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Abstract. We show how to compute the edit distance between two strings of length n up to a

factor of 2Õ(
√

log n) in n1+o(1) time. This is the first sub-polynomial approximation algorithm for this
problem that runs in near-linear time, improving on the state-of-the-art n1/3+o(1) approximation.

Previously, approximation of 2Õ(
√

log n) was known only for embedding edit distance into `1, and it
is not known if that embedding can be computed in less than quadratic time.
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1. Introduction. The edit distance (or Levenshtein distance) between two strings
is the number of insertions, deletions, and substitutions needed to transform one string
into the other [19]. This distance is of fundamental importance in several fields such
as computational biology and text processing/searching, and consequently, problems
involving edit distance were studied extensively (cf. [22], [12], and references therein).
In computational biology, for instance, edit distance and its slight variants are the
most elementary measures of dissimilarity for genomic data, and thus improvements
on edit distance algorithms have the potential of major impact.

The basic problem is to compute the edit distance between two strings of length n
over some alphabet. The text-book dynamic programming runs in O(n2) time (cf. [9]
and references therein). This was only slightly improved by Masek and Paterson [20]
to O(n2/ log2 n) time for constant-size alphabets1. Their result from 1980 remains
the best algorithm to this date.

Since near-quadratic time is too costly when working on large datasets, practi-
tioners tend to rely on faster heuristics (cf. [12], [22]). This leads to the question of
finding fast algorithms with provable guarantees, specifically: can one approximate the
edit distance between two strings in near-linear time [13, 3, 2, 4, 11, 10, 23, 15, 16] ?

Prior results on approximate algorithms2. A linear-time
√
n-approximation

algorithm immediately follows from the O(n+ d2)-time exact algorithm (see Landau,
Myers, and Schmidt [17]), where d is the edit distance between the input strings.
Subsequent research improved the approximation first to n3/7, and then to n1/3+o(1),
due to, respectively, Bar-Yossef, Jayram, Krauthgamer, and Kumar [2], and Batu,
Ergün, and Sahinalp [4].
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1The result has been only recently extended to arbitrarily large alphabets by Bille and Farach-
Colton [5] with a O(log log n)2 factor loss in time.

2We make no attempt at presenting a complete list of results for restricted problems, such as
average case edit distance, weakly-repetitive strings, bounded distance regime, or related problems,
such as pattern matching/nearest neighbor, sketching. However, for a very thorough survey, if only
slightly outdated, see [22].

1



A sublinear time algorithm was obtained by Batu, Ergün, Kilian, Magen, Raskhod-
nikova, Rubinfeld, and Sami [3]. Their algorithm distinguishes the cases when the
distance is O(n1−ε) vs. Ω(n) in Õ(n1−2ε + n(1−ε)/2) time3 for any ε > 0. Note that
their algorithm cannot distinguish distances, say, O(n0.1) vs. Ω(n0.9).

On a related front, in 2005, the breakthrough result of Ostrovsky and Rabani
gave an embedding of the edit distance metric into `1 with 2Õ(

√
log n) distortion [23]

(see preliminaries for definitions). This result vastly improved related applications,
namely nearest neighbor search and sketching. However, it did not have implications
for computing edit distance between two strings in sub-quadratic time. In particular,
to the best of our knowledge it is not known whether it is possible to compute their
embedding in less than quadratic time.

The best approximation to this date remains the 2006 result of Batu, Ergün, and
Sahinalp [4], achieving n1/3+o(1) approximation. Even for n2−ε time, their approxi-
mation is nε/3+o(1).

Our result. We obtain 2Õ(
√

log n) approximation in near-linear time. This is
the first sub-polynomial approximation algorithm for computing the edit distance
between two strings running in strongly subquadratic time.

Theorem 1.1. The edit distance between two strings x, y ∈ {0, 1}n can be com-
puted up to a factor of 2O(

√
log n log log n) in n · 2O(

√
log n log log n) time.

Our result immediately extends to two more related applications. The first ap-
plication is to sublinear-time algorithms. In this scenario, the goal is to compute the
distance between two strings x, y of the same length n in o(n) time. For this prob-
lem, for any α < β ≤ 1, we can distinguish distance O(nα) from distance Ω(nβ) in
O(nα+2(1−β)+o(1)) time.

The second application is to the problem of pattern matching with errors. In this
application, one is given a text T of length N and a pattern P of length n, and the
goal is to report the substring of T that minimizes the edit distance to P . Our result
immediately gives an algorithm for this problem running in O(N logN) · 2Õ(

√
log n)

time with 2Õ(
√

log n) approximation.

