∗

MSR
Rina Panigrahy†

MSR
Gregory Valiant‡

Stanford and MSR
Li Zhang§

MSR

November 4, 2013

Abstract

We study the question of learning a sparse multi-
variate polynomial over the real domain. In particular,
for some unknown polynomial f(~x) of degree-d and k
monomials, we show how to reconstruct f , within error
ε, given only a set of examples x̄i drawn uniformly from
the n-dimensional cube (or an n-dimensional Gaussian
distribution), together with evaluations f(x̄i) on them.
The result holds even in the “noisy setting”, where
we have only values f(x̄i) + g where g is noise (say,
modeled as a Gaussian random variable). The runtime
of our algorithm is polynomial in n, k, 1/ε and Cd where
Cd depends only on d. Note that, in contrast, in the
“boolean version” of this problem, where x̄ is drawn
from the hypercube, the problem is at least as hard as
the “noisy parity problem,” where we do not know how
to break the nΩ(d) time barrier, even for k = 1, and
some believe it may be impossible to do so.

1 Introduction

Let f(~x) denote a function over n-tuple ~x =
(x1, ..., xn) ∈ X, drawn from some distribution over X.
The problem of learning a class C of such functions is
the problem of approximating a function f ∈ C up to
a small error, given access to the function evaluations
on a random set of samples: (~x1, f(~x1)), . . . (~xm, f(~xm))
[Val84]. The fundamental question of learning theory is
“For which classes, C, and which distributions, can one
efficiently learn?”

In the theoretical computer science literature, some
of the most well-studied questions are for learning
boolean functions, where the function f ∈ C has binary
inputs and outputs. This is well-reasoned in TCS as
many of the encountered functions are boolean. For
example, some of the fundamental classes to learn in-
clude parity function f(~x) =

∏
i∈S xi for ~x ∈ {−1,+1}n,

DNF functions where f(~x) is a k-term DNF function on

∗andoni@microsoft.com
†rina@microsoft.com
‡gregory.valiant@gmail.com
§lzha@microsoft.com

~x ∈ {−1,+1}n, juntas, and others.
As an illustrating example, let us elaborate on learn-

ing the parity function, which has emerged as a core
problem not only in learning, but also in other fields
such as coding and cryptography. Consider a parity
function f(~x) =

∏
i∈S xi on d = |S| variables. In the

vanilla “noise free” setting, learning noisy parity is a
simple problem: Gaussian elimination works with high
probability as long as we have m = Ω(n) samples. How-
ever, such approaches fall apart when we consider the
“noisy version”, where one gets evaluations f(~x) cor-
rupted by some random noise (say, the output is flipped
with some probability η ∈ (0, 1/2)). In this setting,
despite years of research, the best algorithms run only
modestly faster than the trivial O(n/d)d: [BKW03] gave

an algorithm running in 2
O
(

n
logn

)
time and [Val12] gave

an O(n0.8d) runtime. In fact the problem (and its vari-
ants) has been used as a “hard problem” in crypto-
graphic settings [Ale03, Reg05, Pei09, ABW10].

While the learning theory community has placed
more attention on learning in the Boolean setting,
many of the real-world functions we encounter are real-
valued. It is tempting to speculate that learning real-
valued functions is morally similar to learning boolean
functions. After all, for example, one of the powerful
tools for learning Boolean functions is to use invariance
principle that allows one to switch between learning
Boolean functions and real-valued functions easily (see,
e.g., [FGRW09, HKM12]).

However, we argue that there may be notable dif-
ferences, and a more systematic study of learn-ability of
real-valued functions may reveal a richer theory. Sur-
prisingly, even learning of monomials f(~x) =

∏
i∈S xi

over real ~x, or sparse low-degree polynomials, has not
been studied before, to the best of our knowledge.

A learning algorithm. In this paper, we address
this gap and provide one such surprising difference: it
turns out that one can learn the real-valued equivalent
of the noisy parity function. In particular, consider the
function f(~x) =

∏
i∈S xi where ~x is drawn uniformly

at random from the real cube [−1, 1]n, and |S| ≤ d.

We give an algorithm to learn the function f in time
O(n2O(d)), which holds even in the noisy setting. This
should be contrasted to the best runtime of nΩ(d) for
the case when ~x is uniform in {−1,+1}n.

More generally, we consider learning sparse poly-
nomials — we call a polynomial k sparse if it can be
represented by k-monomials (or k basis polynomials un-
der some product polynomial basis). We show that
we can learn a k-sparse degree-d real-valued polyno-
mial function within error ε in time O(n(k/ε)O(1)Cµ(d)),
under any product input distribution X = µn where
Cµ(d) depends on the distribution µ and degree d only.
In particular, for the uniform distribution over [−1, 1],
Cµ(d) = 2O(d), and for the Gaussian distribution over R,
Cµ(d) = 2O(d log d). Our algorithm, termed Growing-
Basis, appears in Section 2.

We include further discussion on learning arbitrary
real function in the statistical query model [Kea98] in
Section 3. Also see additional remarks in Section 4.

1.1 Related Work There have been a number of
positive learning results that deal with input distribu-
tions over high-dimensional real space like in our set-
ting. These include, for example, the results on learn-
ing the threshold or intersection of threshold functions
[Vem97, BK97, Lon95, KKMS05, KOS08] (but also
many others). We note that these results are similar in
spirit to learning boolean functions (the output of the
function is boolean), in part because the functions use
“boolean” operators (threshold), and in part because
they use very structured input distributions (such as
uniform distribution), allowing one to use Fourier ana-
lytic methods. In particular, many results would direct
to learn a few Fourier coefficients of the unknown func-
tion, and the main challenge is to prove that is this
enough. Such algorithms would naturally lead to only
a nΩ(d) time algorithms. (See also the related work of
[DLM+07], which give a testing algorithm for polyno-
mials over arbitrary fields, but their runtime depends
on the field size.)

For learning real-valued polynomials, a natural clas-
sical approach is to perform polynomial interpolation. It
seems reasonable to obtain runtime of essentially O(nd)
for learning such a polynomial: for example via Sup-
port Vector Machines with a polynomial kernel (see,
e.g., [SS02]). However, we are not aware of a more effi-
cient algorithm for polynomial interpolation for sparse
polynomials (including of a monomial).

