
Graceful Service Degradation
(or, How to Know your Payment is Late)

Alexandr Andoni
∗

MIT
Jessica Staddon

PARC

ABSTRACT
When distributing digital content over a broadcast channel
it’s often necessary to revoke users whose access privileges
have expired, thus preventing them from recovering the con-
tent. This works well when users make a conscious decision
to leave the system or have misbehaved, but numerous cases
exist in which the revocation is in error and users are con-
sequently left with the often onerous burden of getting rein-
stated. We introduce a gradual form of revocation that we
call service degradation that enables the content distributor
to provide “cues” to the user in the form of degraded sys-
tem performance. The cues alert the user to their impending
revocation and allow them to take the necessary action to
remain in the system. Our protocols build on techniques
for broadcast encryption and spam-fighting to provide the
appropriate form of service for this previously ignored class
of users.

Categories and Subject Descriptors
E.4 [Coding And Information Theory]: Formal meth-
ods of communication; H.3.5 [Online Information Ser-
vices]: Commercial Services; H.3.7 [Digital Libraries]:
Dissemination

General Terms
Security, Theory, Algorithms.

Keywords
Degradation scheme, broadcast encryption, revocation scheme,
copyright protection, moderately-hard functions.

1. INTRODUCTION
Traditional approaches to distributing content over a broad-

cast channel (see, for example, [12, 4, 26]) allow for two types
of users: privileged users who are authorized to receive the

∗Most of this research was conducted while this author was
an intern at PARC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05, June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

content, and revoked users who are not. These approaches
do not allow for users who are authorized currently, but due
to a recently overdue bill payment or expiring trial period,
are in danger of losing that status. For such users it is de-
sirable to provide access to the content coupled with “cues”
that this access will be short-lived without some action on
their part (e.g. bill payment or purchase). Indeed examples
abound of users who have found the task of being reinstated
after an expired trial period frustratingly difficult (see, for
example, [11]).

One possibility for such cues are written reminders (e.g.
messages sent by email or snail mail). There is an inher-
ent delay in sending such reminders, however, and they are
often ineffective for a number of reasons (e.g. misdelivery,
incorrect sorting by mail filters, etc.). What’s preferable is a
method that “binds” the cue to the content so that through
accessing the content the user experiences the cue and is
thus warned of their impending status change. A binding is
proposed in [2] for a different purpose. In [2], the content is
broken into pieces and encrypted in such a way that revoked
users users can recover some of the pieces but not enough
to get the value of the content (e.g. video content is very
“choppy” for such users). This technique is good for reduc-
ing communication overhead (since fewer users need to be
truly revoked) but it doesn’t serve our purposes as it causes
an insurmountable obstacle to content access rather than an
obstacle that is unavoidable, and thus provides a useful cue,
but that can be overcome.1

We introduce protocols for the broadcast content distri-
bution setting (e.g. pay-TV, online software) that provide
appropriate service to all three types of users. Our enabling
idea is to use broadcast techniques for revocation (e.g., [12,
21, 14] for the secure distribution of “hints” to what we term,
variably hard functions (a generalization of the “moderately
hard” functions of [1] and the “pricing functions” of [9]).
Hints allow the users to recover the session key from the
variably hard function, and then the content, which is sub-
sequently broadcast encrypted under this session key. The
type of hint received determines the amount of work a user
must do to recover the session key, and thus whether or not
the user is provided with a cue. That is, a high-quality hint
is given to the privileged users, a lesser quality hint is pro-
vided to users who are near the end of their trial period

1If a degraded user can modify their system so that the
service degradation is unobtrusive we still view the system as
successful because the act of modification demonstrates they
experienced the cue. We do not intend to prevent degraded
users from accessing the content, but rather to warn them
that they may be prevented in the future.

or who are behind on their bills, and no hint is given to
the revoked users (and so it is infeasible for revoked users
to recover the content). We term our protocols degrada-
tion protocols to emphasize that they extend the notion of
service revocation to service degradation.

Our protocols enable privacy-enhanced content access that
integrates well with previously proposed approaches to se-
cure digital content distribution. A traditional approach to
content distribution is to require some form of user identi-
fication (e.g. log-in information) before releasing the con-
tent. This facilitates tracking of users and is potentially
privacy-compromising. In our protocols, communication is
effectively one-way: content is broadcast in encrypted form
and so the distributor is unable to collect usage data. Fur-
ther, our approach is a straightforward extension of existing
methods for secure content distribution which may make
adoption easier.

To summarize, we make the following contributions:

• A model of secure broadcast-channel services that al-
lows for graceful service degradation based on the new
notion of variably hard functions (Section 2) and a
general technique for constructing secure degradation
schemes (Section 3).

• A service degradation scheme specifically designed for
broadcast-channel services that seek to enforce a trial
period (e.g. online software). The protocol incurs con-
stant communication overhead and constant user stor-
age (Section 4.1).

• A service degradation scheme for any broadcast-channel
service that employs a revocation scheme such as [21,
14] and incurs communication overhead and user stor-
age costs that are on the same order as the underlying
revocation scheme (Section 4.2).

Overview. This paper is organized as follows. We discuss
related work in Section 1.1 and provide a model of service
degradation and introduce our new tool, variably hard func-
tions, in Section 2. In Section 3 we discuss the difference
between degradation and revocation and provide a general
technique for constructing degradation schemes. Section 4
contains our main constructions; in Section 4.1 we provide
one specifically designed for trial period services and in Sec-
tion 4.2 we provide a more general construction. In Section 5
we discuss simulation results and we conclude in Section 6.
Appendix A presents a new stateful LKH-like revocation
scheme that asymptotically outperforms LKH [5] in terms
of communication. Appendix B presents a summary of the
notation used in the paper.

1.1 Related Work
The study of secure content distribution over a broad-

cast channel is initiated in [12, 4] in which symmetric key
cryptography is used to securely communicate information
to dynamic sets of users. Since such protocols allow the
content provider to prevent or revoke a user from accessing
the content, they are often termed revocation protocols (a
convention we follow here). Several extensions and improve-
ments to [12, 4] have followed; we highlight a few that are
particularly relevant to our work.

The idea of using secret sharing-based techniques (i.e.
techniques similar to Shamir secret sharing [23]) is refined
in [18, 24, 20, 17], in which protocols are provided that have

the advantage of ensuring revoked users cannot recover the
content through collusion. In Section 3 we show how the
approach of [18] can be modified to yield degradation pro-
tocols.

A particular type of secret sharing-based protocol called
a “subset-cover” protocol is introduced in [21] and refined
in [14]. Subset-cover protocols are tree-based and provide
desirable communication overhead, and storage costs; in
particular, O(r) communication overhead (where r is the
number of revoked users) and user storage that is polylog in
the total number of users. Such protocols can form the basis
for the degradation protocol we introduce in Section 4.2.

A key component of all of our protocols is what we term
variably hard functions. Such functions are a generaliza-
tion of the “pricing functions” introduced in [9] and “mod-
erately hard” functions in [1]. In [9] pricing functions enable
email senders to provide easy-to-check proofs of computa-
tional effort, thus providing evidence that the email is not
spam. The functions in [1] provide easily checked proofs of
memory accesses rather than computational effort, as the
authors argue memory access speeds are less likely to vary
across machines than computational power. Other functions
that enable such proofs of work are discussed in [15]. All
these works are motivated by scenarios such as bulk mail (or
spam) in which there is no need to enforce different work lev-
els on different users, hence they don’t consider the notion
of graceful service degradation that is our focus. Informally
speaking, our variably hard functions yield easily checked
proofs that a certain, variable, number of operations have
been executed, where an operation could be closely aligned
with a computation, a memory-access, or some other pro-
cess. The number of executed operations varies according
to what the user knows about the function, and this is what
allows our protocols to enforce fine-grained service degrada-
tion.

Finally, we note that degradation is related to the no-
tion of differentiated services for the Internet (see, for exam-
ple, [10]) in that both techniques are intended to increase
overall customer satisfaction by enabling a vendor (of con-
tent or Internet service, respectively) to recognize more cat-
egories of users. However our setting is fundamentally dif-
ferent in that we enforce service degradation on users based
on their account status while differentiated service protocols
allow users to choose their level of service according to the
user’s budget constraints and/or resource needs.

2. MODEL AND TOOLS
The familiar setting for broadcast-channel services (see,

for example [12]) includes a center C that distributes content
to a set, N , of users. In each of a sequence of sessions, en-
crypted data is broadcast. Each broadcast includes a header
Head, consisting of an encrypted session key, SK, and the
content encrypted under this session key. C can encrypt the
content in such a way that a subset P ⊆ N of “privileged”
users can decrypt the content, while the the users in the set
R = N \P , are not able to recover the content and are thus
termed “revoked”. The revoked users are those who have
not paid for the content. The sets N , P, R can change over
time. Schemes for distributing broadcast-channel services to
the dynamically changing sets, N , P and R are often called
revocation schemes.

