
Efficient Sketches for Earth-Mover Distance, with Applications

Alexandr Andoni
MIT

andoni@mit.edu

Khanh Do Ba
MIT

doba@mit.edu

Piotr Indyk
MIT

indyk@mit.edu

David Woodruff
IBM Almaden

dpwoodru@us.ibm.com

Abstract— We provide the first sub-linear sketching algorithm
for estimating the planar Earth-Mover Distance with a constant
approximation. For sets living in the two-dimensional grid [∆]2,
we achieve space ∆ε for approximation O(1/ε), for any desired
0 < ε < 1. Our sketch has immediate applications to the streaming
and nearest neighbor search problems.

1. INTRODUCTION

For any two multisets A, B of points in R2, |A| = |B| =
N , the (planar) Earth-Mover Distance1 between A and B
is defined as the minimum cost of a perfect matching with
edges between A and B, i.e.,

EMD(A,B) = min
π:A→B

∑

a∈A

‖a− π(a)‖

where π ranges over all one-to-one mappings. Computing
the minimum cost bi-chromatic matching is one of the most
fundamental problems in geometric optimization, and there
has been an extensive body of work focused on designing
efficient algorithms for this problem [19], [25], [2], [3], [5],
[17], [1], [15].

Recently, there has been a significant interest in develop-
ing methods for geometric representation of EMD. The goal
of this line of research is to provide mappings (say, f) that
map a set of points A into a vector f(A) in a k-dimensional
space, such that the distance EMD(A,B) between any two
point sets can be approximated from the vectors f(A) and
f(B). To be useful, the space that f maps into must be
“simple”, e.g., its dimension k must be low, or its distance
estimation function should be of simple form. For example,
[5], [17] provide a mapping f that works when the sets A,B
are subsets of the discrete square grid [∆]2, and guarantees
that, for some absolute constant C > 0, we have

‖f(A)−f(B)‖1 ≤ EMD(A, B) ≤ C log ∆·‖f(A)−f(B)‖1.
Geometric representations of EMD have found applica-

tions in several areas, including:
• Data streaming computation: The mapping of EMD

into `1, combined with `1-distance-preserving map-
pings into low-dimensions [14], yields an efficient

This work was supported in part by NSF CAREER award CCR-0133849,
David and Lucille Packard Fellowship and Alfred P. Sloan Fellowship.

1Variants of this notion are also known as the transportation distance or
bi-chromatic matching distance.

algorithm for estimating the EMD between a set of
points given in a streaming fashion [13]. Specifically,
the algorithm provides an O(log ∆) approximation in
one pass over the data, using only logO(1)(∆N) space
for sets of size at most N . Obtaining a better EMD es-
timation algorithm has been an important open problem
in the streaming literature [21].

• Visual search and recognition: The aforementioned
embedding, together with efficient nearest neighbor
search methods, has been applied to fast image search
in large collections of images [17]. Kernel variants
of that embedding, such as pyramid kernels [10] and
spatial pyramid kernels [20], are some of the best
known practical methods for image recognition in large
data sets [20].

However, representing EMD as vectors in the `1 space has
limitations: it has been shown [23] that any such mapping
must incur a distortion of at least Ω(

√
log ∆). Thus, in order

to obtain more accurate representations, one must consider
mappings into spaces other than `1.

In this paper, we provide a construction of such mappings.
Their key feature is that they map the sets into spaces of
dimension that is significantly sub-linear in ∆. For a multiset
A ⊆ [∆]2, let x(A) ∈ R∆2

be the characteristic vector of
A. Our main result is:

Theorem 1.1. For any 0 < ε < 1, there is a distribution over
linear mappings F : R∆2 → RO(∆ε) as well as an estimator
function E such that for any two multisets A,B ⊆ [∆]2 of
equal size, we have

EMD(A,B) ≤ E(F ·x(A), F ·x(B)) = O(1/ε)·EMD(A,B)

with probability 2/3. Moreover, the entries in the matrix
defining F are integers in the range

{−∆O(1), . . . ∆O(1)
}

.

The estimation function E(·, ·) can be evaluated in time
(log ∆)O(1). However, E(·, ·) is not a metric distance func-
tion. Instead, it involves operations such as median, and as
a result it does not satisfy triangle inequality.

Applications. Theorem 1.1 almost immediately provides
an improved algorithm for streaming and nearest neighbor
search problems. In the streaming model (cf. [22], [16]),
consider the aforementioned problem of computing the EMD
between the sets A and B of points given in a stream. It can
be seen that, due to the linearity of F , the “sketch” vectors

Fx(A) and Fx(B) can be maintained under insertions of
points to A and B (as well as deletions of points from A
and B). Moreover, as per [14], the random bits defining a
linear mapping F can be generated using a pseudo-random
generator for bounded space [24] that requires generating
and storing only ∆ε logO(1)(∆N) truly random bits. Finally,
for any multi-set B of size at most N , each coordinate
of Fx(B) is in the range

{−(∆N)O(1), . . . (∆N)O(1)
}

and can be stored using O(log(∆N)) bits. We obtain the
following theorem.