1.1. Preliminaries and Notation. Before describing our general approach and
the techniques used, we first introduce a few definitions. Readers familiar with Earth-
Mover Distance (EMD), product spaces (specifically min-product spaces), tree/graph
metrics, and the difference between oblivious and non-oblivious embeddings may skip
this section.

We write ed(x, y) to denote the edit distance between strings x and y. We use the
notation [n] = {1, 2, 3, . . . n}. For a string x, a substring starting at i, of length m, is
denoted x[i : i+m− 1]. Whenever we say with high probability (w.h.p.) throughout
the paper, we mean “with probability 1 − 1/p(n)”, where p(n) is a sufficiently large
polynomial function of the input size n.

Embeddings. For a metric (M,dM ), and another metric (X, ρ), an embedding is
a map φ : M → X such that, for all x, y ∈M , we have dM (x, y) ≤ ρ(φ(x), φ(y)) ≤ γ ·
dM (x, y) where γ ≥ 1 is the distortion of the embedding. In particular, all embeddings
in this paper are non-contracting.

We say embedding φ is oblivious if it is randomized and, for any subset S ⊂ M
of size n, the distortion guarantee holds for all pairs x, y ∈ S with high probability.
The embedding φ is non-oblivious if it holds for a specific set S (i.e., φ is allowed to
depend on S).

3We use Õ(f(n)) to denote f(n) · logO(1) f(n).
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Metrics. The k-dimensional `1 metric is the set of points living in Rk under the
distance ‖x− y‖1 =

∑k
i=1 |xi − yi|. We also denote it by `k1 .

We define thresholded Earth-Mover Distance, denoted TEMDt for a fixed thresh-
old t > 0, as the following distance on subsets A and B of size s ∈ N of some metric
(M,dM ):

TEMDt(A,B) = 1
s min

τ :A→B

∑

a∈A

min
{
dM (a, τ(a)), t

}
(1.1)

where τ ranges over all bijections between sets A and B. TEMD∞ is the simple
Earth-Mover Distance (EMD). We will always use t = s and thus drop the subscript
t; i.e., TEMD = TEMDs.

A graph (tree) metric is a metric induced by a connected weighted graph (tree)
G, where the distance between two vertices is the length of the shortest path between
them. We denote by an arbitrary tree metric by TM.

Semimetric spaces. We define a semimetric to be a pair (M,dM ) that satisfies
all the properties of a metric space except the triangle inequality. A γ-near metric
is a semimetric (M,dM ) such that there exists some metric (M,d∗M ) (satisfying the
triangle inequality) with the property that, for any x, y ∈M , we have that d∗M (x, y) ≤
dM (x, y) ≤ γ · d∗M (x, y).

Product spaces. A sum-product over a metric M = (M,dM ), denoted
⊕k

`1
M,

is a derived metric over the set Mk, where the distance between two points x =
(x1, . . . xk) and y = (y1, . . . yk) is equal to

d1,M (x, y) =
∑

i∈[k]

dM (xi, yi).

For example the space
⊕k

`1
R is just the k-dimensional `1.

Analogously, a min-product overM = (M,dM ), denoted
⊕k

minM, is a semimetric
over Mk, where the distance between two points x = (x1, . . . xk) and y = (y1, . . . yk)
is

dmin,M (x, y) = min
i∈[k]

{
dM (xi, yi)

}
.

We also slightly abuse the notation by writing
⊕k

min TM to denote the min-
product of k tree metrics (that could differ from each other).

1.2. Techniques. Our starting point is the Ostrovsky-Rabani embedding [23].
For strings x, y, as well as for all substrings σ of specific lengths, we compute some
vectors vσ living in low-dimensional `1 such that the distance between two such vec-
tors approximates the edit distance between the associated (sub-)strings. In this
respect, these vectors can be seen as an embedding of the considered strings into `1
of polylogarithmic dimension. Unlike the Ostrovsky-Rabani embedding, however, our
embedding is non-oblivious in the sense that the vectors vσ are computed given all the
relevant strings σ. In contrast, Ostrovsky and Rabani give an oblivious embedding
φn : {0, 1}n → `1 such that ‖φn(x) − φn(y)‖1 approximates ed(x, y). However, the
obliviousness comes at a high price: their embedding requires a high dimension, of
order Ω(n), and a high computation time, of order Ω(n2) (even when allowing ran-
domized embedding, and a constant probability of a correctness). We further note
that reducing the dimension of this embedding seems unlikely as suggested by the
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results on impossibility of dimensionality reduction within `1 [8, 7, 18]. Nevertheless,
the general recursive approach of the Ostrovsky-Rabani embedding is the starting
point of the algorithm from this paper.

