1 Introduction

Computing edit distance between two strings of length n is a classic dynamic programming problem, with a quadratic run-time solution. It has proven to be a great challenge to one of the central themes in TCS: to improve the run-time from polynomial to something closer to linear. Despite significant research over many decades, the running time has so far been improved only slightly, to $O(n^2 / \log^2 n)$ [MP80], which remains the fastest algorithm known to date. See also the surveys of [Nav01] and [Sah08]. With the emergence of the fine-grained complexity field, researchers crystallized the reason why beating quadratic-time is hard by connecting to the SETH conjecture [BI15] (and even more plausible conjectures [AHVW16]).

Even before the above hardness results, researchers started considering faster algorithms that approximate edit distance. A linear-time \sqrt{n}-approximation algorithm immediately follows from the exact algorithm of [Ukk85, Mye86], which runs in time $O(n + d^2)$, where d is the edit distance between the input strings. Subsequent research improved the approximation factor, first to $n^{3/7}$ [BJKK04], then to $n^{1/3 + o(1)}$ [BES06], and to $2^{O(\sqrt{\log n})}$ [AO12]. In the regime of $O(n^{1+\epsilon})$-time algorithms, the best approximation is $(\log n)^{O(\epsilon)}$ [AKO10]. Predating some of this work was the sublinear-time algorithm of [BEK+03] achieving n^{ϵ} approximation when d is large.

In a recent breakthrough, [DGKS18] showed that one can obtain constant approximation in time $O(n^{3/2+\epsilon})$. The authors suggested that their techniques may be improved to get $5 + \epsilon$ approximation in $O(n^{3/2-2/7})$ time, as well as constant approximation in time close to $n^{3/2}$.

Here we provide an alternative implementation of the core idea from [DGKS18] with the main goal of developing a simpler constant-factor approximation algorithm with sub-quadratic run-time, while achieving the best possible bounds. To obtain our results, we need to generalize the problem to the well-known text searching problem (in fact, a further generalization of it, discussed later).

Definition 1.1. Fix $n \geq m$, some length $\lambda \geq 1$, and approximation $\alpha > 1$. For $x \in \Sigma^m$ and $y \in \Sigma^n$, the problem $\text{TextSearch}_\alpha(x, y, \lambda)$ is to α-approximate the edit distance between x and every substring of y of length λ.

The main results are summarized by the following two theorems.

Theorem 1.2 (Main, $n^{3/2+\delta}$ time). For any $x \in \Sigma^m$ and $y \in \Sigma^n$, and $\delta > 0$, we can solve the TextSearch_α problem in time $O(nm^{1/2+\delta})$ for approximation α that depends on $1/\delta$ only.

Theorem 1.3 (Main $3 + \epsilon$ approximation). For any $x, y \in \Sigma^n$, and $\epsilon > 0$, we can estimate the edit distance up to $3 + \epsilon$ factor approximation and an $O(m/\beta)$ additive error, for $\beta \in [m]$, in time $\tilde{O}(n^{1.66} \beta^{0.6})$. When combined with $O(n + d^2)$-time algorithm [Ukk85, Mye86], edit distance may be $(3 + \epsilon)$-factor approximated in $O_t(n^{1.693})$ time.
To obtain Theorem 1.2, we generalize the text searching problem a bit further, to multi-string text searching. We describe this problem, and its connection to our main theorems on text searching in the next section. In Section 3, we describe and analyze our algorithm for the multi-string text searching.

2 Multi-String Text Searching

For simplicity, we index everything from zero. Hence, \([n] = \{0, 1, \ldots, n - 1\}\). Also \(x[i : j]\) is the string starting at position \(i\) until position \(j - 1\). For index \(i\) and set \(S\), we use \(i + S\) to denote the set \(\{i + s : s \in S\}\).

Definition 2.1. Fix \(n \geq m\), and approximation \(\alpha > 1\). For \(x \in \Sigma^m\), \(y \in \Sigma^n\), and a “start-set” \(S_y \subseteq [n]\), the problem \(\text{TextSearchStart}_\alpha(x, y, S_y)\) is to output, for every \(t \in [n]\), an \(\alpha\)-approximation to \(\min_{s \in S_y} \text{ed}(x, y[s : t])\).

Lemma 2.2 (Reduction from \(\text{TextSearchStart}\) to \(\text{TextSearch}\)). We can reduce the problem \(\text{TextSearch}_{3\alpha}\) to the problem \(\text{TextSearchStart}_\alpha\), up to an extra time of \(O(n)\).

Proof. To solve \(\text{TextSearch}_{3\alpha}(x, y, \lambda)\), run the \(\text{TextSearchStart}_\alpha(x, y, S)\) instance with the set \(S = [n]\). For \(c_t\) the output for index \(t \in [n]\), we output \(c_t\) as the approximation to \(\text{ed}(x, y[t - \lambda : t])\).