Another related approach to learning sparse poly-
nomial might be via compressed sensing. In particular,
one can see a k-sparse polynomial P as a k-sparse vector
VP in the

(
n
d

)
dimensional space, with a coordinate per

each monomial of degree d. Evaluation of the function

at a random point ~x, corresponds to a “measurement”,
which is a scalar product of the vector VP with a vec-
tor ~x⊗d obtained from taking all degree-d moments of ~x.
Even if we could apply general compressed sensing tech-
nology for reconstructing VP from these measurements
— such as `1 LP [Don06, CT06] — such methods usually
have a runtime dependent on the ambient dimension,
O(nd) in our case, as opposed to the sparsity k. While
there are compressed sensing results that obtain recov-
ery time sublinear in the dimension, they are for very
specific or designed measurements (see, e.g., [CRT06,
GSTV06, CM06, GSTV07, IR08, GLPS12, PS12] and
references therein). It is unclear how to use these tech-
niques to the measurement matrix that we obtain from
degree-d moments of random vectors.

Finally, we also mention that there has been numer-
ous efforts in the machine learning community to learn
real-valued functions, as these are often much closer
to practice than the boolean setting. Of course, the
foremost example is exactly the aforementioned kernel
SVM algorithm, with O(nd) runtime. Very recently,
there has been work that more directly addresses learn-
ing real-valued polynomials, in particular the Vanishing
Components algorithm [LLS+13], and the deep-network
algorithm of [LSS13]. Yet their setting of learning a
polynomial is somewhat different, and does not seem to
readily apply to efficiently learning sparse polynomials.

1.2 Techniques We give the gist of our learning al-
gorithm next. The classic method for learning polyno-
mials is by correlating the target function, say P , with
each basis polynomial (or “monomial”) in certain or-
thonormal polynomial basis (determined by the sam-
pling distribution). By the orthogonality of the basis,
such correlation is precisely the coefficient of each basis
polynomial in the representation of P . The difficulty of
such a method is that we can learn some coefficient only
if we guess a full basis polynomial correctly as otherwise
the correlation is 0. Thus, such an approach seems to
require checking against nd degree-d basis polynomials
even when P contains only one basis polynomial.

The crux of our approach is to consider a product
basis and look for the correlation between the magnitude
of P and partial product basis functions. This allows
us to detect presence of particular variables, or their
degrees, to be more precise, in the monomials in P , even
if we don’t know the entire corresponding monomial.
Hence, we can “grow” monomials (polynomial basis
elements) variable by variable. Once we have learned
a participating monomial, we can remove it from P and
recurse on the rest. Unlike the case when we correlate P
with basis polynomial, there is “interference” from other
monomials. However we show that such interference

cannot happen to the highest degree term. Therefore
our algorithm identifies the highest degree term first and
then recursively extract the monomials one by one. This
is significantly different from the previous approaches in
which either the order is unimportant or the learning is
done from lower to higher degree.

We term our learning algorithm Growing-Basis,
and show that it can learn a polynomial in time that
is polynomial in n, k and Cµ, where Cµ is a constant
dependent on the input distribution, and is 2O(d) for
the uniform distribution and 2O(d log d) for the Gaussian
distribution.

We note that some aspects of our algorithm are sim-
ilar to an algorithm of [KST09] for learning boolean
sparse polynomials under a certain “smoothed model”.
Specifically, [KST09] consider the situation where the
input vector x ∈ {−1,+1}n comes from a p-biased dis-
tribution, where p itself is chosen at random from a fixed
range. To learn a sparse polynomial under this distribu-
tion, [KST09] also consider correlation of the square of
the unknown polynomial P with a “test variable”. How-
ever the two settings are quite different: for example to
learn whether a variable xk participates in a (noisy) par-
ity P =

∏
i∈S xi can be deduced directly from the cor-

relation E[Pxk] under the “smoothed model”1, but not
under the uniform or Gaussian distribution. Further-
more, in the boolean domain {−1,+1}n, it is enough
to consider only multi-linear polynomials, as opposed
to general higher-degree polynomials as in the real case
studied here.

2 Learning Algorithm for Sparse Polynomials

In this paper, we consider learning polynomials for
samples drawn from a given distribution D. The inner
product between two function f, g is defined as 〈f, g〉 =
Ex∼Df(x)g(x). Define ‖P‖ =

√
〈P, P 〉. Throughout

the paper, we assume ‖P‖ = 1. We say a procedure
learns a function P within error ε if it outputs a function
P̂ such that ‖P̂ − P‖ ≤ ε.

We further consider the case when D is a product
distribution D = µ1 × µ2 . . . × µn. We can construct
an associated basis for polynomials as follows. For each
i, construct polynomials H0(xi), H1(xi), . . . where Ht is
of degree t by performing Gram-Schmidt orthonormal-
ization on 1, x, x2, . . . with respect to the inner prod-
uct defined as 〈f, g〉 =

∫
f(x)g(x)µi(x)dx. This way,

we obtain 〈Hi(x), Hj(x)〉 = δij(where δij = 1 if i = j
and 0 otherwise), and Hi(x) has the degree i. For ex-
ample, if the distribution µ is the uniform distribution

1Once we condition on p, which one can essentially learn for

each sample by can computing it from the empirical bias of ones.
Then E[Pxk] = p|S| if k ∈ S and p|S|+1 otherwise.

over the interval [−1, 1] then this produces the Legen-
dre polynomial basis; if it is the Gaussian distribution
then it gives the Hermite polynomials. We will assume
that these polynomials have been normalized to have
unit norm, with respect to their corresponding distri-
butions. The product basis is constructed by taking
the product of basis polynomials for different xi’s. For
presentation simplicity, we assume all the µi’s are iden-
tical. For S = (S1, . . . , Sn) where Si is a non-negative
integer, define HS(~x) =

∏
iHSi(xi). Then HS consist

of an orthonormal basis with respect to D. Any poly-
nomial P can be written as P (~x) =

∑
S aSHS(~x) for

some reals aS ∈ R. The degree deg(P) of P is defined
as maxS:aS 6=0

∑
i Si. The sparsity k is defined as the

number of S such that aS 6= 0. While the sparsity may
vary according to the basis, it is robust for product basis
according to the following observation.

Lemma 2.1. For any two product basis H ′ and H ′′, if
P (~x) is k-sparse in H ′, then it is k2d-sparse in H ′′

where d = deg(P). Furthermore, a polynomial with k
monomials is k2d sparse in any product polynomial basis
H.

Proof. Suppose that H ′S(~x) =
∏
iH
′
Si

(xi) is a term in
the representation of P (~x) in H ′ basis. Each H ′Si(xi)

can be written as
∑Si
j=0H

′′
j (xi) since H ′′ is a basis. If

we expand H ′S(~x) with respect to H ′′ basis, we obtain∏
i(Si + 1) ≤ 2

∑
i Si ≤ 2d terms. Hence P (~x) has at

most k2d terms in H ′′ basis. Similarly, each
∏
i∈S x

di
i

can be decomposed into a sum of basis elements with
2d terms.