Theorem 1.2. For any 0 < ε < 1, there is a
one-pass streaming algorithm that maintains an O(1/ε)-
approximation of the value of EMD between point-sets from
[∆]2 given in a stream of length N , using ∆ε logO(1)(∆N)
space.

Another application of Theorem 1.1 is to give an improved
data structure for the approximate nearest neighbor problem
under EMD. Specifically, consider a set S consisting of s
sets Ai ⊆ [∆]2, each of size at most N . By increasing the
dimension of the mapping F by a factor of O(log s) we can
ensure that, for any fixed set B, one can estimate the distance
between B and all sets in S up to a factor of O(1/ε) with
probability 2/3. We build a lookup table that, for each value
of Fx(B), stores the index i that minimizes the value of the
estimated distance E(Fx(Ai), Fx(B)). From the properties
of the mapping F , we obtain the following theorem.

Theorem 1.3. For any 0 < ε < 1, there is a data struc-
ture that, given a “query” multi-set B, reports a O(1/ε)-
approximate nearest neighbor of B in S with probability
at least 2/3. The data structure uses 2∆ε log(s∆N)O(1)

space
and (∆ log(s∆N))O(1) query time.

Thus, we obtain a data structure with very fast query
time and space sub-exponential in the dimension ∆2 of the
underlying EMD space. This improves over the result of [4],
who obtained an algorithm with a similar space bound while
having super-constant approximation guarantee with query
time polynomial in the number of data points s.

Techniques. Our mapping utilizes two components: one
old, and one new. The first component, introduced in [15],
provides a decomposition of EMD over [∆]2 into a con-
vex combination of closely related metrics, called EEMD,
defined over [∆ε]2. Specifically, consider an extension of
EMD to any (multi-)sets A,B ⊆ [∆]2 (not necessarily of
the same size), defined as:

EEMD∆(A,B) =
min

S ⊆ A, S′ ⊆ B
|S| = |S′|

[
EMD(S, S′) + ∆(|A− S|+ |B − S′|)]

(we often skip the subscript ∆ when it is clear from the
context). It is known that the EEMD metric can be induced
by a norm ‖x‖EEMD, such that for any multi-sets A,B we

have EEMD(A,B) = ‖x(A)− x(B)‖EEMD (see Section 2
for the definition). The decomposition from [15] can be now
stated as follows (after adapting the notation to the setup in
this paper):

Fact 1.4 ([15]). For any 0 < ε < 1, there exists a
distribution over n-tuples of linear mappings 〈F1, . . . , Fn〉,
for Fi : R∆2 → Rm2

with m = ∆ε , such that for any
x ∈ R∆2

, we have
• ‖x‖EEMD ≤

∑
i ‖Fi(x)‖EEMD with probability 1, and

• E [
∑

i ‖Fi(x)‖EEMD] ≤ O(1/ε) · ‖x‖EEMD.
Furthermore, n = ∆O(1).

It suffices to estimate the sum of the terms ‖Fi(x)‖EEMD in
the decomposition. The second component needed for our
result (and the main technical development of this paper)
is showing that the sum estimation can be accomplished
by using a proper linear mapping. In fact, the method
works for estimating the sum

∑
i ‖xi‖X for a vector x =

(x1, . . . , xn) ∈ Xn for any normed space X = (Rm, ‖·‖X).
We denote ‖x‖1,X =

∑
i∈[n] ‖xi‖X . This component is

formalized in the following theorem.

Theorem 1.5 (Linear sketching of a sum of norms). Fix n ∈
N, a threshold M > 0, and approximation γ > 1. For k =
(γ log n)O(1), there exists a distribution over random linear
mappings µ : Xn → Xk, and a reconstruction algorithm R,
such that for any x ∈ Xn satisfying M/γ ≤ ‖x‖1,X ≤ M ,
the algorithm R produces an O(1)-approximation to ‖x‖1,X

from µ(x), with high probability.

Theorem 1.5 immediately implies Theorem 1.1, since
we can use the mapping from [5], [17] to obtain an es-
timation M of ‖x‖1,EEMD with an approximation factor
γ = O(log ∆). For completeness, we include its proof in
Section 4.