Note that \(c_t \leq \alpha \text{ed}(x, y[t - \lambda : t])\). Suppose \(s \in [n]\) is such that \(\text{ed}(x, y[s : t]) \leq c_t\). Then \(\text{ed}(x, y[t - \lambda : t]) \leq |m - l| + \text{ed}(x, y[t - m : t]) \leq |m - l| + |m - s| + \text{ed}(x, y[s : t]) \leq |m - l| + 2c_t\).

Since \(|m - l| \geq \text{ed}(x, y[t - \lambda : t])\), we have that \(|m - l| + 2c_t \leq 3\alpha \cdot \text{ed}(x, y[t - \lambda : t])\) and hence a \(3\alpha\) approximation.

Definition 2.3. Fix \(n \geq m\), some lengths \(\lambda_x, \lambda_y \geq 1\), start positions into \(x\) termed \(S_x\), and approximation \(\alpha > 1\). For \(x \in \Sigma^m\) and \(y \in \Sigma^n\), the problem \(\text{MultiTextSearch}_\alpha(x, y, S_x, \lambda_x, \lambda_y)\) is to solve the problem \(\text{TextSearch}_\alpha(x[s : s + \lambda_x], y, \lambda_y)\) for all \(s \in S_x\) (i.e., compute the edit distance between every substring of \(x\) of length \(\lambda_x\) starting at \(s \in S_x\), and every substring of \(y\) of length \(\lambda_y\)).

Similarly, define \(\text{MultiTextSearchStart}_\alpha(x, y, S_x, \lambda_x, S_y)\) to be solving all the problems \(\text{TextSearchStart}_\alpha(x[s : s + \lambda_x], y, S_y)\) for \(s \in S_x\).

Note that the above reduction also holds for reducing \(\text{MultiTextSearch}\) to \(\text{MultiTextSearchStart}\).

2.1 Main technical contributions

The main technical statement is the following theorem, which shows how to solve MultiTextSearchStart problem using an algorithm for MultiTextSearch on smaller strings. We then state how it implies the main theorems.

Theorem 2.4. Fix \(n \geq m \geq w, \lambda_x, \lambda_y \geq 1\). Suppose there’s an algorithm \(A\) to solve \(\text{MultiTextSearch}_\alpha(x, y, S_x, O(w), O(w))\), for strings of length \(O(w)\) in time \(t(w, |S_x|)\). We assume that \(t(w, |S_x|)\) is monotonic, \(t(cw, |S_x|) \in [c, c^2] \cdot t(w, |S_x|)\) for any \(c \geq 1/w\), and \(\sum_{i=1}^{k} t(w, s_i) \leq O(k \cdot t(w, 1) + t(w, \sum s_i))\) for any \(s_i \geq 1\).

Then, for any \(\epsilon > 0\), there exists a randomized algorithm to solve \(\text{MultiTextSearchStart}_{\alpha'}(x, y, S_x, \lambda_x, \lambda_y)\), for \(x \in \Sigma^n, y \in \Sigma^m\), in time

\[
O \left(\frac{n\sqrt{m}}{w\epsilon^2} \cdot t(w, 1) + \frac{n}{w} \cdot t(w, \frac{m}{w}) + s \left(\frac{n}{w} \cdot t(w, 1) + n \cdot \frac{m^2}{w^2} \right) \right) \cdot \left(\log n \right)^\theta(1),
\]

where the approximation is \(\alpha' = (1 + \epsilon)(2\alpha + \alpha^2)\).
Corollary 2.5. Fix $\delta \in (0, 1/5)$. Then, for any $i \geq 1$, we can solve $\text{MultiTextSearch}_\alpha(x, y, S_x, \lambda_x, \lambda_y)$, where $|x|, |y|, \lambda_x, \lambda_y \leq n$, and $s = |S_x|$, in time:

$$t_i(n, s) \leq (\log n)^{O(i)} \cdot n^{1.5} \cdot n^{f(i)} \cdot (1 + \frac{s}{n^{\sqrt{2}}}),$$

where $f(i) \leq c(1 - \delta)^i + \delta(1 - (1 - \delta)^i)$ for a constant $c > 0$, and approximation α only dependent on i.

Proof. First of all, the algorithm is the obvious recursive one: we use Theorem 2.4 recursively to solve $\text{MultiTextSearch}_\alpha$ with extra approximation factor $3 + \epsilon \leq 4$, and use reduction from Lemma 2.2 to reduce to solve MultiTextSearch with an extra factor 3. After i iterations, the approximation is only a function of i (specifically, double-exponential in i).

We now prove the runtime. Base case: for $i = 0$, the standard dynamic programming for the exact problem would run in time $O(sn^2)$, and hence the statement is true for high enough $c > 0$.