We consider an extension of this setting that we term
broadcast-channel services with degradation, or simply, a
degradation scheme, in which the set of users N is parti-

tioned into three subsets N = P ∪ R ∪D. The sets P and
R have the same roles as before, while the new set D de-
notes the users who experience degraded service in terms
of the ease with which they recover the content from the
broadcast and hence we term these users “degraded”. A
user in D can decrypt SK and the content, but doing so
requires additional “work” (much more than for a user in
P). The amount of work can be varied as C desires and may
be measured computationally [15], by memory accesses [8]
or by any other operation that is deemed to not advantage
any particular user. We enforce this work requirement by
the use of a “hard function”, F (·), (defined precisely in Sec-
tion 2.1) whose value on input v determines session key, SK.
Informally speaking, computing F (v) requires a “hint”; the
amount of hint that is available is inversely correlated with
the amount of work that’s expended when generating F (v).
In particular, users in R are unable to recover a hint from
the header, and so it is infeasible for such users to recover
SK, while users in D recover partial hints from the header
and thus are able to recover SK with some work, and users
in P recover a “complete” hint (i.e. v) and thus reconstruct
SK efficiently. Indeed, we require that a degradation scheme
be able to vary the amount of work a user in D must per-
form according the the class the user is in, where the class
indicates how severely the user is to be degraded. The class
of a user may be a function of when the user last paid for
the content. We induce an ordering on the classes such that
users in P are thus in the “highest” class, whereas users in
R are in the “lowest” class. the following definition makes
this precise.

Definition 1. Let L = {C0, . . . , CL+1} be the set of all
classes, where P = C0, R = CL+1 and D = ∪L

j=1Cj. We
order the classes as P = C0 > C1 > . . . > CL+1 = R and
say a class Cj1 is higher than Cj2 if Cj1 > Cj2 according
to this ordering. In each session j, there exists a class de-
termining function hj : N → L called the user hierarchy
for that session. In the event that user transitions between
classes are restricted, we denote the set of allowed hierarchy
transitions (i.e., allowed pairs (hj−1, hj)) by T ⊆ F × F ,
where F is the set of all functions h : N → L.

Before defining a degradation scheme we introduce some
terminology and notation. Let κ be the security parameter
(the width of the keys). We say η : R → [0, 1] is a negligible
function if for any c ∈ R, there exists κc ∈ R, such that
η(κ) < 1/κc for all κ ≥ κc.

We use x ∈r S to indicate that the element x is chosen
uniformly at random from the set S.

Lastly, we often make use of a symmetric encryption scheme
Ek(·), that is assumed to be “perfect” in the sense that,
without knowing the key k, it is infeasible to decrypt a ci-
phertext, Ek(M), or deduce any information on the key k.
In Section 4.2, given a set S ⊆ N we use the notation,
ES(M) to denote the use of a revocation scheme (e.g. [21,
14]) to encrypt a message, M so that users in S are each able
to recover M and users who are not in S are unable to, even
when colluding. ES(M) might actually consist of a set of
ciphertexts generated with a symmetric encryption scheme
under various keys (e.g. ES(M) = {Ek1

(M), . . . , Ekj
(M)})

according to the specifics of the revocation scheme.

Definition 2. A degradation scheme uses the following
four algorithms, the first three of which are randomized:

1. A parameter generation algorithm, Params(1κ), that
takes as input the security parameter κ and outputs

the pair of system parameters (σ, ρ). σ are the private
(secret) parameters and ρ are public parameters.

2. A key generation algorithm, KeyGen(ρ, u), that outputs
the private key Ku for user u. User u will use Ku to
recover the session keys from the headers.

3. A header generation algorithm, Encrypt(j, σ, ρ, hj−1, hj ,
SKi), that outputs the broadcast header Headj for ses-
sion j. The goal of the broadcast header Headj is to
distribute the session key SKj. hj−1 and hj are the
old and respectively the new hierarchies of users.2

4. A session key recovery algorithm, KeyRecovery(ρ,Ku, Bj),
that generates the session key SKj given the key Ku

of user u.

In addition, a degradation scheme satisfies the following
properties:

• (Correctness)
1. If u ∈ P in hierarchy hj , then KeyRecovery(ρ,Ku, Bj)

recovers SKj in a constant number of operations3,
where Bj = Encrypt(t, σ, ρ, hj−1, hj , SKj);

2. If u ∈ R in hierarchy hj , then u cannot recover
SKj from Bj with non-negligible probability (in a
number of operations polynomial in κ);

3. If u ∈ Ci in hierarchy hj , then KeyRecovery(ρ, Ku, Bj)
recovers SKj with O(UTi) operations but cannot
recover SKj in O(LTi) operations with probability

greater than Ω
“

1
LTi

”

, where UTi, LTi are given

limits;

• (Collusion resistance for revoked users) In any session
j, for any set S ⊆ R, it is computationally infeasible
for the coalition of users in S to recover SKj .

2.1 Variably Hard Functions
In this section we formally define the functions that our

degradation schemes rely upon. The following definition is
more general, and somewhat more formal, than the notions
of “pricing” functions in [9, 8] and “moderately hard” func-
tions in [1].

Definition 3. Let v∈r{0, 1}κ. Let g : {0, 1}κ → D be
a function, for some domain D that is injective with high
probability. We call g(·) a test function. Let

Hints(v) ⊆
n

Y (ℓ) ⊆ {0, 1}κ | v ∈ Y (ℓ), |Y (ℓ)| = 2ℓ, 0 ≤ ℓ ≤ κ
o

be the set of hints for v ∈ {0, 1}κ (i.e., a hint for v is

a subspace Y (ℓ) of {0, 1}κ of size 2ℓ that contains v). A
function, F : {0, 1}κ → {0, 1}κ, is a variably hard function
if the following hold:

1. For any given v∈r{0, 1}κ, g(v) and F (v) are both ef-
ficiently computable with a polynomial in κ number of
operations;

2. There exist constants c, ℓ0 such that for v ∈r {0, 1}κ,
and any ℓ ≥ ℓ0, any algorithm performing O(2cℓ) op-

erations can generate F (v) given only g(v) and Y (ℓ) ∈
Hints(v) with probability at most O(2−cℓ).

2Note that hj−1 is only required for the construction of Sec-
tion 4.2 but we include it in the definition for completeness.
3We regard the decryption of a ciphertext Ek(M) to take a
constant number of operations. Such a decryption is all a
privileged user must do to recover the content.

We use a variably hard function F , and a corresponding
test function g, in the following way in degradation schemes.
F and g are made public. The center, C, generates a ran-
dom value v∈r{0, 1}k and encrypts some content with the
key derived from F (v). Further, the center wants to allow
a user u ∈ D to decrypt the content, but only after u per-
forms O(2ℓ) operations. For this purpose, the center gives

g(v) and some Y (ℓ) ∈ Hints(v) to u. Thus, assuming a per-
fect encryption scheme, to decrypt the content, u needs to
compute F (v); and doing so requires u to perform at least
Ω(2cℓ) operations (as guaranteed by the definition).

Intuitively, the hardness of F relies on the hardness of
recovering v from g(v) and Y (ℓ). That is, the one-wayness
of g(·), even given Y ℓ, is necessary.

Note that a user can compute F (v) given g(v) and Y (ℓ)

with at most O(2ℓ · poly(κ)) operations, where poly(κ) is a
polynomial in κ. One way to accomplish this is by enumer-
ating all elements y ∈ Y (ℓ) and testing whether g(y) = g(v);
once A finds such y, F (y) is easily computed and F (y) =

F (v). Since |Y (ℓ)| = 2ℓ, this process incurs O(2ℓ · poly(κ))
operations. In the rest of the paper, we will usually drop
the poly(κ) factor since the exponential is much more im-
portant. Note that saying that the user can compute F (v)
with O(2ℓ) effort is not in conflict with the second condition
of the Definition 3 even when c = 1: the two O(·) notations
denoting the operational effort hide different constants. 4

2.1.1 Variably Hard Function Constructions
In this section we construct two variably hard functions.

The first is based on computational hardness and the second
on memory-access hardness, the latter is considered a more
uniform across different platforms [1].