The main idea behind the construction of the mapping
is as follows. First, observe that a natural approach to the
sum estimation problem would be to randomly sample a
few blocks xi of the vector x. This does not work, however:
the mass of the sum could be concentrated in only a single
block, and a random sample would likely miss it. An
alternative approach, used in the off-line algorithm of [15],
is to sample each block xi with probability approximately
proportional to ‖xi‖EEMD. However, this requires existence
of a streaming algorithm that supports such sampling. A
recent paper of [18] is a step towards achieving such an
algorithm. However, it applies to the case 2 where one
samples just individual coordinates, while we need to sample
and retrieve blocks, in order to compute the value of EMD
on them directly. Although the two problems are related in
principle (having enough samples of block coordinates could

2There are other technical obstacles such as that their algorithm samples
with probability proportional to |xi|p for p > 2, while here we would need
the sampling probability to be proportional to the norm of xi, i.e., p = 1.
However, these issues are not much of a problem.

provide some information about the norm of the block itself),
the tasks seem technically different. Indeed, the recovery
procedure forms the main technical part of the paper, even
though the final algorithm is quite simple.

2. PRELIMINARIES

We start by defining the ‖·‖EEMD norm. For any x ∈ Zn2
,

let x+ = (|x| + x)/2 be the vector containing only the
positive entries in x, and let x− = x − x+. Then define
‖x‖EEMD = EEMD(x+, x−), where we identify x+ ∈ Nn2

with the multi-set for which x+ is the indicator vector (and
similarly with x−). The norm naturally extends to entire
x ∈ Rn2

by corresponding weighting; we omit these details
as they are not important in this paper. Observe that for
any multi-sets A,B we have EEMD(A, B) = ‖x(A) −
x(B)‖EEMD.

We consider all logs to be in base 2. The notation χ[E]
stands for 1 if event/expression E is true and 0 otherwise.

3. PROOF OF THEOREM 1.5

We first present the construction of the sketching function
µ and of the reconstruction algorithm R. The respective
algorithms are presented in Figures 1 and 2. We then prove
the correctness guarantee, namely that the reconstruction
algorithm R approximates well the norm ‖x‖1,X .

3.1. Sketch and reconstruction algorithms

We start by giving some intuition behind our construc-
tions.

Fix an input x ∈ Xn. We will refer to xi’s as the elements
of x. As in [12] and several further papers, the idea is to
partition these elements into exponential levels, depending
on their X-norm. Specifically, for a level j ∈ N, we set the
threshold Tj = M/2j and define the level j to be the set

Sj =
{
i ∈ [n] | ‖xi‖X ∈ (Tj , 2Tj]

}
.

Let sj = |Sj | be the size of Sj . We will observe that ‖x‖1,X

is approximated by
∑

j≥1 Tj ·sj . Furthermore, it is sufficient
to consider only levels j ≤ ` := log(4nγ).

The main challenge is to estimate each sj for each j ∈ [`].
We will do so for each j separately. We will subsample the
elements from [n] such that, with “good probability”, we
subsample exactly one element from Sj , say i ∈ Sj , and
no element from Sj′ for j′ < j. We refer to this event as
E. In a sense, we “isolate” (at most) one element i ∈ Sj ,
while the rest of the remaining elements are from “lighter”
levels and thus have a much smaller weight than i. Such
an isolation allows us to efficiently verify the fact we have
succeded to isolate one i.

The probability that we manage to isolate exactly one
such i ∈ Sj (E holds) is in fact roughly proportional to
the size of the set Sj . Thus it suffices to just estimate the
probability that the event E holds. To ensure the “rough
proportionality” we subsample the elements at a rate for

For each j ∈ [`], create t = 4γ`2 log n hash tables,1

denoted H(j,u) for u ∈ [t], each with
w = 640γ`2 log2 n cells, and assign to them
independent hash functions hj,u : [n] → [w]
For each hash table H(j,u)2

Subsample a set Ij,u ⊂ [n] where each i ∈ [n] is3

included independently with probability
pj = 2−j/(40`)
For each v ∈ [w]4

H
(j,u)
v :=

∑
i∈[n] χ[i ∈ Ij,u] · χ[hj,u(i) = v] · xi5

Algorithm 1: Construction of the sketch µ.

which E holds with a probability that is inversely poly-
logarithmic, log−Θ(1) n. Thus we repeat the subsampling
experiment for t = (γ log n)O(1) times and count in how
many experiments the event E holds; this count gives an
estimate for sj (when appropriately scaled).