Next, we prove the inductive step. We use Theorem 2.4 with $n = m$, $\beta, \lambda_x, \lambda_y \leq n$, and $w = n^{1-\delta}$. For $t_i(n, s)$ denoting the runtime after i recursive steps, the inductive hypothesis can be written as:

$$\frac{t_i(w,s)}{w^{\sqrt{\delta}}} \leq (\log w)^{O(i)} \cdot w^{f(i)} \cdot (1 + s/w^{\delta/2}).$$

Plugging this into the theorem, we obtain:

$$\frac{t_{i+1}(n,s)}{n^{\sqrt{\delta}}} \leq (\log n)^{O(i+1)} \cdot \left(w^{f(i)} + n^{-\delta/2} \cdot w^{f(i)} \cdot (1 + n^{\delta/w^{\delta/2}} + s \cdot (n^{-\delta/2} \cdot w^{f(i)} + n^{1+\delta/2}) \right)
\leq (\log n)^{O(i+1)} \cdot \left(2n^{(1-\delta)f(i)} + n^{-\delta/2} \cdot n^{(1-\delta)f(i)} \cdot n^{\delta/n^{(1-\delta)\delta/2}} + s \cdot (n^{-\delta/2} \cdot n^{(1-\delta)f(i)} + n^{2\delta-1/2}) \right)
\leq (\log n)^{O(i+1)} \cdot n^{(1-\delta)f(i)} \cdot (1 + n^{\delta/2} + s/n^{-\delta/2}).$$

Comparing above versus the hypothesis for $i + 1$, it only remains to prove that $f(i + 1) \leq (1 - \delta)f(i) + \delta^2/2$. Indeed, we have that:

$$f(i + 1) = c(1 - \delta)^{i+1} + \delta(1 - \delta)(1 - (1 - \delta)^i) + \delta^2/2 \leq c(1 - \delta)^{i+1} + \delta(1 - (1 - \delta)^{i+1}).$$

The above corollary immediately implies Theorem 1.2 by using $\delta \leftarrow \delta/2$ and $i = O(1/\delta \cdot \log 1/\delta)$. Theorem 1.3 also follows from Theorem 2.4 when using the exact algorithm for TextSearch as a primitive [LV89]. While Theorem 1.3 statement does not include the dependence on β (of the statement of Theorem 1.3), the proof does. See Remark 3.6 and set $w = (m\beta)^{1/5}$.

3 Main algorithm for $\text{MultiTextSearchStart}$: proof of Theorem 2.4

We setup some further notation. Assume that n, m are divisible by w, as otherwise we can extend x, y so that their lengths are multiple of w. Also suppose we settle for an additive m/β approximation, for $\beta \leq m$.

Let $E \in [n]$ be the set of the powers of $1 + \epsilon$, namely $E = \{(1 + \epsilon)^i \mid i = 0, \ldots, \log_{1+\epsilon} n\}$.

\footnote{For simplicity, the reader can just assume that $\beta = m$—this parameter merely allows for possible extensions.}
We partition \(x \) into \(b = m/w \) blocks of length \(w \) with starting positions in the set \(I = w \cdot [m/w] \), termed \(X_i = x[i : i + w] \) for \(i \in I \). We consider two types of blocks of \(y \). Let \(J_w = w \cdot [n/w] \subset J \) to be the start of \(w \)-length non-overlapping blocks of \(y \), and \(J = \Delta \cdot [n/\Delta] \), where \(\Delta = \max\{1, \epsilon w / \beta \} \), be the starting positions of possibly overlapping blocks. Let \(L = (w \pm \Delta \cdot E) \cap [w/\epsilon] \) be the set of lengths. Note that \(|L| \leq O(\log n) \). We denote \(y \)-blocks as \(Y_{j,l} = y[j : j + l] \) where \(j \in J \) and \(l > 0 \).

By assumption, there exists an algorithm \(A \) for solving \(\text{MultiTextSearch}_\alpha(x, y, S, \lambda_x, \lambda_y) \) for \(x, y \in \Sigma^{O(w/e)} \), and \(\lambda_x, \lambda_y \leq O(w/e) \), in time \(O(1/e^2) \cdot t(w, |S_x|) \). Note that, when the length of \(y \) is \(n > w \), we can solve \(\text{MultiTextSearch}_\alpha(x, y, S, \lambda_x, \lambda_y) \) in time \(O(n/w \cdot t(w, |S_x|)) \) by the standard reduction — just partition \(y \) into \(2n/w = O(n/w) \) overlapping blocks of length \(2w \) and solve \(\text{MultiTextSearch} \) for each block of \(y \) separately.