A Variably Hard Function from a One-Way Permu-
tation. A natural candidate for a variably hard function
is a one-way permutation. Let P be a one-way permuta-
tion on {0, 1}κ that for which any inverter running in time
O(2cκ), succeeds with probability O(2cκ), where c is a con-
stant c ≤ 1/2. Then, define the test function g(v) = P (v),
and F (v) = v, for all v ∈ {0, 1}κ. . We claim F (·), with
test function g(·), is a variably hard function, since comput-

ing F (v) given g(v) and Y (ℓ) ∈ Hints(v), requires at least
Ω(2cℓ) computation (one can prove this via a standard sim-
ulation/reduction argument). On the other hand, one can
compute F (v) with O(2ℓ) computation by trying all possible

v ∈ Y (ℓ).
A deficiency of this function is that it requires a fixed

amount of computation – resulting in different times on dif-
ferent processors. Ideally, we would like a function that
imposes the same time on all platforms, independent of the
processing speed. To address this deficiency, we propose the
next hard function, which requires fixed amount of memory
accesses rather than a fixed number of CPU cycles. The ben-
efit of this approach is that memory accesses take an amount

4There is a technicality relating to the hints Y (ℓ): it can
take roughly 2ℓ bits to describe Y (ℓ). This is infeasible since
it would imply 2ℓ communication and a similar effort on
center’s part. To resolve this technicality, we restrict the
set Hints(v) to sets Y (ℓ) that have a short description. In
particular, for the purpose of this paper, it is sufficient to
consider only the sets Y (ℓ), where a set Y (ℓ) is the set of
solutions y ∈ {0, 1}κ to the equation Ay = b, where A ∈
Mκ−ℓ,κ[Z2] is a matrix of rank κ− ℓ and b ∈ Zκ−ℓ

2 . In this

case we can describe Y (ℓ) with only O(κ2) bits.

of time that is more uniform across different platforms (as
argued by [8, 1]).

A Variably Hard Function Based on [8]. Next we
construct a hard function that requires a fixed amount of
memory accesses as opposed to requiring a fixed amount
of CPU cycles. For this purpose, we use a modification of
the memory-bound functions that are used for fighting spam
in [8].

We first recall the memory-bound function construction
in [8], and then describe how we modify the function to con-
struct a variably hard function. The input to the memory-
bound function is a tuple, r, containing the message of the
email, the receiver, and the date. The output of the function
is a value z for which the procedure Test(r, z) described
below succeeds. Test(r, z) employs four hash functions,
H0(·), H1(·), H3(·), H4(·), and a fixed table T . It is parame-
terized by positive integers t and ℓ, where ℓ determines the
“hardness” of the function. The definition of Test(r, z)
follows:
Test(r, z):

A← H0(r, z)
For i = 1 . . . t:

ci ← H1(A)
A← H2(A,T [ci])

Succeed if, after the loop above, the last ℓ bits
of H3(A) are all zero.

Fail otherwise.
In [8], the authors prove that in order to compute this

function, one needs Ω(2ℓt) memory accesses to T (for certain
specified assumptions on the parameters and the platform).

The above memory-bound function must be modified in
order to yield a variably hard function because it is in fact
a one-to-many relation since there might be several values
z for which Test(r, z) succeeds. This is not an issue for
spam-fighting, however this is at odds with our goal of en-
suring each user generates the same value (which is, or can
be used to generate, the session key). In addition, to allow
for many classes of degraded users we need to be able to
parameterize the number of operations required of a user
to recover this common value. To achieve these properties
we define the function U(r, z), r ∈ {0, 1}κ, z ∈ {0, 1}κ, as
follows:

A0 = H0(r, z)
For i = 1, . . . t:

ci = H1(Ai−1)
Ai = H2(Ai−1, T [ci])

U(r, z) = H3(At)
In the terminology of the function U , note that the origi-

nal function of [8] requires finding a z∗ for which the last ℓ
digits of U(r, z∗) are zero; z∗ is then the output of the func-
tion from [8]. We don’t make this requirement but rather
simply generate H3(At) as the output.

To make this into a variably hard function, we define the
test function as g(v) = 〈H4(v), U(H4(v), v)〉, where H4(v)
is a hash function with codomain {0, 1}κ (modelled as a
random oracle), and we let F (·) be the identity function
(i.e. F (v) = v for all v ∈ {0, 1}κ.

To see that F (·), with the test function g(·), is a variably
hard function note first that g(·) and F (·) are efficiently com-
putable. Furthermore, since F (v) = v, computing F (v) is
the same as inverting g(v) = 〈H4(v), U(H4(v), v)〉, or, equiv-
alently, finding z∗ such that U(H4(z

∗), z∗) = U(H4(v), v).

Given a hint Y (ℓ) ∈ Hints(v), finding such z∗ ∈ Y (ℓ) takes,
in expectation, Ω(2ℓt) memory accesses by the same argu-

ment as that involved in the proof of Theorem 1 of [8].
Lastly, we mention that we need the same assumptions

on the architecture and parameters |A|, t, h as in Theorem 1
of [8], as well as the additional assumption that the codomain
of U(·) is {0, 1}2κ (2 has no particular importance and can
be replaced by other constant bigger than 1). Thus, there
is a negligible probability of the existence of two different
v′, v′′ ∈ {0, 1}κ such that U(H4(v

′), v′) = U(H4(v
′′), v′′),

and thus each user will arrive at the same output that in
turn can be used to generate the same session key, SK.

3. DEGRADATION VS. REVOCATION
n this section we discuss the difference between degra-

dation and revocation and provide an illustrative construc-
tion. Since degradation is a generalization of revocation,
any degradation scheme yields a revocation scheme. Con-
versely, a revocation scheme that is capable of revoking suf-
ficiently many users, coupled with a hard function, can be
used to accomplish degradation. This is done by repeat-
edly invoking the revocation scheme to target users in the
various degradation classes. For example, in the case of a
single degradation class, let v = (v1, . . . , vκ) be such that
the session key is (or, is derived from) F (v), for some vari-
ably hard function, F (·). The revocation scheme can first
be used to generate an encrypted broadcast from which the
users in P can recover v1, . . . , vℓ for some ℓ < κ, and then
the revocation scheme can be used again to generate an en-
crypted broadcast from which the users in P ∪D can recover
vℓ+1, . . . , vκ. The “check” value g(v) can be broadcast unen-
crypted. After these three broadcasts, users in P have the
value v (the “complete” hint) and thus can easily recover
the session key. Users in D have a partial hint (indeed, an
ℓ-dimensional subspace that contains v) and can recover the
session key in O(2ℓ) operations (for example, by repeatedly
guessing the v and testing each guess against g(v)). Finally,
it is infeasible for users in R to recover the session key be-
cause doing so requires guessing a bit string of length κ.
This technique can be extended to more than three classes
while incurring a number of broadcasts that is proportional
to the number of classes. We call this technique for using a
revocation scheme to degrade users repeated revocation.

Because repeated revocation requires a revocation scheme
capable of revoking |D| + |R| users (rather than just |R|)
it may be less efficient. That is, given the constraints of
the particular application, it may be desirable to construct
a degradation scheme directly rather than via a revocation
scheme. In this section, we demonstrate one such construc-
tion inspired by the revocation protocol of [18].

Before describing our construction we give a brief overview
of the structure of our degradation protocols (presented in
this section and section 4). Recall that we have L+2 classes,
C0, . . . CL+1, with the convention that users from the class
Ci are “degraded more” than the users from the class Ci−1.
The union of C1, . . . CL is the set of all degraded users, D. To
each class Ci, we assign a hardness parameter, ei. For users
in class Ci, it will take roughly 2ei operations to compute
F (v) for some input, v. For i = 2, . . . , L, the fact that
ei−1 ≤ ei ensures that users in Ci have no better service
than users in Ci−1.

Finally, we make use of a variably hard function, F , in the
following basic way. Consider some value v ∈ {0, 1}κ and
its associated set of partial hints, Hints(v). We ensure that
each user in Ci is able to recover an ei-dimensional space,
Y (ei) ∈ Hints(v). By the definition of F (·), a user in Ci (i >

1) has to reduce the space of possible values for v in order
to compute F (v), and doing so takes approximately O(2ei)
operations. Note that all users from P ∪D = C0 ∪ . . . ∪ CL

will compute the same value F (v).

Construction. For simplicity of exposition we assume a
single degradation class (L = 1), that is, all the users in
D experience the same impaired level of service. Our con-
struction is similar to the construction in [18] but differs
in the definition of the session key and the Encrypt(·) algo-
rithm. In the following, let 0 < p < 1 be a constant chosen
by the center, C, and let t, γ be positive integers such that
(t + 1)γ = κ.

1. Params outputs m keys, k1, . . . , km ∈ {0, 1}κ, a ran-
domly generated polynomial f(x) = atx

t + . . . + a0 ∈
F2γ [x], and C partitions the keys into r sets, S1, . . . , Sr,
where for i = 1, . . . , r, Si = {ki,1, . . . , ki,s} ⊆ {k1, . . . , km},
for some integer, s > 0.