First we show that if we can accurately measure the
correlation between polynomials, there is an algorithm
to learn P within time O(kdn). Then we extend it to
the case when we can only estimate the correlation by
random samples, thereby proving our main result. The
number of required samples will depend on the distri-
bution µ, and in particular on two parameters defined
later. In particular, for the uniform distribution over
[−1, 1]n, the final runtime (and sample complexity) be-
comes O(poly(n, k, 2d, 1/ε)); and for Gaussian distribu-
tion — O(poly(n, k, 2d log d, 1/ε)).

2.1 Learning with a correlation oracle We first
consider the idealized case when an oracle returns
the accurate correlation between P (~x)2 and any basis
function Ht(~x). We first show that with such an oracle,
we can compute P (~x) in time O(kdn). We prove the
following theorem:

Theorem 2.1. Fix a distribution D = µn on Rn,
and let {Hi} be the polynomial basis under µ. Fix a

polynomial P that is n-variate, d-degree, and k-sparse
in {Hi}ni , for which we have access to a correlation
oracle for 〈f, P 〉 and 〈f, P 2〉 for any polynomial f of
choice. The Growing-Basis algorithm can learn the
polynomial P in time O(kdn) (i.e., with this many
oracle calls).

The gist of the algorithm is to detect all the basis
functions HS(~x) =

∏n
i=1HSi(xi) in P . This is done

by correlating the basis function with P (~x)2 and by
growing the basis function variable by variable. More
precisely, we examine the correlation 〈H2t(xi), P

2(~x)〉 to
detect presence of xi in P . Let di denote the maximum
degree of xi in P . We will show that if t = di, the above
correlation is non-zero; and if di < t, the correlation is
0. With these properties, we can check, from d down
to 0, for non-zero correlation with H2t(x1) to detect d1.
Once we obtain d1, by similar method we detect the
highest degree of x2 among all the terms that contain
the factor Hd1(x1). By repeating this, we can detect the
“largest” term in the “lexicographic order”, using only
O(dn) correlation queries. We then subtract this term
and repeat the process until we discover all the terms.

Algorithm 1 describes our Growing-Basis algo-
rithm more formally. In the algorithm, we assume
that we have the access to an oracle that, for any
given polynomials f , can evaluate the correlation of
the form 〈f(~x), P (~x)〉 and 〈f(~x), P (~x)2〉. From such
an oracle, we can also evaluate, for any polynomial
f(~x), g(~x), 〈f(~x), (P (~x) − g(~x))2〉 = 〈f(~x), P (~x)2〉 +
〈−2f(~x)g(~x), P (~x)〉+ 〈f(~x), g(~x)2〉.

In the following, we will show the correctness of the
Growing-Basis algorithm. The main observation we
will use is that for any t, Ht(x)2 has a constant term
and a term corresponding to H2t(x). That is H2

t (x) =∑2t
j=0 ct,jHj(x). The constant term c0 corresponding to

H0(x) = 1 must be one because 〈Ht(x), Ht(x)〉 = 1 for
the normalized basis function Ht, i.e.,

(2.1) H2
t (x) = 1 +

2t∑
j=1

ct,jHj(x) .

Thus the product of such squares when expanded will
produce basis polynomials in individual variables. Let
ct = ct,2t.

Lemma 2.2. Let bt = 〈H2t,0,...,0(~x), P 2(~x)〉 =
〈H2t(x1), P 2(~x)〉. If t > d1, then bt = 0. If t = d1,
then bt = ct

∑
S:Si=d1

a2
S, where d1 = maxS:aS 6=0 S1 is

the maximum degree of x1 in P (~x).

Algorithm 1 Growing-Basis polynomial learning
algorithm

Input: correlation oracles for 〈f(~x), P (~x)〉 and
〈f(~x), P (~x)2〉

Output: P̂
1: P̂ = 0;
2: while 〈1, (P − P̂)2〉 > 0 do
3: H = 1;
4: B = 1;
5: for r = 1 to n do
6: for t = d downto 0 do
7: Compute C = 〈H ·H2t(xr), (P − P̂)2〉;
8: if C > 0 then
9: H := H ·H2t(xr);

10: B := B ·Ht(xr);
11: continue to 14;
12: end if
13: end for
14: end for
15: Compute a = 〈B,P 〉;
16: Set P̂ = P̂ + a ·B
17: end while

Proof. We examine the expansion of P (~x)2:

P (~x)2 =

(∑
S

aS

n∏
i=1

HSi(xi)

)2

=
∑
S

a2
S

n∏
i=1

HSi(xi)
2 +

∑
S 6=T

aSaT

n∏
i=1

HSi(xi)HTi(xi)

=: ∆1 + ∆2 .

Since HS1(x)2 =
∑2S1

j=0 cS1,jHj(x), when t > S1,

〈H2t(x1), HS1
(x1)2〉 = 0. Similarly, when t > S1, T1,

〈H2t(x1), HS1(x1)HT1(x1)〉 = 0. This shows that when
t > d1 = maxS:aS 6=0 S1, bt = 0.

For t = d1, we will show that

〈H2t,0,...,0(~x),∆1〉 =
∑

S:S1=d1

a2
S and 〈H2t,0,...,0(~x),∆2〉 = 0 .

Consider each term bS = a2
S

∏n
i=1HSi(xi)

2 in ∆1.
By the above argument, if S1 < d1, then 〈H2t(x1), bS〉 =
0. If S1 = d1, by (2.1), we can write bS as

bS = a2
S

n∏
i=1

2Si∑
j=0

cSi,jHj(xi)

 .

We can expand the product and write bS in the
sum of product basis. We check the coefficient of the
term H2t,0,...,0(~x) in the expansion. This coefficient is

precisely the product the coefficient of H2t(x1) for x1

and H0(xi) for xi where 2 ≤ i ≤ n. By (2.1), it
is exactly ct,2t = ct. Hence 〈H2t,0,...,0(~x), bS〉 = cta

2
S .

Summing over all the S, we have 〈H2t,0,...,0(~x),∆1〉 =
ct
∑
S:Si=t

a2
S .

Consider a cross term bST =
aSaT

∏n
i=1HSi(xi)HTi(xi) in ∆2.

〈H2t,0,...,0(~x), bST 〉

= aSaT 〈H2t(x1), HS1
(x1)HT1

(x1)〉
n∏
i=2

〈H0(xi), HSi(xi)HTi(xi)〉

= aSaT 〈H2t(x1), HS1
(x1)HT1

(x1)〉
n∏
i=2

〈HSi(xi), HTi(xi)〉 .