The heart of our algorithm is a near-linear time algorithm that, given a sequence
of low-dimensional vectors v1, . . . vn ∈ `1 and an integer s < n, constructs new vectors
q1, . . . qm ∈ `O(log2 n)

1 , where m = n− s+ 1, with the following property. For all i, j ∈
[m], the value ‖qi − qj‖1 approximates the Earth-Mover Distance (EMD)4 between
the sets Ai = {vi, vi+1, . . . vi+s−1} and Aj = {vj , vj+1, . . . vj+s−1}. To accomplish this
(non-oblivious) embedding, we proceed in two stages. First, we embed (obliviously)
the EMD metric into a min-product of `1’s of low dimension. In other words, for a set
A, we associate a matrix L(A), of polylogarithmic size, such that the EMD distance
between sets A and B is approximated by minr

∑
t |L(A)rt − L(B)rt|. Min-products

help us simultaneously on two fronts: one is that we can apply a weak dimensionality
reduction in `1, using the Cauchy projections, and the second one enables us to
accomplish a low-dimensional EMD embedding itself. Our embedding L(·) is not
only low-dimensional, but it is also linear, allowing us to compute matrices L(Ai)
in near-linear time by performing one pass over the sequence v1, . . . vn. Linearity is
crucial here as even the total size of Ai’s is

∑
i |Ai| = (n− s+ 1) · s, which can be as

high as Ω(n2), and so processing each Ai separately is infeasible.
In the second stage, we show how to embed a set of n points lying in a low-

dimensional min-product of `1’s back into a low-dimensional `1 with only small dis-
tortion. We note that this is not possible in general, with any bounded distortion,
because such a set of points does not even form a metric. We show that this is possi-
ble when we assume that the semi-metric induced by the set of points approximates
some metric (in our case, the set of points approximates the initial EMD metric).
The embedding from this stage starts by embedding a min-product of `1’s into a low-
dimensional min-product of tree metrics. We further embed the latter into an n-point
metric supported by the shortest-path metric of a sparse graph. Finally, we observe
that we can implement Bourgain’s embedding on a sparse graph metric in near-linear
time. These last two steps make our embedding non-oblivious.

2. Short Overview of the Ostrovsky-Rabani Embedding. We now briefly
describe the embedding of Ostrovsky and Rabani [23]. Some notions introduced here
are used in our algorithm described in the next section.

The embedding of Ostrovsky and Rabani is recursive. For a fixed n, they con-
struct the embedding of edit distance over strings of length n using the embedding
of edit distance over strings of shorter lengths l ≤ n/2

√
log n log log n. We denote their

embedding of length-n strings by φn : {0, 1}n → `1, and let dOR
n be the resulting dis-

tance: dOR
n (x, y) = ‖φn(x) − φn(y)‖1. For two strings x, y ∈ {0, 1}n, the embedding

is such that dOR
n = ‖φn(x) − φn(y)‖1 approximates an “idealized” distance d∗n(x, y),

which itself approximates the edit distance between x and y.
Before describing the “idealized” distance d∗n, we introduce some notation. Par-

tition x into b = 2
√

log n log log n blocks called x(1), . . . x(b) of length l = n/b. Next, fix
some j ∈ [b] and s ≤ l. We consider the set of all substrings of x(j) of length l− s+1,
embed each one recursively via φl−s+1, and define Ss

j (x) ⊂ `1 to be the set of resulting
vectors (note that |Ss

j | = s). Formally,

Ss
j (x) =

{
φl−s+1(x[(j − 1)l + z : (j − 1)l + z + l − s]) | z ∈ [s]

}
.

4In fact, our algorithm does this for thresholded EMD, TEMD, but the technique is precisely
the same.
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Taking φl−s+1 as given (and thus also the sets Ss
j (x) for all x), define the new “ide-

alized” distance d∗n approximating the edit distance between strings x, y ∈ {0, 1}n

as

d∗n(x, y) = c

b∑

j=1

∑
f∈N

s=2f≤l

TEMD(Ss
j (x), Ss

j (y)) (2.1)

where TEMD is the thresholded Earth-Mover Distance (defined in Eqn. (1.1)), and c
is a sufficiently large normalization constant (c ≥ 12 suffices). Using the terminology
from the preliminaries, the distance function d∗n can be viewed as the distance function
of the sum-product of TEMDs, i.e.,