Note that we can use \(A \) to solve \(\text{TextSearch}(x, y, \lambda) \) (using \(\lambda_x = |x| \) and \(S_x = \{0\} \)), as well as to estimate \(ed(x, y) \)—for clarity, we call the algorithms \(A_{TS} \) and \(A_{ed} \). Both runtimes are \(t(w, 1) \). For simplicity, we denote \(t(w) = t(w, 1) \). While the algorithms \(A, A_{TS}, A_{ed} \) may be randomized, we assume that, when run on the same input, it will produce the exact same output (by, say, memoization). Specifically, we often use \(A_{ed}(X_i, Y_{j,w+l}, l) \), for \(j \in J_w, j' \in \Delta Z \cap [w] \), which are extracted from running \(A_{TS}(X_i, Y_{j,w+l}, l) \) and hence considered to be a deterministic quantity.

3.1 Algorithm description

At the high level, the algorithm constructs a graph corresponding the dynamic programming table in two phases, and then runs the relevant shortest path computations in the third phase.

We build a grid graph on vertices \(I \times J \), which are just respectively \(I, J \) with one extra index at the end. We have edges \((i, j) \) to \((i + w, j) \) of cost \(w \), as well as edges \((i, j) \) to \((i, j + \Delta) \) of cost \(\Delta \). Most importantly, for each triple \((i, j, l) \in I \times J \times L \), we will add the edge \([i, j] \rightarrow (i + w, j + l) \) with some cost which upper bounds the distance \(ed(X_i, Y_{j,l}) \). In the first phase, the algorithm produces upper bounds for all the triples \((i, j, l) \). The second phase will update some of these edges with a more accurate upper bound on the cost.

In the third, estimation phase, we compute the shortest path in the graph for each required substring of \(x \).

Phase 1: dense blocks. Fix \(k = \Theta(\sqrt{b}) \) to be the number of \(y \)-centers. Pick \(k \) random indeces \(j \in J_w \) (the centers), forming the set \(C \subset J_w \).

For each \(i \in [b] \) and \((j, l) \in C \times L \), solve the problem \(\text{TextSearch}(X_i, Y_{j,w+l}, l) \) using \(A_{TS} \). Define \(d_i \) to be the minimal distance found over all considered substrings of \(y \) in particular (\(\alpha \)-approximation of) \(\min_{j \in C, l \in L, j' \in \Delta Z \cap [w]} ed(X_i, Y_{j' + l}, l) \), and \(\pi_i \) be the corresponding minimizing pair \((j + j', l) \). At the same time, form the sets \(S_{j,l} \), where \(j \in C, l \in L \), by adding to \(S_{j,l} \) the index \(j' \in \Delta Z \cap [w] \) each time we have \(\pi_i = (j + j', l) \). Note that \(\sum_{j,l} |S_{j,l}| \leq b \).

For each \((j, l) \in C \times L \), solve \(\text{MultiTextSearch}(Y_{j,w+l}, y, S_{j,l}, l, l') \) for all \(l' \in L \). We store the result for fixed \((j, l)\) as a (sparse) table \(K_{\pi, \tau} \) where \(\pi \in (j + S_{j,l}), l' \) and \(\tau \in J \times L \).

Finally, add to the graph all edges corresponding to \((i, j, l) \), where \(i \in [b], j \in J, l \in L \), with cost \(d_i + K_{\pi, \tau} \).

Phase 2: sparse blocks. We build a binary tree of depth \(O(\log b) \) as follows. Each node corresponds to a sub-interval of \(I \), where the root corresponds to the entire \(I \). For each node,
starting from the root, we partition its interval into two and assign them to the two children. The
tree has \(|I|\) leaves corresponding to singletons. Now, for each node \(v\), with the interval \(U_v \subseteq I\),
we sample \(h = O(\frac{\log n}{\epsilon})\) anchors at random from \(U_v\), with probabilities proportional to \(d_q\) (say,
we sample with repetition): i.e., \(q\) is chosen with probability \(d_q/\sum_{q' \in U_v} d_{q'}\). The resulting set of
anchor is termed \(Q_v\).

For the ensuing computations, we introduce a definition:

Definition 3.1. Consider two triples \((q, j, l), (q', j', l')\) \(\in I \times J \times L\), where \(q < q'\). Then \((q, j, l)\) and
\((q', j', l')\) are compatible if \(j \leq j'\) and \(j' - j \leq \frac{1}{3}q' - q\).