Since S 6= T , there must exist i such that Si 6= Ti.
If i 6= 1, then 〈HSi(xi), HTi(xi)〉 = 0, and consequently
the above inner product is 0. If i = 1, since t ≥
S1, T1, and S1 6= T1, we have 2t > S1 + T1. Since
HS1

(x1)HT1
(x1) has degree S1 +T1, it can be written as

the linear combination of H0(x1), . . . ,HS1+T1
(x1). As

S1 + T1 < 2t, we must have

〈H2t(x1), HS1(x1)HT1(x1)〉 = 0 .

Combining both cases, we have 〈H2t,0,...,0(~x),∆2〉 =
0. This completes the proof.

The above lemma can be used to detect d1, the
highest degree of x1 present in one of the elements in
the basis representation of P (~x). We can extend this
analysis to finding a complete product basis iteratively.
We denote by � the alphabetic order between two equal
length integer sequence, i.e. S1 . . . Sr � T1 . . . Tr if there
is 1 ≤ i ≤ r + 1 such that Sj = Tj for 1 ≤ j < i and
Si < Ti. We define the r-maximal term in P as follows.

Definition 2.1. A basis polynomial HT for T =
T1 . . . Tr0 . . . 0 is called r-maximal for P , if there exists
S such that T � S and aS 6= 0; and if there is no S
such that T1 . . . Tr ≺ S1 . . . Sr and aS 6= 0.

Lemma 2.2 amounts to saying that we can detect
1-maximal basis. Now we show the same argument
can be used to detect the r-maximal basis for any
1 ≤ r ≤ n. This is done iteratively. Suppose that
we have already detected the r-maximal term t1t2 · · · tr.
We now extend it to the r+1-maximal term by checking
the correlation between H ′t := H2t1,2t2,··· ,2tr,2t,0,··· ,0 and
P (~x)2 for t = d, d− 1, . . . , 0.

Again we expand P (~x)2 into squared terms and
cross terms. For a squared term

bS = a2
S

n∏
i=1

HSi(xi)
2 = a2

S

n∏
i=1

2Si∑
j=1

(cSi,jHj(xi) + 1)

 .

We can expand the product and check the co-
efficient of H2t1,2t2,··· ,2tr,2t,0,··· ,0 in the above expan-
sion. Consider the first r variables, since t1t2 · · · tr is
r-maximal, there are two cases 1) when there is i ≤ r
such that Si < ti. In this case, H2ti(xi) would not ap-
pear in the expansion so 〈H ′t, bS〉 = 0; 2) when Si = ti
for all 1 ≤ i ≤ r. In this case, if t > Sr+1, again we have
〈H ′t, bS〉 = 0. When t = Sr+1, the coefficient of H ′t in

the expansion is a2
S

∏r+1
i=1 cSi . Suppose that t1, · · · , tr+1

is r + 1-maximal. Then if t > tr+1, 〈H ′t, bS〉 = 0, and if
t = tr+1,

〈H ′t, bS〉 =
∑

S:∀1≤i≤r+1 Si=ti

a2
S

r+1∏
i=1

cSi .

Now for the cross term bST =
aSaT

∏
iHSi(xi)HTi(xi). Again since S 6= T , there

exists i such that Si 6= Ti. Consider the minimum of
such i’s. If i > r + 1, clearly 〈H ′t, bST 〉 = 0. When
i ≤ r+ 1, by the minimality of i, tj = Sj = Tj for j < i.
By the maximality of t1 · · · trt (since we only consider
t ≥ tr+1), it must be that ti ≥ Si, Ti. Since Si 6= Ti, we
have 2ti > Si + Ti and hence 〈H ′t, bST 〉 = 0.

From the above analysis, we now have the following
generalization of Lemma 2.2

Lemma 2.3. Suppose that T is r-maximal in P (~x).
Suppose that tr+1 is the maximum degree of xr+1 among
all the basis polynomials that contain

∏r
i=1Hti(xi). Let

bt = 〈H2t1,··· ,2tr,2t,0,··· ,0(~x), P (~x)2〉. If t > tr+1, then
bt = 0, and if t = tr+1, then

bt =

r+1∏
i=1

cti ·
∑

S :Si=ti,∀1≤i≤r+1

a2
S .

The above lemma gives an algorithm for finding
one non-zero basis, or more precisely the maximal (in
alphabetical order) non-zero basis, in the expansion of
P (~x). Suppose that we already decide that P contains
a non-zero basis which contains Ht1(x1) . . . Htr (xr), we
can then apply the above lemma to check the correlation
between H2t1,··· ,2tr,2t,0,··· ,0(~x) and P (~x)2 by setting t
from d down to 0. We set tr+1 to the largest t such
that the above correlation is positive. And repeat this
process until r = n. Once we discover a basis and its
coefficient, we can subtract it from P , and repeat the
process until we obtain all the non-zero basis of P . This
proves the correctness of Algorithm 1.

The query time of the algorithm is O(dn) for
discovering each non-zero basis. So in total it is O(kdn)
time.

2.2 Learning by random samples In the previ-
ous section, we showed how to learn a sparse polyno-

mial efficiently when we are given a correlation ora-
cle. We now extend the algorithm to the case when
we only obtain samples of the form ~x, P (~x). We will
use the algorithm from above but using empirical esti-
mate of the correlations computed from the given sam-
ples. To be able to bound the number of required sam-
ples, we need to define the following two parameters:
MP = maxH E~x∼D[H(~x)2P (~x)4] where H ranges over
all the degree 2d basis with respect to the distribution
D, and τd = mint≤d ct. Also, we define the error be-

tween P and P̂ as ‖P̂ − P‖ =

√
〈P̂ − P, P̂ − P 〉 =√∑

S(aS(P̂)− aS(P))2.

We prove the following theorem with the depen-
dence on the values of M and τ . Later we show that
we can bound MP as a function of the distribution D,
and that both parameters are at most exponential in
d for standard input distributions such as the uniform
and the Gaussian distribution.

Theorem 2.2. Suppose we are given a polynomial P
on n variables, of degree d and sparsity k. Let ~x ∈
Rn be drawn according to a product distribution µn,
where µ has parameters M and τd. Then, given E =
O(MP poly(n, k, (1/τd)

d, 1/ε)) samples, we can learn P
within error ε with high probability. The running time is
bounded by O(End). When the sampled function value

has independent noise, e.g. f̃(~x) = f(~x) + g where g is
independent Gaussian noise N (0, σ2), the same bounds
apply with a multiplicative factor of poly(1 + σ).