⊕b
`1

⊕O(log n)
`1

TEMD, and the embedding into
this product space is attained by the natural identity map (on sets Ss

j ).
The key idea is that the distance d∗n(x, y) approximates edit distance well, as-

suming that φl−s+1 approximates edit distance well, for all s = 2f where f ∈
{1, 2, . . . blog2 lc}. Formally, Ostrovsky and Rabani show that:

Fact 2.1 ([23]). Fix n and b < n, and let l = n/b. Let Dn/b be an upper
bound on distortion of φl−s+1 viewed as an embedding of edit distance on strings
{x[i : i+l−s], y[i : i+l−s] | i ∈ [n−l+s]}, for all s = 2f where f ∈ {1, 2, . . . blog2 lc}.
Then,

ed(x, y) ≤ d∗n(x, y) ≤ ed(x, y) · (Dn/b + b
) ·O(logn).

To obtain a complete embedding, it remains to construct an embedding approx-
imating d∗n up to a small factor. In fact, if one manages to approximate d∗n up to
a poly-logarithmic factor, then the final distortion comes out to be 2O(

√
log n log log n).

This follows from the following recurrence on the distortion factor Dn. Suppose φn

is an embedding that approximates d∗n up to a factor logO(1) n. Then, if Dn is the
distortion of φn (as an embedding of edit distance), then Fact 2.1 immediately implies
that, for b = 2

√
log n log log n,

Dn ≤ Dn/2
√

log n log log n · logO(1) n+ 2O(
√

log n log log n).

This recurrence solves to Dn ≤ 2O(
√

log n log log n) as proven in [23].
Concluding, to complete a step of the recursion, it is sufficient to embed the metric

given by d∗n into `1 with a polylogarithmic distortion. Recall that d∗n is the distance of
the metric

⊕b
`1

⊕O(log n)
`1

TEMD, and thus, one just needs to embed TEMD into `1.
Indeed, Ostrovsky and Rabani show how to embed a relaxed (but sufficient) version
of TEMD into `1 with O(log n) distortion, yielding the desired embedding φn, which
approximates d∗n up to a O(log n) factor at each level of recursion. We note that the
required dimension is Õ(n).

3. Proof of the Main Theorem. We now describe our general approach. Fix
x ∈ {0, 1}n. For each substring σ of x, we construct a low-dimensional vector vσ

such that, for any two substrings σ, τ of the same length, the edit distance between
σ and τ is approximated by the `1 distance between the vectors vσ and vτ . We note
that the embedding is non-oblivious: to construct vectors vσ we need to know all the
substrings of x in advance (akin to Bourgain’s embedding guarantee). We also note
that computing such vectors is enough to solve the problem of approximating the edit
distance between two strings, x and y. Specifically, we apply this procedure to the
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string x′ = x ◦ y, the concatenation of x and y, and then compute the `1 distance
between the vectors corresponding to x and y, substrings of x′.

More precisely, for each length m ∈W , for some set W ⊂ [n] specified later, and
for each substring x[i : i+m−1], where i = 1, . . . n−m+1, we compute a vector v(m)

i

in `α1 , where α = 2Õ(
√

log n). The construction is inductive: to compute vectors v(m)
i ,

we use vectors v(l)
i for l ¿ m and l ∈ W . The general approach of our construction

is based on the analysis of the recursive step of Ostrovsky and Rabani, described in
Section 2. In particular, our vectors v(m)

i ∈ `1 will also approximate the d∗m distance
(given in Eqn. (2.1)) with sets Ss

i defined using vectors v(l)
i with l¿ m.

The main challenge is to process one level (vectors v(m)
i for a fixed m) in near-

linear time. Besides the computation time itself, a fundamental difficulty in applying
the approach of Ostrovsky and Rabani directly is that their embedding would give
a much higher dimension α, proportional to Õ(m). Thus, if we were to use their
embedding, even storing all the vectors would take quadratic space.

To overcome this last difficulty, we settle on non-obliviously embedding the set
of substrings x[i : i +m − 1] for i ∈ [n −m + 1] under the “ideal” distance d∗m with
logO(1) n distortion (formally, under the distance d∗m from Eqn. (2.1), when Ss

j (x[i :

i + m − 1]) =
{
v
(l−s+1)
i+(j−1)l+z−1 | z ∈ [s]

}
for l = m/2

√
log n log log n). Existentially, we

know that there exist vectors v(m)
i ∈ RO(log2 n), such that ‖v(m)

i −v(m)
j ‖1 approximate

d∗m(x[i : i + m − 1], x[j : j + m − 1]) for all i, j — this follows by the standard
Bourgain’s embedding [6]. We show that we can also compute these v(m)

i ’s efficiently
for all i ∈ [n−m+1], albeit with an additional polylogarithmic loss in approximation.