2. For every u ∈ N , KeyGen allocates to u a randomly
chosen key from each of S1, . . . , Sr. Thus, a user u
stores r keys in total.

3. Encrypt outputs the pairs, {(bk, Ek(f(bk))) : bk ∈r

F2γ , k ∈ T ⊆ {k1, . . . , km}}∪{g(at|| . . . ||a1||a0)}, where
g(·) is a test function for some variably hard func-
tion F (·) (Definition 3), and the set T is chosen from
{k1, . . . , km} as follows: for i = 1, . . . , m, ki ∈ T with
probability α where,

• α = 0 if there exists u ∈ R such that u received
ki from KeyGen,
• α = p if for every u ∈ R, u did not receive ki

from KeyGen but there exists a user u ∈ D who
received ki from KeyGen,
• Otherwise, α = 1.

To intuitively see that this construction is a degradation
protocol note that a user in P is more likely to have a key,
k ∈ T than a user in D. Further, a user in R has none
of the keys in T and hence, a user in D is more likely to
have a key, k ∈ T than a user in R. The size of the subsets
of {(bk, f(bk))|k ∈ T} that are recovered by users during
the invocation of KeyRecovery are consequently expected to
be of decreasing size for users in P , D and R respectively.
These subsets are essentially hints for v = (at|| . . . ||a0), and
hence privileged users have more substantial hints than de-
graded users, who in turn have more substantial hints than
revoked users. We provide an example lemma showing how
the parameters can be chosen to achieve different operation
costs for the three types of users.

Lemma 1. Let p ≤ (1−1/s)|D|

2+(1−1/s)|D| . In the degradation pro-

tocol given above the parameters can be chosen so that the
following hold:

1. A user in P is expected to have at least 3/2(t+1) keys

in T and with probability more than 1−1/e(t+1)/12 can
recover (at|| . . . ||a1||a0) during KeyRecovery, and thus,
SK, in constant time.

2. A user in D is expected to have (t + 1)/2 keys in

T and with probability at least (1 − 1/e(t+1)/24)(1 −

1/e(t+1)/16) such a user incurs an operational cost of

at least Ω(2γt/4) and at most O(23γt/4), to recover SK.
3. A user in R has no keys in T and so it is infeasible for

such a user to recover SK.

In addition, to achieve these properties with a repeated
revocation protocol using underlying revocation scheme [18],

one incurs a comparable user storage costs but a factor of
1+(1−1/s)|D|

(1−p)(1−1/s)|D|+p
> 1 more communication overhead.

Proof. To verify the claims on users in P for the con-
struction above, note that for a key k allocated to a user in
P , the probability that k is in T is, (1−1/s)|R|[p+(1−p)(1−

1/s)|D|], and so the expected number of keys that a privi-

leged user has in T is, µ = r(1−1/s)|R|[p+(1−p)(1−1/s)|D|].
Setting µ > 3/2(t + 1), Chernoff bounds (see, for exam-
ple, [19]) give the probability in statement 1. of the lemma.
Note that this implies the following lower bound on r, r ≥

3(t+1)

2(1−1/s)|R| [p+(1−p)(1−1/s)|D|]
.

To verify the claims on users in D in the construction
above, note that for a key k allocated to a user in D, the
probability that k is in T is, (1 − 1/s)|R|p, and so the ex-
pected number of keys that a degraded user has in T is
µ = (1−1/s)|R|pr. Finally, Chernoff bounds yield the prob-
ability stated in 2. Finally, by setting µ = (t + 1)/2 we get
the following equation, r = t+1

2p(1−1/s)|R| .

Since T is constructed by discarding any key known to a
user in R, statement 3. of the lemma holds.

Hence, choosing parameter values so that r = t+1

2p(1−1/s)|R| ≥
3(t+1)

2(1−1/s)|R| [p+(1−p)(1−1/s)|D|]
yields a construction satisfying

1-3 above, and these two conditions hold if and only if

p ≤ (1−1/s)|D|

2+(1−1/s)|D| . Substituting the upper bound on p in

the expression for r, we get the following lower bound on r:

r = t+1

2p(1−1/s)|R| ≥
(t+1)(2+(1−1/s)|D|)

2(1−1/s)|R|+|D| .

To compare repeated revocation and our degradation con-
struction we first recall how repeated revocation works. We
first form a set T1, by discarding all keys known to users in
D∪R, and then broadcast a set of pairs {(bk, Ek(f(bk))|k ∈
T1}. For the second broadcast we form a set T2 by discard-
ing all the keys known to users in R, and we broadcast a set
of pairs {(ak′ , Ek′(f(ak′))|k′ ∈ T2}. We choose bk, ak′ ∈ F2γ

all distinct.
Privileged users must recover the most points on f(·) from

the broadcast and hence, by considering a privileged user
we get the tightest lower bounds on user storage. In order
to make a fair comparison with our degradation protocol
we require a privileged user to recover at least 3(t + 1)/2
points on f(·) from the broadcasts in expectation. Since
degraded users and privileged users are each expected to re-
cover (t + 1)/2 points from the second broadcast this im-
plies a privileged user is expected to recover more than
t+1 points from the first broadcast, and equivalently, r(1−

1/s)|R|+|D| ≥ t + 1. This implies r ≥ t+1

(1−1/s)|R|+|D| . Hence,

user storage is comparable in the two protocols (recall, our

lower bound on r is (t+1)(2+(1−1/s)|D|)

2(1−1/s)|R|+|D|). The expected

communication overhead for repeated revocation is roughly
|T1|+ |T2|, or m(1−1/s)|R|(1+(1−1/s)|D|) since there are
m keys in total. For the degradation protocol, the expected
size of T is m(1− 1/s)|R|[(1− 1/s)|D| + p(1− (1− 1/s)|D|)],
which is smaller than in the repeated revocation case by a

factor of, (1−p)(1−1/s)|D|+p

1+(1−1/s)|D| .

A significant difference between this example construction
and the repeated revocation approach is that this example
provides no collusion resistance against degraded users (al-
though, as in repeated revocation, revoked users gain noth-

ing by colluding). It is certainly possible to vary the pa-
rameters to gain some collusion resistance against degraded
users, however we point out that the purpose of the degra-
dation scheme is to alert or warn degraded users that they
may be revoked soon without action on their part, and not to
prevent them from accessing the content. Hence, collusion
resistance seems less important in their case.

This construction shows that it is possible to design degra-
dation protocols that are better than what an obvious use
of revocation, that is the repeated revocation protocol, pro-
vides. In the following section we explore this further and
provide two degradation protocols tailored to specific online
service settings.

4. USAGE-TAILORED DEGRADATION
In this section, we present two different degradation schemes,

each tailored to a different usage scenario. The schemes are
designed to meet the constraints of each usage setting, of-
ten leveraging the specific attributes of the usage scenario
to do so. For example, in the first construction we assume
the degradation schedule is known in advance, as is the case
with online services that offer a trial period to new users.
Online training (see for example, [25, 6]), online consumer
applications (see, for example, [16]) and pay TV are three
markets in which trial periods are often given. In such a
setting, users have access to the online service for a trial pe-
riod (e.g., of 30 days); after the trial period ends, users are
still able to use the service, but with degraded quality. The
level of degradation depends on the time elapsed since the
end of the trial period and takes the form of a delay in the
user’s ability to access the service, not in the quality of the
service once it is received. In other words, a trial period is
followed by a degradation period that gently reminds users
that the trial period has ended. Because the degradation
schedule is known in advance we are able to meet it with
constant communication overhead and user storage.

In the second construction, we allow for an unpredictable
degradation schedule, as is most likely in the subscription
mode of an online service. Users subscribe to the service
and payments are due at regular intervals (e.g., monthly).
With a degradation scheme for subscriptions, when a user is
late on the payments (an event that is unpredictable by the
service provider), the user experiences a delay in accessing
the service, with the exact amount of delay depending on
the overdue period. In this way, the user is reminded to
pay the overdue bill. Because this setting is similar to the
conventional revocation setting in that the class of a user can
change in an unpredictable manner, we are able to leverage
existing revocation techniques to achieve our degradation
goals with communication overhead and user storage that
are on the same order as what is incurred by the revocation
techniques.

Finally, we note that both of our constructions achieve col-
lusion resistance that is stronger than what is required by
Definition 2. In particular, not only are users in R unable
to access the service content through collusion, but users in
D are unable to reduce the total amount of work needed to
retrieve the content through collusion. Although we don’t
view this as a crucial property of a degradation scheme (since
the sole purpose of the work enforced on users in D is to pro-
vide a warning that they may soon be revoked) it is desirable
as it makes the hierarchy robust.