The following core problem remains: for each subsam-
pling experiment u ∈ [t], we need to actually verify that E
holds in this experiment, i.e., whether exactly one element
of Sj is subsampled and no element from Sj′ for j′ < j. To
do so, we hash the subsampled elements, denoted Ij,u, into
a hash table. Then, E holds roughly when there is exactly
one cell that has norm in the right range (roughly (Tj , 2Tj]),
and all the other cells have small norm. Ideally, if the hash
table were huge, then the subsampled elements, Ij,u, do not
collide in the hash table and then the verification procedure
is accurate. Since the hash table size is much smaller, of
only poly-logarithmic size, this verification procedure may
fail. Specifically, the verification procedure fails when either
the elements from the “lighter” level-sets Sj′ for j′ > j
contribute a lot to one of the cells, or some elements from
“heavier” level-sets Sj′ for j′ < j are subsampled and
collide. If we set the size w of the hash table sufficiently
high, we will ensure that neither of these two bad events
happens with a significant probability.3

The detailed algorithm for the sketch µ is presented in
Figure 1. As defined in the preliminaries, χ[E] stands for
1 if expression E is true and 0 otherwise. Note that the
constructed sketch µ is linear.

Before giving the reconstruction algorithm R, we need
the following definition, which describes our procedure of
verifying that the event E from the above discussion holds.

Definition 3.1. For j ∈ [`], u ∈ [t], call the pair (j, u) an
accepting pair if the following holds:

• there is exactly one position v ∈ [w] such that
‖H(j,u)

v ‖X ∈ (0.9 · Tj , 2.1 · Tj], and
• for all other v′ ∈ [w], ‖H(j,u)

v′ ‖X ≤ 0.9 · Tj .

3Similar phenomenon has been exploited for the sparse approximation
and heavy hitter problems, see [9], [6], [8], [7].

For each j ∈ [`], let cj be the number of accepting1

pairs (j, u) for u ∈ [t]
Return E =

∑
j∈[`] Tj · cj

t · 1
pj

2

Algorithm 2: Reconstruction algorithm R.

The resulting reconstruction algorithm is given in Fig-
ure 2.

3.2. Proof of correctness

First we observe that the norm ‖x‖1,X is approximated
by

∑
j∈[`] Tj · |Sj | up to a factor of 4. Indeed, ‖x‖1,X is

2-approximated by the same sum with unrestricted j, i.e.,∑
j≥1 Tj · |Sj |. Moreover, every element i ∈ [n] from a

higher level j > ` contributes a norm that is at most

‖xi‖X ≤ M

2`
=

1
4n

· M

γ
≤ 1

4n
‖x‖1,X .

Thus the elements from the ignored levels constitute at most
a 1/4-fraction of ‖x‖1,X .

We set sj = |Sj | to be the size of Sj . By notational
convention, we also assume that for j < 1, we have Sj = ∅
and sj = 0. Also, we can assume that γ ≤ nc for some
absolute constant c > 0, since, otherwise, the construction
with k = γ1/c is trivial.

We define s̃j = cj

t · 1
pj

, which one should think of as our
estimate of sj . Then the reconstruction algorithm returns the
estimate E =

∑
j∈[`] Tj · s̃j of the norm ‖x‖1,X .

Our main challenge is to prove that s̃j is a good estimate
of sj for each j ∈ [`]. While we can prove a good upper
bound on s̃j for all j ∈ [`], we cannot prove a good lower
bound on all s̃j’s. Namely, if sj is very small, we cannot
lower-bound s̃j (as we do not have enough subsampling
experiments). But in this case, the level j contributes a
negligible mass to the norm ‖x‖1,X , and thus it can simply
be ignored.

To formalize the above point, we partition the levels j into
two types — important and non-important levels — depend-
ing on the number sj of elements in the corresponding level.
Intuitively, the non-important levels are those that contribute
a negligible amount of mass to the norm ‖x‖1,X .

Definition 3.2. Call level j ∈ [`] important if sj ≥ M/γ
Tj

·
1
8` = 2j

8γ` . Let J ⊆ [`] denote the set of important levels.

The following two lemmas prove, respectively, lower and
upper bound on our estimates s̃j .

Lemma 3.3. For every important level j ∈ J , with high
probability,

s̃j ≥ sj/8.

Lemma 3.4. For every level j ∈ [`], with high probability,

s̃j ≤ 2
(

sj−1 + sj + sj+1 +
2j

8γ`

)
.

First, we show how the two lemmas imply Theorem 1.5.
Proof of Theorem 1.5: We have already observed that∑

j∈[`] Tj ·sj approximates ‖x‖1,X up to a factor of 4. Thus,
by Lemma 3.4, we have

E =
∑

j∈[`]

Tj · s̃j ≤ O(1)
∑

j∈[`]

Tj ·
(

sj−1 + sj + sj+1 +
2j

8γ`

)

≤ O(1)
∑

j∈[`]

Tj · sj + O(`) · M

8γ`
≤ O(1) · ‖x‖1,X ,

where we have used the fact that ‖x‖1,X ≥ M/γ.
On the other hand, we can lower bound E by dropping

all the non-important levels j. By Lemma 3.3, we have

E ≥
∑

j∈J
Tj · s̃j ≥ Ω(1)

∑

j∈J
Tj · sj .