For each top-level anchor \(q \in I\), we estimate the distance from \(X_q\) to each block \(Y_x\) for \(\pi \in J \times L\),
by solving TextSearch\((X_q, y, l)\) using \(A_{TS}\) for each \(l \in L\) separately. Let \(S_q\) be the set of pairs \((j, l)\)
such that the estimated distance is less than \(d_q\). For each anchor \(q\) at non-top level, whose parent \(r\)
has anchors \(Q_r \subset I\), we compute the set \(\tilde{S}_q \subset J \times L\) to be the set of pairs \((j, l)\) such that \((i, j, l)\) is
compatible with at least one triple from \(\cup_{q' \in Q_r} q' \times S_{q'}\). Then, we estimate the distance from \(X_q\) to
each \(Y_x\) for \(\pi \in \tilde{S}_q\), and store the set \(S_q\) of all pairs where the estimated distance is less than \(d_q\) (updating
the corresponding costs in the graph).

We now estimate the distance from \(X_q\) to \(Y_x\) for \(\pi \in \tilde{S}_q\) by running TextSearch on relevant blocks
of \(y\). We decompose \([n]\) into blocks with starting positions that are multiples of \(w\) and consider
only blocks where \(\tilde{S}\) is non-empty. Specifically, for each \(j \in J_w\) and \(l \in L\), if there’s \(j' \in [j : j + w]\)
with \((j', l) \in S_q\), then we run TextSearch\((X_q, Y_{j,w+l}, l)\). Note that this covers all relevant substrings
encoded by \(\tilde{S}_q\).

Phase 3: Shortest paths in the graph. Now consider each starting position \(s \in S_x\) into \(x\)
(from the problem input). Let \(t = s + \lambda_x\) be the ending position. If \(s, t \in \bar{I}\), then we simply run
the shortest path algorithm from the set of vertices \((s, S_y)\) to each of terminal vertices \((t, \bar{J})\). Then
for each \(z \in [n]\), output the distance from the source to the node \((t, j)\) where \(j\) is the closest \(j \in \bar{J}\)
to \(z\) (note that this introduces additive error only \(\Delta \leq \epsilon\lambda_x/\beta\).

Now suppose \(s \notin \bar{I}\) or \(t \notin \bar{I}\). Let \(s' \in I\) be the smallest \(s' \geq s\) and similarly \(t' \in \bar{I}\) be the
largest \(t' \leq t\). If it happens that \(s' > t'\) (s, t are between same two indeces in I), we just run
TextSearchStart\((x[s : t], y, [n])\). Otherwise, we solve the problem TextSearchStart\((x[s : s'], y, [n])\),
recording the results as \(Q_i\) for \(i \in [n]\). We also solve the problem TextSearch\((x[t' : t], y, l)\), for
all \(l \in E : \frac{|l - t|}{\epsilon}\). We record these results as \(W_{i,l}\). Finally, we compute the shortest paths in the
following graph:

- the source node has an edge to each node \((s', j)\), for \(j \in \bar{J}\), with cost \(Q_{j}\);
- create a terminal node \((t, z)\) for each \(z \in [n]\), and for each \((t', j, l)\), \(j \in \bar{J}, l \in L\), add edge
 from \((t', j)\) to \((t, j + l)\) with cost \(W_{j+l,l}\);
- finally run the shortest path algorithm from the source to all the terminal nodes. For each
 \(z \in [n]\), output the distance to the node \((t, z)\).

3.2 Analysis: correctness

First, we note that, by the construction of the graph, for any path of cost \(\zeta\) from \((s_x, s_y) \in I \times J\)
to \((t_x, t_y) \in \bar{I} \times \bar{J}\), then there’s an edit distance matching of cost at most \(\zeta\): in particular, if edge
Claim 3.4. Consider \(p \) pairs of reals \(c_i, d_i \geq 0 \), such that \(\sum_i c_i < (1 - \epsilon) \sum_i d_i \). Then, if we pick \(i \in [p] \) with probability \(d_i / \sum_i d_i \), we have that \(\Pr[i | c_i < d_i] \geq \epsilon \).

\(^{3}\)By convention, \(j_{-1} = l_{-1} = 0 \).
Proof. We have that:

\[1 - \epsilon > \frac{\sum_i c_i}{\sum_i d_i} = \frac{1}{\sum_i d_i} \left(\sum_{i: c_i \geq d_i} c_i + \sum_{i: c_i < d_i} c_i \right) \geq \frac{1}{\sum_i d_i} \cdot \sum_{i: c_i \geq d_i} d_i = 1 - \Pr_i[c_i < d_i], \]

and hence \(\Pr_i[c_i < d_i] \geq \epsilon. \)

In particular, we apply the above claim to pairs \((c_i, d_i)\) for \(i \in U_v\). By the assumption that \(\sum_{i \in U_v} c_i \leq \sum_{i \in U_v} (1 - \epsilon) d_i\), we have that, by our choice of a random anchor \(i\), \(\Pr_i[i \in Z] = \Pr_i[c_i < d_i] \geq \epsilon\). Hence, if we sample \(h = \Omega(\log n/\epsilon)\) anchors, we will sample at least one anchor from the set \(U_v \cap Z\) with high probability.