4.1 Known degradation schedule

The following is a precise description of the service sched-
ule for a user who is granted access to some online service
for a trial period of T days. Recall that we view the service
as being made available in a sequence of sessions. Assuming
a user signs up for the service on day t, the user is allowed
to decrypt broadcast sessions with essentially no operational
cost5 on days t, t+1, t+2, . . . , t+T −1 (i.e. during this time
the user is in set P). On day t + T , the user needs 2e1 time
to decrypt a session (i.e. the user is transferred to class C1);
in general, for i = 1 . . . L, on day t+T − 1+ i, the user is in
class Ci and needs 2ei operations to decrypt a session. On
day t + T + L, the user is in set R, that is the user cannot
decrypt any session at all.

To implement this policy we define the following scheme in
which the initialization algorithm, Params(1κ), establishes:

• A variably hard function F (·) with a corresponding
test function g(·);

• A one-way permutation W : {0, 1}κ → {0, 1}κ, such
that any algorithm running in O(2ζκ) inverts W with
probability O(2−ζκ), for some constant ζ ≤ 1;

• δi = ei − ei−1 (with the convention that e0 = 0 and
eL+1 = κ);

• Sets {Kt}t and {At}t such that Kt = W (Kt+1) and
At = W (At+1), t ≥ 1; these are formed by randomly
choosing values Kt+α, At+α, where α is a big integer
(e.g., representing several years), and computing re-
spectively Kt, At.

6

The key distribution, KeyGen, works as follows. If a user u
began a trial period on day t, they get Kt+T−1 and At+T−1.
This allows the user u to decrypt the content without addi-
tional work in sessions on days {t, . . . , t+T−1}, and decrypt
as the expense of additional work on days {t+T, . . . , t+T +
L− 1}.

On any given day there are several sessions (the number
of the sessions is a function of how many times we want
to impose the work overhead to the degraded users). The
broadcast made at the beginning of a session is composed of
the header, Head, that contains the encrypted session key,
SK. The content is then broadcast encrypted under the
session key, SK.

The header encrypting the session key has the structure
outlined in Figure 4.1.

The decryption algorithm works as follows. Suppose the
user subscribes on day t0. On day t, t < t0 + T (within the
trial period), the user can simply compute Kt = W t0+T−t−1

(Kt0+T−1), and decrypt EKt(SK). When t0 + T ≤ t <
t0 + T + L, the user is in class Ci = Ct−t0−T+1 because the
user knows only the first κ − ei bits of v, which are y =
〈GδL+1

(M ⊕At−L), . . . , Gδt−t0−T+2
(M ⊕At0+T−1)〉. Thus,

the user has the hint Y (ei) = {y} × {0, 1}ei , with which the
user can compute F (v) with O(2ei) operational effort (as
mentioned in 2.1, this is not in conflict with definition 3).
Knowing F (v), the user decrypts EF (v)(SK) to recover SK.

4.1.1 Security Proof

5Recall, we regard the cost of decrypting a ciphertext
Ek(M) when k is known, to take a constant number of op-
erations.
6In fact, to reduce the cost of computing Kt and At from
Kt+α and At+α, we can modify slightly the scheme, for ex-
ample, to use two sets of sequences each with α = L.

Next we prove that the construction above indeed satisfies
the properties of a degradation scheme according to Defini-
tion 2. Note that the first correctness property is trivially
satisfied as discussed above.

Since revoked users know none of the κ bits of v, the
scheme is collusion resistant. Also, note that the scheme is
resistant to collusion by degraded users (as discussed in the
introduction to Section 4) because of the manner in which
Kt and At are distributed: for any set S of users, the user
who subscribed most recently is able to compute all the
information known by everybody in S. Thus, in a coalition
of users, the user in the best class does not learn anything
new and cannot raise their class.

Next, we prove second and third correctness properties
are satisfied with UTi = 2ei and LTi = 2cei , where c is
the constant from the Definition 3 of the hard functions.
Since a user can compute F (v) with O(2ei) = O(UTi) ef-
fort, we need only to prove that a user in class Ci, i =
1 . . . L + 1, cannot recover SK with operational effort of
O(2cei) and probability Ω(2−cei). Recall that a user in Ci

began their trial period on day t− T − i + 1 at which time
they were given Kt−i, At−i, from which they can compute,
{Kt−i, Kt−i−1, . . . , K1, At−i, At−i−1, . . . , A1}. Since E(·)
is a perfect encryption, the user needs to recover either Kt

or F (v), and decrypt the corresponding part of the header,
in order to recover SK. The user cannot compute Kt due
to the one-wayness of the permutation W .

The main part of the proof is showing that a user cannot
compute F (v) with probability greater than Ω(2−cei) at an
operational expense of O(2cei). The intuition behind the
proof is that if the user can compute F (v) fast, then either
1) the user, who is a member of class Ci, can compute At’s
that are not in the set {At−i, At−i−1, . . . , A1} and thus can
invert W (·) fast; or 2) the user computes F (·) faster than
specified by the definition of the variably hard function. To
show this, we consider a user algorithm, A, for a user in class
Ci. Note by definition of variably hard functions, in order
to compute F (v), A must compute additional bits of v and
doing so requires the the output of some random oracles Gδj

on inputs that include some Aj 6∈ {At−i, At−i−1, . . . , A1}. If
A ever queries Gδj

on input that includes such an Aj (which
we refer to as a successful call), then this means A was able
to invert W . If no successful calls were ever issued, then A
knows only the hint Y (ei) and, therefore, should not be able
to compute F (v) faster than specified by the definition. A
formal argument follows.

Consider a randomized algorithmA that makes τ = O(2cei)
operational effort and generates F (v) with probability π. In
what follows, we show that π ≤ O(2−cei), under the as-
sumptions that cei < ζκ/2 and that A runs in time O(2ζκ)
(easily satisfied by the appropriate choice of κ).

The input to A comprises: information learned at sub-
scription time (At−i); information learned from the cur-
rent header Headknown (M, g(v)); and information learned
from the previous broadcasts (Mf,s, Gδj

(Mf,s⊕Af−j+1), for
t − i + 1 ≤ f ≤ t, 1 ≤ j ≤ f − t + i, 1 ≤ s ≤ nsns, where
nsns is the maximum number of sessions per day). All other
information can be computed from the above information.

During A’s execution, A can generate several calls to the
oracles Gδj

. Again, we say a call to oracle Gδj
is success-

ful if it is made with input Mf,s ⊕ Af−j+1 for some valid
f, j, s. For technical reasons, we are interested in the case
when all Mf,s ⊕ Af−j+1 are different, which happens with

probability at least 1 − L2

2ζκ −
n2

snsL4

2κ . This probability ex-

Headknown = 〈t,M, g(v), EKt(SK), EF (v)(SK)〉

• M ∈r {0, 1}κ,
• v = 〈 GδL+1

(M ⊕At−L), GδL
(M ⊕ At−L+1), . . . , Gδ2(M ⊕ At−1), Gδ1(M ⊕ At) 〉,

• g(·) is a test function for the variably hard function, F (·),
• Gδi

(·) are public hash functions Gδi
: {0, 1}κ → {0, 1}δi in the random oracle model.

Figure 4.1: Header on day t for the degradation scheme with known schedule.

pression comes from the following two arguments. 1) For all
valid f and j, Af−j+1 are different with probability at least

1− L2

2ζκ (because, for x > y, when Ax ∈r {0, 1}κ, Ax 6= Ay =

W x−y(Ax) with probability at least7 1−O(2−ζκ), and there
are ≤ L2 such pairs x, y). 2) For (f, s) 6= (f ′, s′), the values
Mf,s⊕Af−j+1 and Mf ′,s′ ⊕Af ′−j′+1 are equal with proba-
bility at most 2−κ since Mf,s⊕Mf ′,s′ = Af−j+1⊕Af ′−j′+1

with probability 2−κ; there are at most n2
snsL

4 distinct pairs
(f, s) and (f ′, s′).

Let 1−∆ be the probability that all Mf,s⊕Af−j+1 differ

one from another; from the argument above, ∆ ≤ L2

2ζκ +
n2

snsL4

2κ . Let λ be the probability of generating a successful
call duringA’s execution, given that all Mf,s⊕Af−j+1 differ.