The main building block is the following theorem. It shows how to approximate
the TEMD distance for the desired sets Ss

j .
Theorem 3.1. Let n ∈ N and s ∈ [n]. Let v1, . . . vn be vectors in {−M, . . .M}α,

where M = nO(1) and α ≤ n. Define sets Ai = {vi, vi+1, . . . vi+s−1} for i ∈ [n−s+1].
Let t = O(log2 n). We can compute (randomized) vectors qi ∈ `t1 for i ∈ [n−s+1]

such that for any i, j ∈ [n− s+ 1], with high probability, we have

TEMD(Ai, Aj) ≤ ‖qi − qj‖1 ≤ TEMD(Ai, Aj) · logO(1) n.

Furthermore, computing all vectors qi takes Õ(nα) time.
To map the statement of this theorem to the above description, we mention that,

for each l = m/b for m ∈W , we apply the theorem to vectors
(
v
(l−s+1)
i

)
i∈[n−l+s]

for

each s = 1, 2, 4, 8, . . . 2blog2 lc.
We prove Theorem 3.1 in later sections. Once we have Theorem 3.1, it becomes

relatively straight-forward (albeit a bit technical) to prove the main theorem, Theo-
rem 1.1. We complete the proof of Theorem 1.1 next, assuming Theorem 3.1.

Proof of Theorem 1.1. We start by appending y to the end of x; we will work
with the new version of x only. Let b = 2

√
log n log log n and α = O(b log3 n). We

construct vectors v(m)
i ∈ Rα for m ∈ W , where W ⊂ [n] is a carefully chosen set of

size 2O(
√

log n log log n). Namely, W is the minimal set such that: n ∈W , and, for each
i ∈ W with i ≥ b, we have that i/b− 2j + 1 ∈ W for all integers j ≤ blog2 i/bc. It is
easy to show by induction that the size of W is 2O(

√
log n log log n).

Fix an m ∈ W such that m ≤ b2 = 22
√

log n log log n. We define the vector v(m)
i to

be equal to hm(x[i : i+m− 1]), where hm : {0, 1}m → {0, 1}α is a randomly chosen
6



function. It is readily seen that ‖v(m)
i − v(m)

j ‖1 approximates ed(x[i : i+m− 1], x[j :
j+m−1]) up to b2 = 22

√
log n log log n approximation factor, for each i, j ∈ [n−m+1].

Now consider m ∈ W such that m > b2. Let l = m/b. First we construct
vectors approximating TEMD on sets Am,s

i =
{
v
(l−s+1)
i+z | z = 0, . . . s− 1

}
, where s =

1, 2, 4, 8, . . . , l and i ∈ [n− l + s]. In particular, for a fixed s ∈ [l] equal to a power of
2, we apply Theorem 3.1 to the set of vectors

(
v
(l−s+1)
i

)
i∈[n−l+s]

obtaining vectors
(
q
(m,s)
i

)
i∈[n−l+1]

. Theorem 3.1 guarantees that, for each i, j ∈ [n − l + 1], the value

‖q(m,s)
i − q

(m,s)
j ‖1 approximates TEMD(Am,s

i , Am,s
j ) up to a factor of logO(1) n. We

can then use these vectors q(m,s)
i to obtain the vectors v(m)

i ∈ Rα that approximate the
“idealized” distance d∗m on substrings x[i : i+m− 1], for i ∈ [n−m+1]. Specifically,
we let the vector v(m)

i be a concatenation of vectors q(m,s)
i+(j−1)l, where j ∈ [b], and s

goes over all powers of 2 less than l:

v
(m)
i =

(
q
(m,s)
i+(j−1)l

)
j∈[b]

s=2f≤l,f∈N
.

Then, the vectors v(m)
i approximate the distance d∗m (given in Eqn. (2.1)) up to

a logO(1) n approximation factor, with the sets Ss
j (x[i : i+m− 1]) taken as

Ss
j (x[i : i+m− 1]) = Am,s

i+(j−1)l =
{
v
(l−s+1)
i+(j−1)l+z | z = 0, . . . s− 1

}
,

for i ∈ [n−m+ 1] and j ∈ [b].
The algorithm finishes by outputting ‖v(n)

1 − v
(n)
n+1‖, which is an approximation

to the edit distance between x[1 : n] and x[n+ 1 : 2n] = y. The total running time is
O(|W | · n · bO(1) · logO(1) n) = n · 2O(

√
log n log log n).