The contribution of the non-important levels is, by the
definition of importance,

∑

j∈[`]\J
Tj · sj < ` · M/γ

8`
≤ 1

8
‖x‖1,X .

Thus, we conclude
∑

j∈J
Tj · sj =

∑

j∈[`]

Tj · sj −
∑

j∈[`]\J
Tj · sj ≥ 1

4
‖x‖1,X − 1

8
‖x‖1,X

= Ω(1) · ‖x‖1,X ,

which completes the proof of Theorem 1.5.
3.2.1. Proofs of Lemmas 3.3 and 3.4: As mentioned

before, at a given level j, we are trying to estimate the size sj

of the set Sj . We do so by subsampling the elements t times,
each at a rate of roughly 1/|Sj |, and counting how many
times the subsampling produced exactly one element from
Sj (and there will be a negligible probability that more than
one element is subsampled). The hope is that the pair (j, u)
is accepting iff the event E holds, that is, the subsample
Ij,u contains only one element from Sj and none from Sj′

for j′ < j. The main difficulty turns out to be bounding the
contribution of the elements from the sets Sj′ for j′ ≥ j+2:
the sets Sj′ may be much larger than Sj and thus a fraction
of them is likely to be present in the subsample. Nonetheless,
the elements from these sets Sj′ are small in norm and thus
are distributed nearly uniformly in the hash table H(j,u).

To formalize this intuition, we will prove the Noise
Lemma that quantifies the “noise” (norm mass) contributed
by the elements from the sets Sj′ , for j′ ≥ j + 2, in a
hash table H(j,u). This Noise Lemma will be used for both
Lemma 3.3 and Lemma 3.4.

The Noise Lemma has two parts. The first part gives a
tight bound on the noise in a given cell of the hash table
H(j,u), but the probability guarantee is for a given cell only.
The second part gives a somewhat weaker bound on the
noise, but holds for all the cells of H(j,u) simultaneously.

Lemma 3.5 (Noise Lemma). Fix some j ∈ [`] and u ∈
[t]. Consider some cell v of the hash table H(j,u), and let
S≥j+2 =

⋃
j′≥j+2 Sj′ . Then

∑

i∈S≥j+2

χ[i ∈ Ij,u] · χ[hj,u(i) = v] · ‖xi‖X ≤ 0.1 · Tj (1)

with probability at least 1− 1
2w .

Furthermore, with probability at least 1− log2 n
w , we have

max
v′∈[w]

∑

i∈S≥j+2

χ[i ∈ Ij,u] ·χ[hj,u(i) = v′] · ‖xi‖X ≤ 0.6 ·Tj .

(2)

Proof: We begin by proving Eqn. (1). We have by the
linearity of expectation that:

E

 ∑

i∈S≥j+2

χ[i ∈ Ij,u] · χ[hj,u(i) = v] · ‖xi‖X

≤ pj

w
· ‖x‖1,X ≤ M/2j

40`w
≤ Tj

40w
. (3)

Using standard Markov’s bound, we conclude that Eqn. (1)
holds with probability at least 1 − 1

2w , completing the first
part of the Noise Lemma.

We now prove the second part, Eqn. (2). Note that we
cannot hope to prove that all cells will have noise at most
0.1 ·Tj , because even just one element from a set Sj+2 can
contribute as much as Tj/2. To prove this part, we partition
the elements in S≥j+2 into two types: heavy elements
(of mass close to Tj) and light elements (of mass much
smaller than Tj). For heavy elements, we will prove that we
subsample only a few of them, and thus they are unlikely
to collide in the hash table. The light elements are so light
that they can be upper-bounded using a tight concentration
bound.

Specifically, we define the following sets of light and
heavy elements:

Sl :=
⋃

j′≥j+log log n+1

Sj′

Sh := S≥j+2 \ Sl =
⋃

j+2≤j′<j+log log n+1

Sj′

We first show that the light elements do not contribute more
than (0.1)Tj to any cell w.h.p. Namely, we will bound the
noise in a cell v′ ∈ [w] using a Hoeffding bound, and then
use a union bound over all v′. We use the following variant
of the Hoeffding inequality, which can be deduced from [11].

Lemma 3.6 (Hoeffding bound). Let Zi be n independent
random variables such that Zi ∈ [0, B], for B > 0, and
E[

∑
i Zi] = µ. Then, for any a > 0, we have that

Pr

[∑

i

Zi > a

]
≤ e−(a−2µ)/B .