Proof. In order to emulate the correlation oracle, we
estimate CH = 〈H(~x), P (~x)2〉 =

∫
H(~x)P (~x)2µ(~x)d~x

empirically. For m random samples (~xi, P (~xi)), the
estimate becomes:

ĈH =

m∑
i=1

H(~xi)P (~xi)
2/m .

ĈH approximates CH within additive error ε1
with constant probability, as long as we have m =

O
(

E[H2P 4]
ε21

)
samples (using Chebyshev inequality). To

boost the probability of success to 1− δ, we repeat the
estimator O(log 1/δ) times and take the median of the
obtained values.

By Lemma 2.3, 〈H2t1,...,2tn(~x), P (~x)2〉 =∏
i ctia

2
t1,...,tn . Since c0 = 1, we have that∏

i cti ≥ τdd , where d is the degree of P (~x). In
addition, by Theorem 2.1, we only make O(knd)
correlation queries, so to achieve the error of ε, it
suffices to set ε1 = ε2/(kn(1/τd)

d) and hence take
O(MP poly(n, k, (1/τd)

d, 1/ε)) samples. When we run
algorithm in Lemma 2.3 with respect to the simulated

correlation oracle, we set a cutoff κ = ε/(kn(1/τd)
d) in

steps 2 and 8: namely, if the correlation is below κ, we
treat it as 0. The error now may come from several
sources: 1) some small terms missed due to the cutoff;
2) accumulated error by the subtracting process; 3) the
estimation error of the coefficient of a non-zero term.
By the choice of ε1 and κ and a simple union bound,
we can see the total error is bounded by ε with high
probability.

The computational time requires the extra factor
to evaluate H(~x), which is bounded by O(nd) per
evaluation.

When the sampled function value has independent
noise, since we compute the correlation up to the
fourth moment, by standard concentration bound we
can obtain the claimed bounds.

The above theorem is stated in terms of MP and τd.
Now we show specific bounds for these two values for the
uniform and Gaussian distributions. For the uniform
distribution over [−1, 1]n, the corresponding orthogonal
polynomial basis is the (normalized) Legendre polyno-
mials; and for Gaussian distribution, the (normalized)
Hermite polynomials [Sze89]. From the standard rep-
resentation of both polynomials, it is easily seen, by
checking the coefficient of the leading monomial of Hd,
that cd = Ω(1) for both families. To bound MP , we
assume that P (~x) is normalized, i.e 〈P (~x), P (~x)〉 = 1.
Denote by Md,k = maxP,H E[H2P 4] where the maxi-
mum is over degree-d, k-sparse polynomial P with unit
norm and degree-2d basis H. We first consider the case
when D is uniform over [−1, 1]n, and H is the product
of Legendre polynomials. For the normalized Legen-
dre polynomial, we have that |Hdi(xi)| ≤

√
2di + 1 for

x ∈ [−1, 1]. Hence, for ~x ∈ [−1, 1]n,

|HS(~x)| =
∏
i

|HSi(xi)| ≤
∏
i

√
2Si + 1 ≤

∏
i

2Si = 2d .

Hence |P (~x)| = |
∑
S aSHS(~x)| ≤ 2d

∑
S |aS | for

~x ∈ [−1, 1]n. By Parseval identity,
∑
S a

2
S = 1, and

by P is k-sparse,
∑
S |aS | ≤

√
k. Therefore |P (~x)| ≤

2d
√
k for ~x ∈ [−1, 1]n. Hence H(~x)2P (~x)4 ≤ 26dk2

if deg(P) ≤ d, and H is a degree 2d basis. That is
Md,k = O(poly(2d, k)). Similarly, we can bound Md,k

for Gaussian distribution and Hermite polynomials.
Since the range of Gaussian distribution is (−∞,∞)n,
we can no longer bound the uniform norm of H(~x) and
P (~x). But it suffices to consider the range where |xi| =
O(
√
d log d). By examining the coefficients of Hermite

polynomial, we can apply the same reasoning as above
to obtain a bound of Md,k = O(poly(2d log d, k)). We
emphasize that the dependence of sampling complexity
on d is 2O(d) for the uniform distribution and 2O(d log d)

for Gaussian distribution, which is constant for constant
d.

According to Lemma 2.1, changing the product
basis, for example to the standard polynomial basis,
only incurs a multiplicative factor of 2O(d). Hence, we
have

Corollary 2.1. If P (~x) is k-sparse in Legendre or
standard polynomial basis, it can be learned within ε
error with O(poly(n, k, 2d, 1/ε)) samples uniformly from
[−1, 1]n. Similar bound, replacing 2d by 2d log d, holds
for Hermite or standard polynomial basis with respect
to the Gaussian distribution.

3 Statistical Queries and Real Functions

The statistical query learning model captures a large
class of noise-robust learning algorithms [Kea98]; infor-
mally, it is the class of algorithms whose only interaction
with the function to be learned is via noisy estimates of
certain statistics of the example-label pairs (x, f(x)). In
this section we briefly mention one of the complications
of considering learning real-valued functions in the sta-
tistical query model.

Definition 3.1. Given a distribution D over a set S,
and a function f : S → R, a statistical query oracle
of tolerance τ takes, as input, an arbitrary function
g : S × R → R, and outputs some value v satisfying
|v−Ex←D[g(x, f(x))]| ≤ τ. A statistical query algorithm
for learning a concept class F = {f} is an algorithm
whose only access to the function to be learned f ∈ F
is via (possibly adaptive) queries to a statistical query
oracle.

The most well-known impossibility result for the
statistical query learning model is the problem of learn-
ing parity with noise [BFJ+94]. Specifically, given the
concept class consisting of the 2n parity functions over
the Boolean cube, any statistical query algorithm that,
with high probability, can weakly learn this concept
class must either ask 2Ω(n) queries, or ask queries with
inverse exponential tolerance. The intuition for the diffi-
culty of learning this concept class via statistical queries
is that for any pair of distinct parity functions, f, f ′ the
distributions f(x), f ′(x) induced by x← {0, 1}n are in-
dependent. In the following example, we describe a nat-
ural real-valued analog of this function, and show that
it is statistically query learnable.

Example 3.1. Consider the class of functions {fS},
with fS : [0, 2π]n → [−1, 1], indexed by each subset
S ⊂ [n]. Define fS(x) = cos(

∑
i∈S xi). Note that each

such function is
√
n-Lipschitz, and that for S 6= S′, the

distributions of fS(x), fS′(x) over x ← Unif ([0, 2π]n)

are independent. Nevertheless, it is easy to construct
a set of n statistical queries which, when queried with
tolerance τ < 1/2, allow one to learn fS: let gi(x, y) =
±1 according to whether there exists a set T ⊂ [n] such

that i ∈ T and cos
(∑

j∈T xj

)
= y. Note that E[gi(x, y)]

is the indicator of whether i ∈ S.