It remains to analyze the resulting approximation. Let Dm be the approximation
achieved by vectors v(k)

i ∈ `1 for substrings of x of lengths k, where k ∈W and k ≤ m.
Then, using Fact 2.1 and the fact that vectors v(m)

i ∈ `1 approximate d∗m, we have
that

Dm ≤ logO(1) n ·
(
Dm/b + 2

√
log n log log n

)
.

Since the total number of recursion levels is bounded by logb n =
√

log n
log log n , we

deduce that Dn = 2O(
√

log n log log n).

3.1. Proof of Theorem 3.1. The proof proceeds in two stages. In the first stage
we show an embedding of the TEMD metric into a low-dimensional space. Specifically,
we show an (oblivious) embedding of TEMD into a min-product of `1. Recall that
the min-product of `1, denoted

⊕l
min `

k
1 , is a semi-metric where the distance between

two l-by-k vectors x, y ∈ Rl×k is dmin,1(x, y) = mini∈[l]

{∑
j∈[k] |xi,j − yi,j |

}
. Our

min-product of `1’s has dimensions l = O(log n) and k = O(log3 n). The min-product
can be seen as helping us on two fronts: one is the embedding of TEMD into `1 (of
initially high-dimension), and another is a weak dimensionality reduction in `1, using
Cauchy projections. Both of these embeddings are of the following form: consider
a randomized embedding f into (standard) `1 that has no contraction (w.h.p.) but
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the expansion is bounded only in the expectation (as opposed to w.h.p.). To obtain a
“w.h.p.” expansion, one standard approach is to sample f many times and concentrate
the expectation. This approach, however, will necessitate a high number of samples
of f , and thus yield a high final dimension. Instead, the min-product allows us to
take only O(log n) independent samples of f .

We note that our embedding of TEMD into min-product of `1, denoted λ, is
linear in the sets A: λ(A) =

∑
a∈A λ({a}). The linearity allows us to compute the

embedding of sets Ai in a streaming fashion: the embedding of Ai+1 is obtained
from the embedding of Ai with logO(1) n additional processing. This stage appears in
Section 3.1.1.

In the second stage, we show that, given a set of n points in min-product of `1’s,
we can (non-obliviously) embed these points into low-dimensional `1 with O(log n)
distortion. The time required is near-linear in n and the dimensions of the min-product
of `1’s.

To accomplish this step, we start by embedding the min-product of `1’s into a
min-product of tree metrics. Next, we show that n points in the low-dimensional
min-product of tree metrics can be embedded into a graph metric supported by a
sparse graph. We note that this is in general not possible, with any (even non-
constant) distortion. We show that this is possible when we assume that our subset
of the min-product of tree metrics approximates some actual metric (in our case,
the min-product approximates the TEMD metric). Finally, we observe that we can
implement Bourgain’s embedding in near-linear time on a sparse graph metric. This
stage appears in Section 3.1.2.

We conclude with the proof of Theorem 3.1 in Section 3.1.3.

3.1.1. Embedding EMD into min-product of `1. In the next lemma, we
show how to embed TEMD into a min-product of `1’s of low dimension. Moreover,
when the sets Ai are obtained from a sequence of vectors v1, . . . vn, by taking Ai =
{vi, . . . vi+s−1}, we can compute the embedding in near-linear time.

Lemma 3.2. Fix n,M ∈ N and s ∈ [n]. Suppose we have n vectors v1, . . . vn

in {−M, . . .M}α for some α ≤ n. Consider the sets Ai = {vi, vi+1, . . . vi+s−1}, for
i ∈ [n− s+ 1].

Let k = O(log3 n). We can compute (randomized) vectors qi ∈ `k1 for i ∈ [n−s+1]
such that, for any i, j ∈ [n− s+ 1] we have that

• Pr
[
‖qi − qj‖1 ≤ TEMD(Ai, Aj) ·O(log2 n)

]
≥ 0.1 and

• ‖qi − qj‖1 ≥ TEMD(Ai, Aj) w.h.p.
The computation time is Õ(nα).

Thus, we can embed the TEMD metric over sets Ai into
⊕l

min `
k
1 , for l = O(log n),

such that the distortion is O(log2 n) w.h.p. The computation time is Õ(nα).
Proof. First, we show how to embed TEMD metric over the sets Ai into `1 of

dimension MO(α) · O(log n). For this purpose, we use a slight modification of the
embedding of [1] (it can also be seen as a strengthening of the TEMD embedding of
Ostrovsky and Rabani).