We use the lemma for variables Zi = χ[i ∈ Ij,u] ·
χ[hj,u(i) = v′] · ‖xi‖X , where i ∈ Sl. To get a bound on B,
we observe that, for i ∈ S`, we have ‖xi‖X ≤ Tj+log log n =
Tj/2log log n = Tj/ log n. We also have an upper bound
of µ = E[

∑
i∈Sl

Zi] ≤ Tj/(40w) (from Eqn. (3)). Thus,
applying Lemma 3.6, we obtain

Pr

[∑

i∈Sl

χ[i ∈ Ij,u] · χ[hj,u(i) = v′] · ‖xi‖X > 0.1 · Tj

]

≤ e−(0.1−1/(20w))Tj/(Tj/ log n) < e−0.05 log n = n−Ω(1).

Taking the union bound over all cells, we obtain the same
bound on all cells v′ ∈ [w].

We now analyze the behavior of the heavy elements,
i.e., elements from the set Sh. We can bound the expected
number of subsampled heavy elements as follows:

E

[∑

i∈Sh

χ[i ∈ Ij,u]

]
≤

j+log log n∑

j′=j+2

2j′

 · pj

< 2j+log log n+1 · 2−j

40`
=

log n

20`
≤ O(1).

Applying the Hoeffding bound from above, we obtain

Pr

[∑

i∈Sh

χ[i ∈ Ij,u] > log n

]
≤ e−Ω(log n) = n−Ω(1).

Thus, no more than log n heavy elements are sub-
sampled, w.h.p. We can further bound the proba-
bility that any two of them hash into the same
cell by Pr[there exists a collision of heavy elements] ≤(
log n

2

)
/w ≤ log2 n

2w .
To conclude, for every cell v′, the light elements can

contribute at most 0.1 · Tj , and the heavy elements can
contribute at most Tj/2. The lemma then follows.

We are now ready to prove Lemmas 3.3 and 3.4. We will
let Aj,u represent the event that (j, u) is an accepting pair,
as per Definition 3.1.

Proof of Lemma 3.3: Fix an important j ∈ J , and
some u ∈ [t]. Define the following two events:
E1: exactly one element of Sj is subsampled in Ij,u, and
E2: no element from Sj′ is subsampled in Ij,u, for all

j′ < j and j′ = j + 1.
We will prove the following claim.

Claim 3.7. For fixed u ∈ [t], if E1 and E2 hold, then Aj,u

occurs with probability at least 1/2. Moreover, E1 and E2
occur simultaneously with probability at least 1

2sjpj .

Proof of Claim 3.7: To prove the first part, assume E1
and E2 hold. Let i∗ be the element in Ij,u ∩Sj (guaranteed
to be unique by E1), and let v∗ be the cell that contains
element i∗. First, we note that, using the triangle inequality
in X and the Noise Lemma 3.5, we have

‖H(j,u)
v∗ ‖X ≥ ‖xi∗‖X −

∑

i∈Ij,u\{i∗}
χ[hj,u(i) = v∗] · ‖xi‖X

> Tj − 0.1 · Tj = 0.9 · Tj ,

and

‖H(j,u)
v∗ ‖X ≤ ‖xi∗‖X +

∑

i∈Ij,u\{i∗}
χ[hj,u(i) = v∗] · ‖xi‖X

≤ 2.1 · Tj ,

with probability at least 3/4. Furthermore, for every other
cell v 6= v∗, we have that, similarly to above:

max
v 6=v∗

‖H(j,u)
v ‖X ≤ max

v 6=v∗

∑

i∈Ij,u

χ[hj,u(i) = v]·‖xi‖X ≤ 0.6·Tj

with probability at least 3/4. The two bounds hold at the
same time with probability at least 1/2, in which case Aj,u

occurs.
Next we show that E1 and E2 hold with probability at

least 1
2sjpj . We have

Pr[E1] = sjpj(1− pj)sj−1 ≥ sjpj(1− sjpj) ≥ 2
3sjpj ,

where we use the fact that sj ≤ 2j = 1
40`pj

. To estimate
Pr[E2], we first consider all j′ < j. Using the union bound,
we can bound the probability that anything from

⋃
j′<j Sj′

is subsampled:

Pr
[
∪j′<jSj′

⋂
Ij,u 6= ∅

]
≤

∑

j′<j

sj′pj ≤
∑

j′<j

2j′pj < 2jpj

=
1

40`
.

Similarly, we have

Pr[Sj+1 ∩ Ij,u 6= ∅] ≤ sj+1pj ≤ 1
20`

.

Thus we obtain that Pr[E2] ≥ 1− 1
10` .

We note that E1 and E2 are independent events since
they concern different levels. We can conclude that

Pr[E1∧E2] = Pr[E1]·Pr[E2] ≥ 2
3sjpj ·

(
1− 1

10`

)
≥ 1

2sjpj ,

which finishes the proof of Claim 3.7.
We now complete the proof of Lemma 3.3. We can lower

bound the probability of Aj,u as follows:

Pr[Aj,u] ≥ Pr[Aj,u ∧ E1 ∧ E2]
= Pr[Aj,u | E1 ∧ E2] · Pr[E1 ∧ E2] ≥ 1

4sjpj .