The above example illustrates the potential com-
plications that arise from considering real-valued func-
tions in the statistical query model. This is not strictly
an issue with the infinite dimensionality of the space
of functions from R→ R; if we restrict the domain and
range of the functions to be an extremely fine finite grid,
the above example still persists. The following theorem
quantifies this relationship between the statistical query
learnability and the granularity of the range of the func-
tions in the class.

Theorem 3.1. Given an arbitrary finite set S, a finite
set T ⊂ [0, 1], a concept class F ⊂ {f : S → T}
and a distribution D over S, if there exist d functions
f1, . . . , fd ∈ F with identical marginal distributions
of fi(x) for x ← D, with the property that for all
h1, h2 : T → R for which Ex←S [h·(fi(x))2] ≤ 1, for
i 6= j,

|Ex←D[h1(fi(x))·h2(fj(x))]−

Ex←D[h1(fi(x))] · Ex←D[h2(fj(x))]| ≤ 1

d3
,

then any statistical query algorithm that asks queries
with tolerance τ ≥ 2

√
2|T |/d2.5 will require at least

dτ2

8|T | statistical queries in order to (weakly) learn concept

class F over D.

The proof of the above theorem follows the general
outline of the proof of the statistical query lower bound
of [BFJ+94].

We begin the proof by noting that the set of
functions that map S to R is a |S|-dimensional in-
ner product space, under the inner product 〈f, f ′〉 =
Ex←D[f(x) · f ′(x)]. Let sp(f) ⊂ {f ′ : S → R} denote
the span of h1(f(x))−Ex←D[h1(f(x))], . . . , h|T |(f(x))−
Ex←D[h|T |(f(x))], where hi : T → R is defined so that

for T = {x1, . . . , x|T |}, hi(xi) = 1/
√
|T | and for j 6= i,

hi(xj) = 0. Note that these functions form an orthonor-
mal basis for maps from T → R under the inner product
〈h, h′〉 = Ex←Unif [T][h(x) · h′(x)].

For each function fi, let αi,1, . . . , αi,|dim(sp(fi))| de-
note an orthonormal basis for sp(fi). We now extend
the set {αi,j} into a basis for functions that map S → R,
by adding functions α′1, . . . , α

′
s, with the properties that

||α′i|| = 1, 〈α′k, αi,j〉 = 0, and 〈α′i, α′j〉 = 0.

We extend the distribution D over S to the distri-
bution D′ over S × T defined by D′ = D × unif(S).
For each αi,j , define βi,j,k : S × T → R by βi,j,k(x, y) =
hk(y)αi,j(x), for hk as defined above. Similarly, we de-
fine β′i,k = hk(y)α′i(x). Note that the space of functions
from S × T → R is a finite dimensional inner product
space (over the reals) with respect to the inner product
defined by 〈t, t′〉 = E(x,y)←D′ [t(x, y) · t′(x, y)], spanned
by the set {βi,j,k} ∪ {β′i,k}.

We first claim that the αi,j , and hence the βi,j,k are
linearly independent.

Lemma 3.1. The set {αi,j}∪{α′i} are linearly indepen-
dent.

Proof. Note that since, by definition, the span of
{αi,j,k} is orthogonal to the span of {α′i}, it suffices
to prove that it cannot happen that (without loss of
generality) α1,1 =

∑
(i,j)6=(,1) ci,jαi,j , for constants ci,j .

Assume, for the sake of contradiction, that such an iden-
tity holds. Thus we have the following:

0 = ||α1,1 −
∑

ci,jαi,j ||

= 1− 2
∑
i>1,j

ci,j〈α1,1, αi,j〉

+
∑

i,j,i′,j′

ci,jci′,j′〈αi,j , αi′,j′〉

≥ 1 +
∑
i,j

c2i,j − 2
∑
i>1

∣∣∣∣∣∣〈α1,1,
∑
j

ci,jαi,j〉

∣∣∣∣∣∣
−
∑
i 6=i′

∣∣∣∣∣∣〈
∑
j

ci,jαi,j ,
∑
j

ci′,jαi′,j〉

∣∣∣∣∣∣(3.1)

Defining m = maxi∈[d]

√∑
j∈|T | c

2
i,j and using our

assumption that for h, h′ with E[h(fi(x))] = 0 =
E[h′(fi′(x))] and ||h(fi)|| = ||h′(fi′)|| = 1, for i 6= i′,
〈h(fi), h

′(fi′)〉 ≤ 1/d3, we have that

2
∑
i>1

|〈α1,1,
∑
j

ci,jαi,j〉| ≤
2

d3

∑
i>1

√∑
j

c2i,j ≤
2m

d2
,

and the final term in Equation 3.1 is similarly upper

bounded by m2

d , whereas, trivially, the second term
in Equation 3.1 is bounded below by m2. Hence
Equation 3.1 yields the following contradiction:

0 ≥ 1 +m2(1− 1

d
)− 2m

d2
> 0,

where the final inequality holds for any d ≥ 2.

The above establishes that, although the vectors
{βi,j,k, β′i,k} are not orthogonal, any function g : S ×

T → R has a unique representation in this basis. The
following lemma shows that if ||g|| = 1, the sum of the
squares of the coefficients in such a representation is
bounded by 2.

Lemma 3.2. For a function g : S × T → R with
E(x,y)←D′ [g(x, y)2] = 1, and g =

∑
i,j,k c

2
i,j,kβi,j,k +∑

i,k ci,kβ
′
i,k, it holds that

∑
i,j,k c

2
i,j,k +

∑
i,k c

2
i,k ≤ 2.

Proof. As the spans of the βs and the β′s are orthogonal,
and the β′i,k form an orthonormal basis for the space
they span, it suffices to prove the claim for a function
g ∈ span({βi,j,k}).

Note that for any (j, k) 6= (j′, k′), 〈βi,j,k, βi,′j′,k′〉 =
0, hence

∑
j,k c

2
i,j,k = ||

∑
j,k ci,j,kβi,j,k||2. Let ci =√∑

j,k c
2
i,j,k and vi = 1

ci

∑
j,k ci,j,kβi,j,k. Hence we have

g =
∑
i civi. Recall that ||vi|| = 1, and for i 6= j,

|〈vi, vj〉| ≤ 1
d3 .