The embedding of [1] constructs m = O(log s) embeddings ψi, each of dimension
h = MO(α), and then the final embedding is just the concatenation ψ = ψ1◦ψ2 . . .◦ψm.
For i = 1, . . .m, we impose a randomly shifted grid of side-length Ri = 2i−2. Then ψi

has a coordinate for each cell and the value of that coordinate, for a set A, equals the
number of points from A falling into the corresponding cell times Ri. Now, if we scale
ψ up by Θ( 1

s log n), Theorem 3.1 from [1] says that the vectors q′i = ψ(Ai) satisfy the
8



condition that, for any i, j ∈ [n− s+ 1], we have:
• E [‖q′i − q′j‖1

] ≤ TEMD(Ai, Aj) ·O(log2 n) and
• ‖q′i − q′j‖1 ≥ TEMD(Ai, Aj) w.h.p.

Thus, the vectors q′i satisfy the promised properties except they have a high dimension.
To reduce the dimension of q′i’s, we apply a weak `1 dimensionality reduction via 1-

stable (Cauchy) projections. Namely, we pick a random matrix P of size k = O(log3 n)
by mh, the dimension of ψ, where each entry is distributed according to the Cauchy
distribution, which has probability distribution function f(x) = 1

π · 1
1+x2 . Now define

qi = P · q′i ∈ `k1 . Standard properties of the `1 dimensionality reduction guarantee
that the vectors qi satisfy the properties promised in the lemma statement, after an
appropriate rescaling (cf. Theorem 5 of [14] with ε = 1/2, γ = 1/6, and δ = n−O(1)).

It remains to show that we can compute the vectors qi in Õ(nα) time. For
this, we note that the resulting embedding P · ψ(A) is linear, namely P · ψ(A) =∑

a∈A P · ψ({a}). Thus, we can use the idea of a sliding window over the stream
v1, . . . vn to compute qi = P · ψ(Ai) iteratively. Specifically, note that

qi+1 = P · ψ(Ai+1) = P · ψ(Ai ∪ {vi+s} \ {vi}) = qi + P · ψ({vi+s})− P · ψ({vi}).
Since we can compute P · ψ({vi}), for any i, in α · logO(1) n time, we conclude that
the total time to compute qi’s is O(nα · logO(1) n).

Finally, we show how we obtain an efficient embedding of TEMD into min-product
of `1’s.

We apply the above procedure l = O(log n) times. Let q(z)
i be the resulting

vectors, for i ∈ [n− s+1] and z ∈ [l]. The embedding of a set Ai is the concatenation
of the vectors q(z)

i , namely Qi = (q(1)i , q
(2)
i , . . . q

(l)
i ) ∈ ⊕l

min `
k
1 . The Chernoff bound

implies that w.h.p., for any i, j ∈ [n− s+ 1], we have that

dmin,1(Qi, Qj) = min
z∈[l]

‖q(z)
i − q

(z)
j ‖ ≤ TEMDs(Ai, Aj) ·O(log2 n).

Also, dmin,1(Qi, Qj) ≥ TEMDs(Ai, Aj) w.h.p. trivially. Thus the vectors Qi are an
embedding of the TEMD metric on Ai’s into

⊕l
min `

k
1 with distortion O(log2 n) w.h.p.

3.1.2. Embedding of min-product of `1 into low-dimensional `1. In this
section, we show that n points Q1, . . . Qn in the semi-metric space

⊕l
min `

k
1 can be

embedded into `1 of dimension O(log2 n) with distortion logO(1) n. The embedding
works under the assumption that the semi-metric on Q1, . . . Qn is a logO(1) n approx-
imation of some metric. We start by showing that we can embed a min-product of
`1’s into a min-product of tree metrics.

Lemma 3.3. Fix n,M ∈ N such that M = nO(1). Consider n vectors v1, . . . vn

in
⊕l

min `
k
1 , for some l, k ∈ N, where each coordinate of each vi lies in the set

{−M, . . . ,M}. We can embed these vectors into a min-product of O(l · log2 n) tree
metrics, i.e.,

⊕O(l log2 n)
min TM, incurring distortion O(log n) w.h.p. The computation

time is Õ(n · kl).
Proof. We consider all thresholds 2t, for t ∈ {0, 1, . . . , logM}. For each threshold

2t, and for each coordinate of the min-product (i.e., `k1), we create O(log n) tree
metrics. Each tree metric is independently created as follows. We again use randomly
shifted grids. Specifically, we define a hash function h : `k1 → Zk as

h(x1, . . . , xk) =
(⌊

x1 + u1

2t

⌋
,

⌊
x2 + u2

2t

⌋
, . . . ,

⌊
xk + uk

2t

⌋)
,

9



where each ut is chosen at random from [0, 2t). We create each tree metric so that
the nodes corresponding to the points hashed by h to the same value are at distance
2t (this creates a set of stars), and each pair of points that are hashed to different
values are at distance 2Mk (we connect the roots of the stars). It is easy to verify
that for two points x, y ∈ `k1 , the following holds

1− ‖x− y‖1
2t

≤ Pr
h

[h(x) = h(y)] ≤ e−‖x−y‖1/2t

.