Now, we can finally analyze the estimate s̃j of the size of
the set Sj . Since s̃j = cj

t · 1
pj

, we will lower bound cj . Note
that

E[cj] = tPr[Aj,u] ≥ t

4
sjpj ≥ t

4
· 2j

8γ`
· 2−j

40`
≥ Ω(log n).

Thus, a standard application of the Chernoff bound
suffices to conclude that cj ≥ t

8sjpj , w.h.p., and then
s̃j = cj

t · 1
pj
≥ 1

8sjpj · 1
pj

= 1
8sj , also with high probability.

This concludes the proof of Lemma 3.3.
We now prove the Lemma 3.4 that upper bounds the

estimate s̃j .
Proof of Lemma 3.4: First, fix some j ∈ [`], and

consider any particular hash table H(j,u). As before, let Aj,u

denote the event that (j, u) is an accepting pair, and define
the following new event:
E3: at least one element of Sj−1∪Sj∪Sj+1 is subsampled.

Claim 3.8. If E3 does not occur, Aj,u holds with probability
at most pj

(
2j

8γ`

)
. Moreover, E3 holds with probability at

most pj(sj−1 + sj + sj+1).

Proof: For the first part, we prove that, with probability
at least 1 − pj

(
2j

8γ`

)
, no cell of H(j,u) can have a norm

that is in the accepting range of (0.9 · Tj , 2.1 · Tj]. A cell
v of H(j,u) may have a norm in the accepting range only
when either: (1) more than one element from S≤j−2 =
∪j′≤j−2Sj′ falls into v, or (2) the noise in v from elements
in S≥j+2 = ∪j′≥j+2Sj′ exceeds 0.6 · Tj . In particular, if
neither (1) nor (2) hold, then either v contains no element
from S≤j−2, in which case ‖H(j,u)

v ‖X ≤ 0.6 · Tj ≤ 0.9Tj ,
or v contains exactly one element from S≤j−2, in which
case ‖H(j,u)

v ‖X > 4Tj − 0.6Tj > 2.1Tj .
Now, the probability that (2) holds for any cell v is at

most log2 n
w by the Noise Lemma 3.5. It remains to bound

the probability of (1), that more than one element from
S≤j−2 falls into the same cell of the hash table. We note
that the expected number of subsampled elements from
S≤j−2 is upper bounded by 2j · pj ≤ O(1). Thus, with
high probability, only at most log n of the elements from
S≤j−2 may appear in Ij,u. Furthermore, these log n elements
collide with probability at most log2 n

2w . It follows that the
probability that (1) holds for any cell v is at most log2 n

w .
Thus, we have that

Pr[Aj,u | E3] ≤ 2 · log2 n

w
≤ pj

(
2j

8γ`

)
=

1
320γ`2

.

For the second part, we need to bound the probability
Pr[E3]. But this follows from a simple union bound over
all elements in Sj−1 ∪ Sj ∪ Sj+1.

We can now finish the proof of the lemma. From the above
claim, we obtain the following bound on the probability of
an accepting pair:

Pr[Aj,u] ≤ Pr[Aj,u | E3] + Pr[E3]

≤ pj

(
sj−1 + sj + sj+1 + 2j

8γ`

)
.

We can now upper bound the estimate s̃j :

E[s̃j] =
∑

u Pr[Aj,u]
t

· 1
pj
≤

(
sj−1 + sj + sj+1 +

2j

8γ`

)
.

Again, by a Chernoff bound, s̃j ≤ 2(sj−1+sj +sj+1+ 2j

8γ`)
w.h.p. This completes the proof of Lemma 3.4.

4. PROOF OF THEOREM 1.1

We now prove our main Theorem 1.1. As mentioned in
the introduction, its main ingredient is Theorem 1.5.

Proof of Theorem 1.1: The sketch F consists of two
parts. The first part is just a linear map f of planar EMD
into `1 as in [5], [17], that approximates the EMD distance
up to γ = O(log ∆) approximation.

The second part is a collection of O(log ∆) sketches νi.
Each νi is a composition of two linear maps: the map F (i) =
〈F (i)

1 , . . . F
(i)
T 〉 obtained from an application of Fact 1.4 and

a sketch µi obtained from an application of the Theorem 1.5.
Specifically, for i ≤ log ∆, the sketch µi is given by the
Theorem 1.5 for M = 2i, n = T , and γ as defined above.
The final sketch is then the following linear map:

F = 〈f, µ1 ◦ F (1), . . . µlog ∆ ◦ F (log ∆)〉.
The reconstruction algorithm E works in a straight-

forward manner. Given sketches Fx(A) and Fx(B), com-
pute first a γ approximation to EMD(A,B) using the map
f . Then, use the corresponding map νi = µi ◦ F (i) to
compute the estimate

∑
j ‖F (i)

j (x(A) − x(B))‖EEMD. This
estimate is a O(1/ε) approximation to EMD(A,B) by
Fact 1.4.