Suppose A makes a successful call given that all Mf,s ⊕
Af−j+1 differ. At the moment of the successful call, from
the point of view of A, all Gδj

(Mf,s ⊕ Af−j+1) are ran-

dom variables drawn uniformly from {0, 1}δj . Therefore,
λ

nsnsLτ
< 2−ζκ, since, otherwise, we could invert W as

follows. Consider IW , inverter for W : simulate A on in-
put At−i and random values for the rest of the inputs; A
makes some calls to the oracles; choose at random one of
the calls to the oracles; guess values f, s; xor the input to
the oracle with Mf,s to obtain Af−j+1; finally, compute
W−1(At−i) = At−i+1 = W t−f−i+j−2(Af−j+1). Since W
chooses at random among at most τ oracle calls made by
A, and among L, nsns values for f and respectively s, IW

is successful with probability at least λ
nsnsLτ

. However any

inverter has success probability of at most 2−ζκ, implying
that λ

nsnsLτ
< 2−ζκ.

Suppose A does not make a successful call, given that all
Mf,s⊕Af−j+1 differ (which happens with probability 1−λ).
In this case, all of A’s input except At−i is distributed uni-
formly random from A’s point of view. Furthermore, since
A makes τ = O(2cei) operational effort, by a simulation ar-
gument as above, A can compute F (v) with probability no
better than stated in the definition of the hard function, i.e.,
at most O(2−cei).

Concluding, we have that

π ≤ Pr[not all Mf,s ⊕ Af−j+1 differ]+
+Pr[all Mf,s ⊕ Af−j+1 differ] · (λ + (1− λ) · 2−cei)

≤ ∆ + (1−∆) · (nsnsLτ2−ζκ + 2−cei)

≤ L2

2ζκ +
n2

snsL4

2κ + (nsnsLτ2−ζκ + 2−cei)

We can choose κ such that cei < ζκ/2, yielding 2cei ·

2−ζκ < 2−ζκ/2 < 2−cei . L, the number of degradation lev-
els, and nsns, the number of session per day, are constants.

7Since W is a one-way permutation, W x−y is also a one way
permutation against time 2ζκ. In particular, this means that
the output of W x−y is equal to the input with probability
at most O(2−ζκ).

Thus, we have that π ≤ O(2−ζκ) + O(2−κ) + O(2−cei) =
O(2−cei).

4.2 Unknown degradation schedule
We now consider the more general online service setting

in which the degradation scheme is unknown. That is, the
center does not know when or if a user will be degraded
or revoked, or when or if the user will be reinstated as a
privileged user.

As an example of this setting consider a user who sub-
scribes to an online service that bills the user periodically.
If a bill payment is overdue, the service for that user is grad-
ually degraded until either the user pays the bill and their
service is subsequently reinstated (i.e. they rejoin class P),
or the user does not pay the bill and their service contin-
ues to be degraded until the user is revoked and the service
becomes unavailable to the user.

To model degradation in this subscription setting we again
consider time as divided into sessions. In each session C
may broadcast what we call a Prefix. A Prefix enacts a
change in hierarchy (i.e. a change in one or more of P, D or
R). Regardless of whether or not a Prefix is sent, C always
sends a header, Head, at the beginning of each session (and
immediately after any Prefix). The purpose of the header
is the same as before, namely, to establish a new session key,
SK, in such a way that each user must do the operational
work to recover the session key that’s specified by their class.
The service content is then broadcast encrypted under the
session key SK. The contents of Prefix and Head are made
precise later in this section.

Because in this setting the degradation schedule is unpre-
dictable, any degradation scheme needs the ability to de-
grade (or revoke) an arbitrary set of users. To accomplish
this we leverage an efficient revocation scheme and the ideas
from Section 4.1. A description of the scheme follows.

The initialization algorithm, Params(1κ), establishes:
• A hard function F (·), and a corresponding test func-

tion g(·);
• A one-way permutation W : {0, 1}κ → {0, 1}κ, such

that any algorithm with time at most 2ζκ inverts W (·)
with probability less than 2−ζκ;
• δi = ei − ei−1 (assuming e0 = 0 and eL+1 = κ);
• A revocation scheme S , such that, for any set S ⊂ N

and message m, S can produce ES(m) that can only
be decrypted by users in S (see Section 2). S could
be the SD [21] or LSD [14] revocation schemes, or, if
maintaining current user state isn’t a problem, then
the stateful scheme of Appendix A can be used. Let
KS

u represent the private information allocated to user
u by the scheme S (note that KS

u can be a simple key
or a set of keys as in [21, 14, 5], and our construction
in Appendix A).
• The sequence {At}t, t ≥ 1, such that At = W (At+1);

this series can be set-up by choosing a random value

Headunknown = EKR̄

ˆ

〈t, M, g(v),EKP (SK), EF (v)(SK)〉
˜

• M ∈r {0, 1}κ,
• v = 〈 GδL+1

(M ⊕At−L), GδL
(M ⊕ At−L+1), . . . , Gδ2(M ⊕ At−1), Gδ1(M ⊕ At) 〉,

• g(·) is a test function for the variably hard function, F (·),
• Gδi

(·) are public hash functions Gδi
: {0, 1}κ → {0, 1}δi in the random oracle model.

Figure 4.2: Header structure in session t for the degradation scheme with unknown schedule and unchanged
user hierarchy (hj−1 = hj).

At+α, where α is a big integer (as mentioned in the
first construction, it is easy to reduce α to L);
• Integer t that specifies which subset of L + 1 values

amongst A1, A2, . . . is currently used in the encryp-
tion; t is increasing over time (although the size of the
subset, L + 1, stays the same), specifically, t increases
by 1 when the center C degrades users from C1, . . . CL

even further (i.e. only after an instance of Prefixlower

has been broadcast);
• A key KP with an initial value of K0

P that we call the
privileged-user key;
• A key KR̄ with an initial value of K0

R̄ that we call the
nonrevoked-user key.

The key distribution, KeyGen, works as follows. When
user u subscribes in session t, u obtains KS

u as specified by
S , as well as the current values of KP , KR̄, At−1. With
these keys, u can decrypt the content in session t with a
constant number of operations (i.e. without any degradation
“penalty”).

The header generation algorithm, Encrypt, can generate
several possible header structures; the choice of the partic-
ular structure depends on whether or not the user hierar-
chy changes. For ease of exposition, we first consider the
header when the hierarchy does not change (Figure 4.2).
The header structure is very similar to that of Section 4.1.

To ensure the properties of a degradation scheme over
all sessions, we preserve the following properties for current
t, K, KR̄, and term them the invariant, I:8

• Each privileged user u ∈ P knows the current KP , KR̄,
as well as At−1;
• Each degraded user u ∈ Ci ⊂ D, 1 ≤ i ≤ L, knows

At−i, the current KR̄, but not the current KP ;
• Any revoked user u ∈ R does not know neither current

KR̄ nor the current KP ;
• No user knows At for the current value of t.

For a header, Headunknown, the decryption algorithm,
KeyRecovery, works as follows. A privileged user u ∈ P
can simply decrypt SK using keys KR̄ and KP . A de-
graded user u ∈ Ci decrypts g(v), computes the hint yei =
〈GδL+1

(M ⊕At−L), . . . , Gδi+1
(M ⊕At−i)〉, and finally F (v)

to decrypt SK. A revoked user will be unable to decrypt
the header at all.

The harder case is when the user hierarchy changes. To
describe this case, we specify first the allowed hierarchy tran-
sitions (i.e., the allowed changes in users hierarchy). To
model our scenario of service subscription, we need the fol-
lowing hierarchy transitions:

8Note that given this invariant it benefits a user to always
be online and thus recover any updates of KP and KR̄ that
they can.

Degrade: a set S of users from the privileged set P move
to the set D of degraded users. Specifically, these users
leave the class P of privileged set and join C1, the level-
one degradation class. The center will employ this
transition when the users in S are late on payments,
and the center wants to initiate gradual degradation
of the service for the users in S.

Lower: further degradation of users in D, that is the class
C1 becomes C2, the class C2 becomes C3, and so forth.
In particular, the users from the class CL become re-
voked, i.e, they leave the class D of degraded users
and join the class R of revoked users. The center em-
ploys this transition periodically to continue the grad-
ual degradation of service for users from D.

Revoke: a set S from P ∪D is revoked. Specifically, each
user u ∈ S leaves its class and joins the class R of re-
voked users. The center employs this transition when
it detects misbehavior by the users in S (e.g. piracy).

Raise: a set S of users is raised from a lower level to the
class P of privileged users. The center will raise the
level of users S when these users pay overdue bills and
thus do not need to be degraded (or revoked) anymore.

Each transition is enforced by a broadcast of a correspond-
ing header prefix Prefix, which is followed by the header
Headunknown defined in Figure 4.2.9 Figure 4.3 presents the
prefix structures for each of the four transitions, as well as
the resulting modifications to the hierarchies and state.

For each type of hierarchy transition, the table shows the
actions of the center. The center performs these actions
before it broadcasts the corresponding prefix. Each of the
prefixes serve to update the set of keys each user knows in
order to preserve the invariant I. Note that, in fact, we can
prepend several prefixes to the header Headunknown.