The proof now follows easily. First, assuming
without loss of generality that maxi ci = c1, we show
that c1 < 2. If this were not the case, then projecting
g onto v1 would yield a vector of length at least
c1 − 2

∑
i≥2 ci〈v1, vi〉 ≥ c1 − 2c1/d

2 > c1/2, (for d ≥ 2)
contradicting the fact that ||g|| = 1, and hence the norm
of its projection onto any unit vector can be at most 1.

Given this bound on the maximum ci, and the fact
that 1 = ||g|| =

∑
i c

2
i +
∑
i6=jj cicj〈vi, 〈vj〉, we have that∑

i c
2
i ≤ 1 + d2 4

d3 < 2 for any d > 4.

We now complete our proof of Theorem 3.1.

Proof. [Proof of Theorem 3.1] Given a statistical query
g(x, y) =

∑
i,j,k ci,j,kβi,j,k +

∑
i,k ci,kβ

′
i,k expressed in

the basis {βi,j,k} ∪ {β′i,k}, consider Ex←D[g(x, fr(x))]
for some r ∈ [d]. We first consider the contribution from
the ci,kβ

′
i,k terms:

Ex←D[ci,kβ
′
i,k(x, fr(x)]

= ci,kEx←D[hk(fr(x))α′i(x)]

= ci,k (Ex←D [(hk(fr(x))− E[hk(fr(x))])α′i(x)]

+ Ex←D[hk(fr(x))]Ex←D[α′i(x)])

= ci,kEx←D[hk(fr(x))]Ex←D[α′i(x)].

Where the last line above follows since α′i is orthogonal
to sp(fr). Now, note that by our assumption that the
marginal distribution of fi(x) are identical, the quantity
above is independent of fr.

We now consider the contributions from
the ci,j,kβi,j,k terms. Note that for any i,∑
j,k ci,j,kβi,j,k(x, y) =

∑
k hk(y)

√∑
j c

2
i,j,ktk(x), for

some tk ∈ sp(fi) with ||t|| = 1. Taking the expectation
of this with y = fr(x) for a single i 6= r, has magnitude

bounded above by

√
|T |
d3

√∑
j,k c

2
i,j,k. For i = r, this

expression is similarly bounded by
√
|T |
√∑

j,k c
2
i,j,k.

Because ||g|| = 1, from Lemma 3.2 there can be at most
w indices i ∈ [d] for which

∑
j,k c

2
i,j,k ≥ 2

w . Given that∑
j,k c

2
r,j,k ≤ 2

w a statistical query oracle can respond
with a value that is independent of the choice of the
true function fr provided the tolerance of the oracle, τ,

satisfies: τ ≥
√

2|T |/w +

√
|T |
d3

√
2d. Hence for r chosen

uniformly from [d], there is a constant c < 1 such that
no algorithm when given fewer than d

w will be able to
return a function f such that with probability at least
c, 〈f, fr〉 > O(1/

√
d).

4 Learning Arbitrary Functions

We now discuss learning arbitrary real functions. While
this may be a hard question in general, we hope to
gain some ground when the functions have additional
properties. Below, we show that one can learn L-
Lipshitz function in time nO(L/ε)2 , up to ε error.

4.1 Lipschitz Functions We start by noting that if
f is L-Lipschitz then there is a polynomial time algo-
rithm for learning f approximately, within an additive
error ε. We accomplish this by computing the low-level
Fourier coefficients of f (i.e., correlation of f with the
Fourier basis). It turns out that one only needs to look
at Fourier basis functions of degree at most O(L/ε)2 to
approximate within `2 error ε. Hence we can compute
all of them in time nO(L/ε)2 .

Theorem 4.1. Let f be a function over [−1, 1]n that
is square-integrable. If f is L-lipschitz, then f can
be approximated to within additive `2 error ε‖f‖ using
Fourier basis functions of degree at most O(L/ε)2.

Hence, f can be learned from random examples in
time nO(L/ε)2 . Furthermore, this number of examples is
optimal as there is a matching lower bound.

Proof. Suppose ‖f‖ = 1 and consider the decomposition
of f into Fourier basis:

f(~x) =
∑

m=(m1,...mn)∈Zn

f̂me
j(m~x),

where j is imaginary and m~x is a dot-product. The
gradient of f with respect to variable xi is:

∂f
∂xi

=
∑
m

mi · f̂mejm~x

Note that the `2 norm of the gradient must be at most
L. Integrating over all ~x gives us:

L2 ≥
∫ ∑

i

(
∂f
∂xi

)2

d~x =
∑
i

∑
m

f̂2
mm

2
i =

∑
m

f̂2
m‖m‖2.

Hence,
∑
m:‖m‖>L/ε f̂

2
m ≤ ε2.

Now the algorithm for learning the function f will
just learn each Fourier coefficient f̂m for ‖m‖ ≤ L/ε

directly as the empirical estimate of f̂m = E[f(~x)·ejm~x].

Note that, in constrast, a boolean function over the
unit cube g : {−1,+1}n → {−1,+1} is very hard to
approximate. Even for ε = 0.1, one requires Ω(2n)
time and sample complexity, as there are exp(Ω(2n))
functions that are all at least ε-far (that is at `2-distance
ε) from each other. For example if we take a class of
exp(O(2n)) randomly chosen boolean functions, they
are all ε-far from each other. Whereas for real valued
functions over the real cube, we get a much smaller
family of functions that are ε-far – only exp(n(L/ε)2).
The above theorem leads to the following observation.

Observation 4.1. One cannot interpolate (extend) a
boolean function on the unit cube {−1,+1}n to obtain
an L-Lipschitz functions over [−1, 1]n (for a constant
L), that preserve distances between any pair of functions
upto constant factors. By “preserving distance” we
mean that if two boolean functions differ on at least ε
fraction of the inputs, then their interpolations should
also be at least Ω(ε)-far in `2 distance.

4.2 Thresholded Polynomials Another natural
and important class of functions for learning are thresh-
olded polynomials functions that are boolean functions
given by f(~x) = P (~x) > θ where P (~x) is a polynomial.
This seems to be hard class in the worst case. Indeed
it is at least as hard as parity with noise. Perhaps it
becomes easier under some kind of smoothed analysis
there θ is chosen from a distribution.

Observation 4.2. The parity with noise problem is re-
ducible to the problem of learning thresholded polynomial
functions.