Now, for an anchor \(q \in Q_v \cap Z\), we want to prove that \((j_q, l_q) \in S_q\). We prove this by induction on the distance from the root. The base case is simple: when the node \(v\) is the root, then follows from the definition of \(S_q = \{\pi : A_{ed}(X_q, Y_\pi) < d_q\}\).

Suppose \(v\) is not root, and all its ancestors are successful. Let \(r\) be \(v\)'s parent. Since \(r\) is successful, there exists anchor \(q' \in Q_r \cap Z\). By inductive hypothesis, \((j_q, l_q) \in S_{q'}\). By Lemma 3.2 the triples \((q, j_q, l_q)\) and \((q', j_{q'}, l_{q'})\) are compatible. Hence \((j_q, l_q) \in \tilde{S}_q\), and, since \(A_{ed}(X_q, Y_{j_q,l_q}) = c_q < d_i\), we have that \((j_q, l_q) \in S_q\), completing the inductive proof.

By the above lemma, the entire tree has the following structure (whp): a “top section” of the tree is composed of a set of successful nodes whose ancestors are also successful, and some of these nodes have unsuccessful children \(v\), for which, by the above, we must have \(\sum_{i \in U_v} c_i \geq (1 - \epsilon) \sum_{i \in U_v} d_i\). Hence, we can partition the set \(I\) into \(\{U_v\}_{v \in V}\) with the following property: each \(U_v\), where \(v \in V\) for some index set \(V\), is either a successful singleton (leaf), or \(\sum_{i \in U_v} c_i \geq \sum_{i \in U_v} (1 - \epsilon) d_i\). Note that in the latter case, the edges \((i, j_i, l_i)\), for \(i \in U_v\), have cost at most \(d_i + K_{\pi_i, (j_i, l_i)}\) (from the first phase). Hence, overall, the cost of edges \((i, j_i, l_i)\) for \(i \in U\) is at most:

\[
\sum_{v \in V \text{ successful}} \sum_{i \in U_v} c_i + \sum_{v \in V \text{ not successful}} \sum_{i \in U_v} d_i + K_{\pi_i, (j_i, l_i)}
\]

\[
\leq \sum_{v \in V \text{ successful}} \sum_{i \in U_v} c_i + \sum_{v \in V \text{ not successful}} \sum_{i \in U_v} d_i + \alpha(\text{ed}(X_i, Y_{\pi_i}) + \text{ed}(X_i, Y_{j_i, l_i}))
\]

\[
\leq \sum_{v \in V \text{ successful}} \sum_{i \in U_v} c_i + \sum_{v \in V \text{ not successful}} \sum_{i \in U_v} \frac{(1 + \alpha)c_i}{1 - \epsilon} + \alpha \cdot \text{ed}(X_i, Y_{j_i, l_i})
\]

\[
\leq \sum_{i \in I} (2\alpha + \alpha^2)(1 + 2\epsilon) \cdot \text{ed}(X_i, Y_{j_i, l_i}).
\]

We’ve shown that the cost of the edges \((i, j_i, l_i)\) is at most \((2\alpha + \alpha^2)(1 + 2\epsilon)\) times the real cost. Together with Lemma 3.2, this completes the proof of the correctness.

3.3 Analysis: run-time

Phase one of the algorithm takes the following times:

- To run the initial TextSearch \(x\text{-vs-}y\) calls: \(O(b \cdot |L| \cdot k \cdot t(w))\);
- To run the MultiTextSearch \(y\text{-vs-}y\) calls: \(O(|L|^2 \cdot \sum_{j \in \mathcal{C}} n/w \cdot t(w, s_j))\), where \(s_j = \sum_{i \in L} |S_{j,i}|\);
• To add edges in the graph: \(O(bk|L|)\).

In phase two, the main work is to estimate distances between \(q\) and \(\tilde{S}_q\) over all anchors. Hence, we need to show that the size of the sets \(\tilde{S}_q\) over all anchors \(q\), is not too large overall. First we argue that the sets \(S_q\) are small, using the following claim:

Claim 3.5. There are at most \(c \cdot \frac{|J_w|}{k}\) indeces \(j \in J_w\) such that there exists \(j' \in \Delta Z \cap [w], l \in L\) with \(A_{cd}(X_i, Y_{j+j',l}) < d_i\), with 99\% probability, for some large constant \(c > 0\).

Proof. Consider all starting positions \(j \in J_w\), and sort them according to the value of \(\min_{j',l} A_{cd}(X_i, Y_{j+j',l})\) where \(j' \in \Delta Z \cap [w]\) and \(l \in L\). With at least 99\% probability, the set \(C\) includes a \(j \in J_w\) of rank at most \(O(|J_w|/k)\) in that sorting. This implies the statement.