This finishes the proof of Theorem 1.1.

REFERENCES

[1] P. Agarwal and K. Varadarajan, “A near-linear constant factor
approximation for euclidean matching ?” Proceedings of the
ACM Symposium on Computational Geometry (SoCG), 2004.

[2] P. K. Agarwal, A. Efrat, and M. Sharir, “Vertical decompo-
sition of shallow levels in 3-dimensional arrangements and
its applications,” SIAM Journal on Computing, no. 29, pp.
912–953, 2000, previosly appeared in SOCG’95.

[3] P. Agarwal and K. Varadarajan, “Approximation algorithms
for bipartite and non-bipartite matching in the plane,” Pro-
ceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 1999.

[4] A. Andoni, P. Indyk, and R. Krauthgamer, “Overcoming
the `1 non-embeddability barrier: Algorithms for product
metrics,” in Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2009, pp. 865–874.

[5] M. Charikar, “Similarity estimation techniques from round-
ing,” in Proceedings of the Symposium on Theory of Comput-
ing (STOC), 2002, pp. 380–388.

[6] M. Charikar, K. Chen, and M. Farach-Colton, “Finding
frequent items in data streams,” in Proceedings of Interna-
tional Colloquium on Automata, Languages and Program-
ming (ICALP), 2002.

[7] G. Cormode and S. Muthukrishnan, “Improved data stream
summaries: The count-min sketch and its applications,”
FSTTCS, 2004.

[8] C. Estan and G. Varghese, “New directions in traffic measure-
ment and accounting: Focusing on the elephants, ignoring the
mice,” ACM Transactions on Computer Systems, 2003.

[9] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukr-
ishnan, and M. J. Strauss, “Fast, small-space algorithms for
approximate histogram maintenance,” in ACM Symposium on
Theoretical Computer Science, 2002.

[10] K. Grauman and T. Darrell, “The pyramid match kernel:
Discriminative classification with sets of image features,”
in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Beijing, China, October 2005.

[11] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Asso-
ciation, vol. 58, no. 301, pp. 13–30, 1963.

[12] P. Indyk and D. Woodruff, “Optimal approximations of the
frequency moments of data streams,” Proceedings of the
Symposium on Theory of Computing (STOC), 2005.

[13] P. Indyk, “Algorithms for dynamic geometric problems over
data streams,” Proceedings of the Symposium on Theory of
Computing (STOC), 2004.

[14] ——, “Stable distributions, pseudorandom generators, embed-
dings and data stream computation,” J. ACM, vol. 53, no. 3,
pp. 307–323, 2006, previously appeared in FOCS’00.

[15] ——, “A near linear time constant factor approximation for
euclidean bichromatic matching (cost),” in Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA),
2007.

[16] ——, “Sketching, streaming and sublinear-space
algorithms,” 2007, Graduate course notes, available at
http://stellar.mit.edu/S/course/6/fa07/6.895/.

[17] P. Indyk and N. Thaper, “Fast color image retrieval via
embeddings,” Workshop on Statistical and Computational
Theories of Vision (at ICCV), 2003.

[18] T. Jayram and D. Woodruff, “The data stream space com-
plexity of cascaded norms,” 2009, to appear in FOCS’09.

[19] E. Lawler, Combinatorial optimization: Networks and Ma-
troids. Holt, Rinehart and Winston, 1976.

[20] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2006.

[21] A. McGregor, “Open problems in data streams
and related topics,” IITK Workshop on Algo-
rithms For Data Streams, 2006, available at
http://www.cse.iitk.ac.in/users/sganguly/workshop.html.

[22] S. Muthukrishnan, “Data streams: Algorithms and
applications (invited talk at soda’03),” Available at
http://athos.rutgers.edu/∼muthu/stream-1-1.ps, 2003.

[23] A. Naor and G. Schechtman, “Planar earthmover is not in
L1,” SIAM Journal on Computing, vol. 37, no. 3, pp. 804–
826, 2007, an extended abstract appeared in FOCS’06.

[24] N. Nisan, “Pseudorandom generators for space-bounded com-
putation,” Proceedings of the Symposium on Theory of Com-
puting (STOC), pp. 204–212, 1990.

[25] P. Vaidya, “Geometry helps in matching,” SIAM Journal on
Computing, vol. 18, pp. 1201–1225, 1989.