Given the invariant I, the security discussion is very simi-
lar to the one given in Section 4.1.1 since the structure of the
header Headunknown is largely the same with Headknown

from the Section 4.1.1 (except that Headunknown is encrypted
with the key KR̄). The correctness of the invariant I itself
is easily verified – because all the class transitions rely on
the encryption in the underlying revocation scheme S .

In addition, collusion-resistance for the revoked users fol-
lows from the invariant and the fact that Headunknown is
encrypted with the key KR̄.

5. SIMULATION

9Although it is not necessary to encrypt all five terms of
the bracketed expression in the figure under KR̄, since do-
ing so doesn’t increase the cost of the scheme significantly
we choose to encrypt them all the simplify the proof and
exposition.

Transition Center action Prefix structure

Degrade
P ← P \ S
C1 ← C1 ∪ S
KP ∈r {0, 1}κ

Prefixdegrade = 〈EP (KP)〉

Lower

t← t + 1
R← R ∪ CL
Ci ← Ci−1, i ∈ [2, L]
C1 ← ∅
KR̄ ∈r {0, 1}κ

Prefixlower = 〈EP∪D(KR̄), EKP (At−1)〉

Revoke

R← R ∪ S
Ci ← Ci \ S, 0 ≤ i ≤ L
KP ∈r {0, 1}κ

KR̄ ∈r {0, 1}κ
Prefixrevoke = 〈EP (KP), EP∪D(KR̄)〉

Raise Ci ← Ci \ S, 1 ≤ i ≤ L + 1
P ← P ∪ S

Prefixraise = 〈ES(KP , KR̄, At−1)〉

Figure 4.3: Prefixes in session t of the header for degradation schedule with unknown schedule in the case of
a user hierarchy change. The four prefixes correspond to the four possible hierarchy changes: degrade, lower,
revoke, and raise. Each of the prefixes can be followed by header Hunknown to broadcast the session key itself.

In this section we present two simulations to demonstrate
how our schemes can be used in practice. Our timings are
based on the experiments of [8].

In the first simulation, we use a specific schedule for the
degradation of users. In particular, we choose specific values
for the degradation parameters (L and {ei}i) in the scheme
of Section 4.2 that achieve graceful service degradation. In
the second simulation, we analyze the broadcast communi-
cation overhead of our schemes in a representative instanti-
ation of the Section 4.2 degradation scheme.

Degradation schedule. Recall that the degradation scheme
of Section 4.2 can be naturally applied to broadcast-channel
subscription services such as pay-TV. For our simulation we
assume all users have their bill due on the same day and it
is a 30 day bill cycle. In each of the first 7 days users who
have not paid that cycle’s bill are degraded. A user who
does not pay their bill during any of those 7 days is revoked
on the 8th day. For simplicity of exposition, we assume any
user either pays on the first day or does not pay on days 1
through 7, and hence is revoked. We further assume that
all the users who are revoked during one pay cycle pay their
bill in between day 8 of that bill cycle and day 1 of the next,
and thus are reinstated at the beginning of the next 30-day
billing cycle.

The users are equipped with a settop box that decrypts
the content and computes the variably hard function. The
considered settop is a GCT-AllWell STB3036N (specific de-
tails can be found in [8]).

For a variably hard function we choose a memory-bound
function, and, specifically, the MBound function described
in [8] (adapted as described in section 2.1.1).

As discussed earlier, “degraded service” takes the form of
a delay in a user’s ability to access the content (decrypt a
session). That is, before each session, a degraded user has
to expend operations, thus consuming time, computing the
hard function and decrypting the header. A session corre-
sponds to a show (e.g., a TV show) and is approximated
to be one hour long. Some sample delays are shown in the
Table 1. Table 1 also shows the values of ei that are neces-
sary to achieve the stated delays. The exact times needed
to compute the hard function are estimated using the ex-
perimental results of [8]. Specifically, [8] claims that with
a value of ei = 15, the settop needs roughly 42 seconds to
compute the function MBound on an input.

Day Delay Frequency ei
1 42 secs Once per session 15
2 1 min 24 secs Once per session 16
3 2 mins 48 secs Once per session 17
...

...
...

...
7 44 mins 48secs Once per session 21

Table 1: An example of the delays imposed on the
degraded users. A show is accessed by the degraded
user with the specified delay. The day represents
the day of the degradation period (which reflects
the level of degradation).

Broadcast overhead. Next, we analyze the overhead in
broadcast communication due to the additional headers that
are needed by our degradation scheme.

We consider the same scenario as in the simulation above.
Additionally, we assume that there are n = 108 subscribers.
In any billing cycle, there are d = 1% · n = 106 subscribers
that are late with their payment and these subscribers are
degraded as a group in each billing cycle; eventually, all
these users pay their bills and are reinstated, although for
the simulation we assume they aren’t reinstated until the
next billing cycle.

Finally, we use LSD [14] as our revocation scheme S from 4.2.
With the security parameter being κ = 128, in LSD scheme,
a broadcast ES(m) takes at most 4κ · |m| · |S| = 512 · |m| · |S|
bits [14].

We compile the broadcast overheads in Table 2, and sort
them by different sources of communication overhead; we
also specify how frequently each overhead is incurred. We
did not consider the effect of revoking the pirates due to
lack of space and because it is not the focus of our paper.
Note the prefixes can be broadcast during the night or other
non-rush time.

6. CONCLUSION AND OPEN PROBLEMS
We have introduced the notion of degradation schemes for

warning users of the impending end of online services. Our
schemes rely on an extension of the moderately hard func-
tions [1, 9] initially used for spam fighting, as well as the
adaptation of existing revocation techniques. Our schemes
are efficient in terms of communication overhead and user
storage and have desirable collusion resistance. In addi-

Source Frequency Total #bits/unit of time
Headunknown 1/session 128 · 5 = 640/hour
Prefixdegrade 1/month 512 · d = 512Mb/month
Prefixraise 1/(u ∈ D) 512 · 3d = 1536Mb/month
Prefixlower 1/day 512 · 23

30
· 2d = 785Mb/day

Table 2: Upper bound on communication overhead
according to its source. For each source, we list the
frequency of the corresponding broadcast and the
total number of bits in the overhead in a period of
time.

tion, our general construction of Section 4.2 is designed
to work with any revocation scheme. This has the advan-
tages that the costs of our construction will be reduced with
subsequent improvements in revocation and the approach is
not restricted to the symmetric key setting (although we’ve
focused on that here) but rather a public key revocation
scheme can be used (see, for example, [7]).

To the best of our knowledge our work is the first to pro-
vide a warning mechanism that is bound to content retrieval
and as in any new area such there is room for improvement.
For example, we believe it is possible to extend an arbitrary
hard function for use in a degradation scheme (as we demon-
strated for the particular hard function of [8]) but a proof
of this would be useful.

Additionally, future work might include a better parametriza-
tion of operational effort imposed on degraded users. At the
moment, the difference in effort among degraded classes is
exponential: a user in class Ci has to do an amount of work
that is a factor of 2δi larger than users in class Ci−1. Even if
all δi = 1, the work increases exponentially as the degraded
classes become worse. To achieve a more controlled differ-
ence, we might, for example, consider using two (or more)
variably hard functions in parallel such that a class Ci has

to do work proportional to, say, 2e′i + 2e′′i .

7. REFERENCES
[1] M. Abadi, M. Burrows, M. Manasse and T. Wobber.

Moderately hard, memory-bound functions.
Proceedings of the 10th Annual Network and
Distributed Systems Security Symposium, 2003.

[2] M. Abdalla, Y. Shavitt and A. Wool. Towards Making
Broadcast Encryption Practical. IEEE/ACM
Transactions on Networking, 8(4), pp. 443-454,
August 2000.

[3] N. Attrapadung, K. Kobara, H. Imai. Broadcast
Encryption with Short Keys and Transmissions.
Digital Rights Management Workshop 2003, pp.
55–66.

[4] S. Berkovits. How to broadcast a secret. Advances in
Cryptology — Eurocrypt ’91, volume 547 of LNCS,
pages 535–541. Springer-Verlag, 1991.

[5] R. Canetti, J. Garay, G. Itkis, D. Micciancio,
M. Naor, B. Pinkas. Multicast security: A taxonomy
and efficient constructions. IEEE INFOCOM, 1999.

[6] Directory of Online Schools,
http://www.directoryofonlineschools.com

[7] Y. Dodis and N. Fazio. Public key broadcast
encryption for stateless receivers. ACM CCS
Workshop on Digital Rights Management 2002.