The anchors from the root perform \(h\) calls to TextSearch, for a total time of \(h \cdot O(n/w \cdot t(w))\). Now fix a node \(v\) at level \(j \geq 1\) (with the convention that the root is at level 0), one of its anchors \(q \in Q_v\), and let \(r\) be the parent of \(v\). Recall that \(\tilde{S}_q\) consists of all \((j, l)\) that are compatible with anything from \(\cup_{q' \in Q_v} q' \times S_{q'}\). Consider one of \(r\)'s anchors \(q' \in Q_r\), and let \(j', l' \in S_{q'}\). We want to upper-bound the number of pairs \((j, l) \in J \times L\) such that \((q, j, l)\) is compatible with \((q', j', l')\), i.e., \(|j - j'| \leq \frac{1}{2} \cdot |q - q'|\). Note that \(|q - q'|\) is upper bounded by the diameter of \(U_{q'}\) (as \(q, q' \in U_{q'}\)), which is \(m \cdot 2^{-j+1}\). Hence we must have \(|j - j'| \leq \frac{1}{2} \cdot m \cdot 2^{-j+1}\). Thus all compatible \((j, l)\) are covered by at most \(2^{j+2} \cdot \frac{w}{w}\) blocks \([j : j + w]\) where \(j \in J_w\), yielding the same upper bound on the number of TextSearch calls (for each fixed length \(l \in L\)). Each such call takes time \(O(\frac{1}{\epsilon^2} t(w))\).

The total number of such TextSearch calls for a fixed anchor \(q\) is at most

\[|Q_v| \cdot \max_{q' \in Q_r} |S_{q'}| \cdot \frac{4m}{w} 2^{-j} \cdot |L| \leq h \cdot c \frac{n/w}{k} \cdot \frac{4m}{w} 2^{-j} \cdot |L|.
\]

Over all vertices \(v\) and their anchors, the runtime to run all the TextSearch calls becomes:

\[O(h \cdot n/w \cdot t(w)) + \sum_{j=1}^{O(\log b)} 2^j \cdot h \cdot \left(1 \cdot c \frac{n/w}{k} \cdot \frac{4m}{w} 2^{-j} \cdot |L| \right) \cdot O(\frac{1}{\epsilon^2} t(w))\]

\[\leq \left(\frac{\log n}{\epsilon}\right)^{O(1)} \cdot \left((\frac{n}{w} \cdot t(w) + \frac{n}{w} \cdot t(w) + \frac{m}{w} \cdot \frac{m}{w} \cdot t(w)\right) \leq \left(\frac{\log n}{\epsilon}\right)^{O(1)} \cdot O(\frac{n m}{w^2 k} \cdot t(w)).\]

The third phase takes time \(|S_x| \cdot \tilde{O}(n/w \cdot t(w) + |I| \cdot |J| \cdot |L| + n) = \tilde{O}(|S_x| \cdot (n/w \cdot t(w) + \frac{n m}{w^2})).\]

Thus, the overall runtime is, for \(k = \sqrt{m/w}\), \(s = |S_x|\), and \(\sum_{j \in C} s_j \leq b\), up to \((\frac{\log n}{\epsilon})^{O(1)}\) factor:

\[\frac{k m}{w} \cdot t(w) + \frac{n}{w} \sum_{j \in C} t(w, s_j) + \frac{n m}{w^2 k} t(w) + s(\frac{n}{w} \cdot t(w) + \frac{n m}{w^2}) = n \sqrt{m/w} \cdot t(w) + \frac{n}{w} \cdot t(w, \frac{m}{w}) + s(\frac{n}{w} \cdot t(w) + \frac{n m}{w^2}).\]

Remark 3.6. It is possible to adapt the algorithm to use a primitive \(A_{TS}\) for TextSearch only. Assuming that TextSearch on strings of length \(O(w)\) runs in time \(t(w)\), the algorithm runtime becomes:

\[(\frac{n \sqrt{m}}{w^{1/4} \cdot t(w) + \frac{n m}{w^2}}) \cdot (\log n)^{O(1)} \cdot \tilde{O}(1).
\]

For this, the phase 1 of the algorithm would pick \(C\) randomly from \(J\), compute the distance between all \(Y_{j,l}, j \in C\), and substrings of \(y\) using TextSearch primitive.
3.4 Proof of Block-matching Lemma

Proof of Lemma 3.2. To analyze $\text{ed}(x, y)$, we consider the optimal alignment $A : [m] \rightarrow [n] \cup \{\bot\}$ that certifies $\text{ed}(x, y)$. In particular, we have that, $A(i) < A(j)$ for any $i < j \in [m] \setminus A^{-1}(\bot)$, and

$$\text{ed}(x, y) = \# \left\{ i \in [m] \setminus A^{-1}(\bot) : x[i] \neq y[A(i)] \right\} + 2 |A^{-1}(\bot)| .$$