Proof. Suppose we are given a parity function f(~x) =∏
i∈S xi for some set S ⊂ [n] of size k, and we get noisy

samples f̂(~x) = f(~x) · (−1)bη where bη is a random η-
biased Bernoulli variable

Then consider the threshold polynomial sign(f̂(~x)).
It can also be seen as (has same distribution as) the
noisy threshold polynomial sign(

∏
i∈S ·(−1)bη′) for some

η′. Furthermore, the distribution of x (for the learning
of thresholded polynomials) is immaterial as long as it
is symmetric.

References

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigder-
son. Public-key cryptosystem from different assump-
tions. In Proceedings of the Symposium on Theory of
Computing (STOC), 2010.

[Ale03] Michael Alekhnovich. More on average case vs ap-
proximation complexity. In Proceedings of the Sym-
posium on Foundations of Computer Science (FOCS),
2003.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson,
Michael Kearns, Yishay Mansour, and Steven Rudich.
Weakly learning dnf and characterizing statistical
query learning using fourier analysis. In Proceedings
of the Symposium on Theory of Computing (STOC),
pages 253–262, 1994.

[BK97] Avrim Blum and Ravi Kannan. Learning an in-
tersection of a constant number of halfspaces under a
uniform distribution. Journal of Computer and System
Sciences, 54(2):371–380, 1997.

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman.
Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM, 50(4):506–519, 2003.

[CM06] Graham Cormode and S. Muthukrishnan. Combi-
natorial algorithms for compressed sensing. In Ann.
Conf. Information Sciences and Systems, 2006.

[CRT06] E. Candes, J. Romberg, and T. Tao. Robust
uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52:489 – 509,
2006.

[CT06] E. Candes and T. Tao. Near optimal signal recovery
from random projections: Universal encoding strate-
gies. IEEE Transactions on Information Theory, 2006.

[DLM+07] Ilias Diakonikolas, Homin K. Lee, Kevin Mat-
ulef, Krzysztof Onak, Ronitt Rubinfeld, Rocco A.
Servedio, and Andrew Wan. Testing for concise repre-
sentations. In Proceedings of the Symposium on Foun-
dations of Computer Science (FOCS), pages 549–558,
2007.

[Don06] D. Donoho. Compressed sensing. IEEE Transac-
tions on Information Theory, 52(4):1289 – 1306, 2006.

[FGRW09] Vitaly Feldman, Venkatesan Guruswami, Prasad
Raghavendra, and Yi Wu. Agnostic learning of mono-
mials by halfspaces is hard. In Proceedings of the Sym-
posium on Foundations of Computer Science (FOCS),
pages 385–394, 2009.

[GLPS12] Anna C. Gilbert, Yi Li, Ely Porat, and Martin
J. Strauss. Approximate sparse recovery: Optimizing
time and measurements. SIAM J. Comput., 41(2):436–
453, 2012.

[GSTV06] Anna Gilbert, Martin Strauss, Joel Tropp, and
Roman Vershynin. Algorithmic linear dimension re-
duction in the `1 norm for sparse vectors. In Allerton,
2006.

[GSTV07] Anna Gilbert, Martin Strauss, Joel Tropp, and
Roman Vershynin. One sketch for all: fast algorithms
for compressed sensing. In Proceedings of the Sympo-
sium on Theory of Computing (STOC), pages 237–246,
2007.

[HKM12] Prahladh Harsha, Adam Klivans, and Raghu
Meka. An invariance principle for polytopes. J. ACM,
59(29), 2012. Previously in STOC’10.

[IR08] Piotr Indyk and Milan Ruzic. Near-optimal sparse
recovery in the l1 norm. In Proceedings of the Sym-
posium on Foundations of Computer Science (FOCS),
pages 199–207, 2008.

[Kea98] Michael Kearns. Efficient noise-tolerant learning
from statistical queries. J. ACM, 45(6):983–1006, 1998.
Previously in STOC’93.

[KKMS05] Adam Kalai, Adam Klivans, Yishay Mansour,
and Rocco Servedio. Agnostically learning halfspaces.
In Proceedings of the Symposium on Foundations of
Computer Science (FOCS), pages 11–20, 2005.

[KOS08] Adam R. Klivans, Ryan O’Donnell, and Rocco A.
Servedio. Learning geometric concepts via gaussian
surface area. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), 2008.

[KST09] Adam Tauman Kalai, Alex Samorodnitsky, and
Shang-Hua Teng. Learning and smoothed analysis.
In Proceedings of the Symposium on Foundations of
Computer Science (FOCS), pages 395–404, 2009.

[LLS+13] Roi Livni, David Lehavi, Sagi Schein, Hila Nach-
liely, Shai Shalev-Shwartz, and Amir Globerson. Van-
ishing component analysis. In Proceedings of the
30th International Conference on Machine Learning
(ICML-13), pages 597–605, 2013.

[Lon95] P. Long. On the sample complexity of pac
learning halfspaces against the uniform distribution.
IEEE Transactions on Neural Networks, 6(6):1556–
1559, 1995.

[LSS13] Roi Livni, Shai Shalev-Shwartz, and Ohad
Shamir. A provably efficient algorithm for train-
ing deep networks. arXiv:1304.7045, available at
http://arxiv.org/abs/1304.7045, 2013.

[Pei09] Chris Peikert. Public-key cryptosystems from the
worst-case shortest vector problem. In Proceedings
of the Symposium on Theory of Computing (STOC),
2009.

[PS12] Ely Porat and Martin J. Strauss. Sublinear time,
measurement-optimal, sparse recovery for all. In Pro-
ceedings of the ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 1215–1227, 2012.

[Reg05] Oded Regev. On lattices, learning with errors,
random linear codes, and cryptography. In STOC
’05: Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 84–93, New
York, NY, USA, 2005. ACM.

[SS02] Bernhard Schölkopf and Alexander J. Smola. Learn-
ing with Kernels. MIT Press, Cambridge, MA, 2002.

[Sze89] Gabor Szegö. Orthogonal Polynomials. A.M.S.,
1989.

[Val84] Leslie Valiant. A theory of the learnable. Commu-
nications of the ACM, 27, 1984.

[Val12] Gregory Valiant. Finding correlations in sub-
quadratic time, with applications to learning parities
and juntas with noise. In Proceedings of the Symposium
on Foundations of Computer Science (FOCS), 2012.

[Vem97] S. Vempala. A random sampling based algorithm
for learning the intersection of halfspaces. In Proceed-
ings of the Symposium on Foundations of Computer
Science (FOCS), pages 508–513, 1997.

	Introduction
	Related Work
	Techniques

	Learning Algorithm for Sparse Polynomials
	Learning with a correlation oracle
	Learning by random samples

	Statistical Queries and Real Functions
	Learning Arbitrary Functions
	Lipschitz Functions
	Thresholded Polynomials