[8] C. Dwork, A. Goldberg and M. Naor. On
memory-bound functions for fighting spam. Advances

in Cryptology – Crypto 2003.

[9] C. Dwork and M. Naor. Pricing via processing, or,
combatting junk mail. Advances in Cryptology
–Crypto ‘92.

[10] C. Dovrolis and D. Stiliadis. Relative differentiated
services in the Internet: issues and mechanisms.
Proceedings of the 1999 ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems.

[11] E. Engelking. Are you in favor of Microsoft’s new XP
licensing program? Tech Republic, May 4, 2001.
http://techrepublic.com.com/5100-6270-1032935.html

[12] A. Fiat and M. Naor. Broadcast Encryption. Advances
in Cryptology – Crypto ‘93.

[13] C. Gentry, Z. Ramzan. RSA Accumulator Based
Broadcast Encryption. 7th Information Security
Conference, 2004.

[14] D. Halevy and A. Shamir. The LSD Broadcast
Encryption Scheme. Proceedings of the 22ns Annual
International Cryptology Conference on Advances in
Cryptology, 2002, pp: 47-60.

[15] M. Jakobsson and A. Juels. Proofs of work and bread
pudding protocols. Proceedings of the IFIP TC6/TC11
Joint Working Conference on Secure Information
Networks: Communications and Multimedia Security,
1999.

[16] Keyhole, http://www.keyhole.com

[17] N. Kogan, Y. Shavitt and A. Wool. A Practical
Revocation Scheme for Broadcast Encryption Using
Smart Cards. 24th IEEE Symposium on Security and
Privacy, 2003.

[18] R. Kumar, S. Rajagopalan, A. Sahai. Coding
Constructions for Blacklisting Problems without
Computational Assumptions. Proceedings of the 19th
Annual International Cryptography Conference on
Advances in Cryptology, 1999.

[19] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 2000.

[20] M. Naor and B. Pinkas. Efficient trace and revoke
schemes. Financial Cryptogrpahy 2000.

[21] D. Naor, M. Naor, J. Lotspiech. Revocation and
Tracing Schemes for Stateless Receivers. Advances in
Cryptology – Crypto’01, Springer-Verlag LNCS 2139,
2001, pp. 41-62.

[22] R. Rivest, A. Shamir and D. Wagner. Time-lock
puzzles and timed-release crypto. Massachusetts
Institute of Technology Technical Report: TR-684,
1996.

[23] A. Shamir. How to share a secret. Communications of
the ACM, Volume 22 , Issue 11 (November 1979),pp.
612 - 613.

[24] D. Stinson. On Some Methods for Unconditionally
Secure Key Distribution and Broadcast Encryption.
Designs, Codes and Cryptography, 12 (1997), 215-243.

[25] U. C. Berkeley Extension Online.
http://learn.berkeley.edu

[26] D.M. Wallner, E.J. Harder, R.C. Agee. RFC 2627 –
Key management for multicast: Issues and
architectures. Available at
http://www.rfc-archive.org.

[27] C.K. Wong, M. Gouda, S.S. Lam. Secure group
communications using key graphs. Proceedings of

ACM SIGCOMM, pp. 68–79, 1998.

APPENDIX

A. IMPROVED STATEFUL REVOCATION
In this section, we present a stateful revocation scheme

that achieves O(log |R|) communication overhead per a re-
voked user, where R is the total number of revoked users.
This is better than O(log n) communication overhead per a
revoked user achieved by LKH-like stateful schemes ([26, 5,
27]).

The best known stateless revocation schemes achieve a
communication blowup of Θ(R), where R is the total num-
ber of revoked users (except the scheme in [3], in which stor-
age/computation cost is linear in the number of users, and
they still need to broadcast Θ(R log(n/R)) bits to identify
the revoked users).

With a stateful protocol, it is possible to do better when
the users are revoked in rounds (e.g., when a batch pirates
are found), which is usually the case in practice. Once the
user is revoked in a round, it is considered revoked in all
subsequent rounds (if a user needs to rejoin, the user is given
a new identity that is transferred to the user via broadcast
channel and is encrypted using keys received by the user
at the initial subscription). Suppose rt users are revoked
in the round t. Then, a stateless protocol would have a
communication blowup of O(r1 + r2 + . . . rt) in the round
t. With a stateful protocol, it is concievable to achieve a
communication blowup of only O(rt) in the round t.

Stateful protocols such as LKH were presented and im-
proved, for example, in [26, 5, 27]. They all achieve a bound
of O(rt log n) communication blowup for the round t.

Here, we propose a new stateful revocation that achieves
a communication blowup of O(rt log(r1 + r2 + · · ·+ rt)) for
the round t. Note that r1 + r2 + · · · + rt ≤ n, and, in fact,
r1 + r2 + · · ·+ rt is usually much less than n.

To achieve this bound we combine LKH scheme with subset-
cover type revocation schemes ([21]). In a subset-cover re-
vocation scheme, one has sets Si ⊆ N such that for any set
of revoked users R, the set N \ R can be represented as a
union ∪m

j=1Sij for some ij ’s. To each subset Si, the scheme
associates the key Li; Li is known by all users from Si.

The subset-cover scheme needs also to satisfy the following
two properties to be useful for our purposes:
• N is one of the sets Si;
• For any Si and x ∈ Si, Si \ {x} = ∪c

j=1Sij , where Sij

are disjoint and c ≤ const. In other words, if we revoke
a user, the subset cover changes only by a constant
number of sets.

Note that these conditions are satisfied by the original SD
scheme proposed by [21].

Now consider any LKH scheme which has O(log n) com-
munication cost per a join/leave (revoke) operation, when
there are n participants in the LKH scheme. Our scheme
combines such an LKH scheme with subset-cover scheme
to achieve the stated bound; specifically, we use the LKH
scheme such that its participants (“users”) are the sets Si.

In the beginning, when nobody is yet revoked, N is the
only participant in the LKH scheme. If a user x is revoked,
then suppose N \ {x} = ∪c

j=1Sij . In this case, the par-
ticipant N leaves the LKH scheme, and the participants
Si1 , Si2 , . . . Sic join the LKH scheme. Note that the cen-
ter can communicate with the new participants by using
their respective keys Li1 , Li2 , . . . , Lic . Communication cost

is O(c).
In general, suppose Si1 , . . . , Sim are participants of the

LKH scheme (Sij ’s are disjoint and ∪m
j=1Sij = N \R, where

R is the set of the users revoked so far). Let x be a user
that needs to be revoked and suppose x ∈ Sij . Then we
revoke the participant Sij from the LKH scheme. Also, if
Sij = Sl1 ∪ . . . Slc , then we join participants Sl1 , . . . Slc to
the LKH scheme. The communication cost is again O(c).

After R revocations, there are O(R) participants (“users”)
in the LKH scheme. Therefore, with earlier notations, the
communication cost for round t is O (rt log(r1 + · · ·+ rt)).

The storage at user side is equal to the storage needed
for the used subset-cover scheme plus the storage needed for
the LKH scheme.

B. NOTATION

Notation Definition Section
C Center, distributor of the content 2
N The set of all users 2
P, C0 The set of privileged users 2
D The set of degraded users 2
R, CL+1 The set of revoked users 2
L The set of all classes 2
L Number of degraded classes 2
C1, . . . CL Degraded classes, a partition of D 2
hj The hierarchy of users hj : N → L 2
κ Security parameter 2
F (v) A hard function 2.1
g(v) A test function for F (v) 2.1
Y (ℓ) A hint implying Ω(2cℓ) effort 2.1
c A constant less than 1 character-

istic to F (v) and g(v)
2.1

ei Hardness parameter; implies 2cei

effort for class Ci

3

δi δi = ei − ei−1 4.1
Notation Definition Section
SK A session key 2
T Number of days in a trial period 4.1
nsns Number of sessions per day 4.1.1
W A one-way function against time

2ζκ
4.1, 4.2

Kt A series {Kt}t such that Kt =
W (Kt+1

4.1

At A series {At}t such that At =
W (At+1

4.1, 4.2

t Day number from the start of the
protocol

4.1

t An integer specifying which sub-
set of the values A1, A2, . . . is cur-
rently used in the encryption; t in-
creases by 1 when C degrades users
from C1, . . . CL even further

4.2

Gδj
A hash function from {0, 1}κ to
{0, 1}δj in random oracle model

4.1, 4.2

M A random value chosen uniformly
at random from {0, 1}κ

4.1, 4.2

S A general revocation scheme, ei-
ther stateless or stateful

4.2

ES(·) Encryption under scheme S , tar-
geted at a set S

2

KP A key known only by the priv-
eledged users

4.2

KR̄ A key known only by the non-
revoked users (priveledged and de-
graded users)

4.2