Note that the starting and ending positions of the blocks in y are always multiples of $\Delta \leq \epsilon/\beta \cdot w$. We call mini-blocks to be length-Δ blocks starting at positions $\Delta \mathbb{Z}$ in y. For each block $X_i = x[i : i + w]$, we define s_i to be starting point of the first mini-block containing $A(z) \neq \bot$ for $z \in [i : i + w]$. Similarly define $t_i \in S$ to be the last such mini-block. If s_i, t_i do not exist, we define $s_i = t_i - \Delta$ and $t_i = t_{i-1}$ (where $t_{i-1} = -\Delta$ by convention). Note that $t_i \leq s_i$ for all i.

The starting point is match the block X_i to string $y[s_i : t_i + \Delta]$, i.e., to set $j_i = s_i$ and $l_i = t_i - s_i + \Delta$. In that case the LHS in Eqn. (1) is upper-bounded by $\text{ed}(x, y) + 2\Delta \cdot b$ (each block may introduce error of $\leq 2\Delta$ due to rounding). However, we also need to make sure that the intervals $[j_i : j_i + l_i]$ satisfy the desired properties: they are disjoint, not too long, and are not too spread out. For this purpose, we modify j_i, l_i in a few steps below, controlling the incurred error.

We ensure disjointness as follows: if $j_{i-1} + l_{i-1} = j_i + \Delta$, we set $j'_i = j_i + \Delta$ and $l'_i = l_i - \Delta$ (and $j'_i = j_i, l'_i = l_i$ is otherwise). Note that, for some blocks i, it may now be that $l'_i = 0$, in which case X_i just matches to an empty block. We now have that $j'_{i-1} + l'_{i-1} \leq j'_i$. The incurred error per block is Δ. Second, we ensure that the block lengths are in: particular, that each block length $l'_i \in w \pm \Delta E \cap \lfloor w/\epsilon \rfloor$. We now set l''_i using l'_i as follows: if $l'_i < w$ we round it up to nearest index in $w + \Delta \cdot E$, and otherwise take the minimum between rounding down in $w + \Delta \cdot E$ or $l'_i = w/\epsilon$. Let’s analyze the incurred error. After changing from l'_i to l''_i, the LHS in Eqn. (1) increases by at most:

$$2 \cdot |l'_i - l''_i| = 2 \cdot |(l'_i - w) - (l''_i - w)| \leq 2\epsilon(1 + \epsilon) \cdot |l'_i - w| \leq 2\epsilon(1 + \epsilon) \cdot \text{ed}(X_i, y[s'_i : t_i + \Delta]) ,$$

where we’ve used the fact that $\text{ed}(X_i, y[j'_i : j'_i + l'_i]) \geq |l'_i - w|$. Hence, we get that:

$$\sum_i \text{ed}(X_i, y[j'_i : j'_i + l'_i]) + (j'_i - (j'_{i-1} + l''_{i-1})) \leq \text{ed}(x, y) + O(\Delta \cdot b) + 2\epsilon(1 + \epsilon) \cdot (\text{ed}(x, y) + O(\Delta \cdot b))$$

$$= (1 + O(\epsilon)) \cdot \text{ed}(x, y) + O(en/\beta) .$$

We are left with the final property to ensure: that $|j_{i'} - j_i| \leq \frac{1}{\epsilon} |l'_{i'} - l_i|$ for all $i < i'$. Note that it is enough to ensure this for $i' = i + 1$ (by triangle inequality). We ensure that by constructing j''_i by adjusting j'_i as necessary, iterating over $i \in I$ in order. For current i, suppose $j''_i - j''_{i-1} > w/\epsilon$. Then we simply set $j''_i = j''_{i-1} + w/\epsilon$ (note that $j''_{i+1} - j''_i = w/\epsilon \geq l''_{i'}$, so keeping the same lengths is ok), and leave $j''_i = j'_i$ otherwise. Note that the LHS can increase only by at most w as some characters from X_i may lose their matches altogether. To account for this increase in cost, we “charge” this cost to

$$\text{ed}(X_{i-1}, Y_{j''_{i-1}l''_{i-1}}) = w/\epsilon + (\text{ed}(X_{i-1}, Y_{j''_{i-1}l''_{i-1}}) - l''_{i-1}) \geq \frac{w}{\epsilon} + w \geq \frac{w}{2\epsilon} .$$

Since $\sum_i j''_i - (j''_{i-1} + l''_{i-1})$ remains the same overall, the extra cost is only at most a factor of 2ϵ of the total cost when using indeces j'_i, l'_i. Hence the total cost of the changes here increases the cost by at most a factor of $1 + 2\epsilon$.

The final output indeces are (j''_i, l''_i).
References