By the Chernoff bound, if x, y ∈ `k1 are at distance at most 2t for some t, they will be
at distance at most 2t+1 in one of the tree metrics with high probability.

On the other hand, let vi and vj be two input vectors at distance greater than
2t. The probability that they are at distance smaller than 2t/c log n in any of the
O(log2 n) tree metrics, is at most n−c+1 for any c > 0, by union bound.

Therefore, we multiply the weights of all edges in all trees by O(log n) to achieve
a proper (non-contracting) embedding.

We now show that we can embed a subset of the min-product of tree metrics into
a graph metric, assuming the subset is close to a metric.

Lemma 3.4. Consider a semi-metric M = (X, ξ) of size n in
⊕l

min TM for some
l ∈ N, where each tree metric in the product is of size O(n). Suppose M is a γ-near
metric (i.e., it is embeddable into a metric with γ distortion). Then we can embed M
into a connected weighted graph with O(nl) edges with distortion γ in O(nl) time.

Proof. We consider l separate trees each on O(n) nodes, corresponding to each
of l dimensions of the min-product. We identify the nodes of trees that correspond
to the same point in the min-product, and collapse them into a single node. The
graph we obtain has at most O(nl) edges. Denote the shortest-path metric it spans
with M′ = (V, ρ), and denote our embedding with φ : X → V . Clearly, for each
pair u, v of points in X, we have ρ(φ(u), φ(v)) ≤ ξ(u, v). If the distance between two
points shrinks after embedding, then there is a sequence of points w0 = u, w1, . . . ,
wk−1, wk = v such that ρ(φ(u), φ(v)) = ξ(w0, w1) + ξ(w1, w2) + · · · + ξ(wk−1, wk).
Because M is a γ-near metric, there exists a metric ξ? : X ×X → [0,∞), such that
ξ?(x, y) ≤ ξ(x, y) ≤ γ · ξ?(x, y), for all x, y ∈ X. Therefore,

ρ(φ(u), φ(v)) =
k−1∑

i=0

ξ(wi, wi+1) ≥
k−1∑

i=0

ξ?(wi, wi+1) ≥ ξ?(w0, wk) = ξ?(u, v) ≥ ξ(u, v)/γ.

Hence, it suffices to multiply all edge weights of the graph by γ to achieve a non-
contractive embedding. Since there was no expansion before, it is now bounded by γ.

We now show how to embed the shortest-path metric of a graph into a low dimen-
sional `1-space in time near-linear in the graph size. For this purpose, we implement
Bourgain’s embedding [6] in near-linear time. We use the following version of Bour-
gain’s embedding, which follows from the analysis in [21].

Lemma 3.5 (Bourgain’s embedding [21]). Let M = (X, ρ) be a finite metric
on n points. There is an algorithm that computes an embedding f : X → `t1 of M
into `t1 for t = O(log2 n) such that, with high probability, for each u, v ∈ X, we have
ρ(u, v) ≤ ‖f(u)− f(v)‖1 ≤ ρ(u, v) ·O(log n).

Specifically, for coordinate i ∈ [k] of f , the embedding associates a nonempty set
Ai ⊆ X such that f(u)i = ρ(u,Ai) = mina∈A ρ(u, a). Each Ai is samplable in linear
time.
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The running time of the algorithm is O(g(n) · log2 n), where g(n) is the time
necessary to compute the distance of all points to a given fixed subset of points.

Lemma 3.6. Consider a connected graph G = (V,E) on n nodes with m edges and
a weight function w : E → [0,∞). There is a randomized algorithm that embeds the
shortest path metric of G into `O(log2 n)

1 with O(logn) distortion, with high probability,
in O(m log3 n) time.

Proof. Let ψ : V → `
O(log2 n)
1 be the embedding given by Lemma 3.5. For any

nonempty subset A ⊆ V , we can compute ρ(v,A) for all v ∈ V by Dijkstra’s algorithm
in O(m log n) time. The total running time is thus O(m log3 n).

3.1.3. Finalization of the proof of Theorem 3.1. We first apply Lemma 3.2
to embed the sets Ai into

⊕O(log n)
min `k1 with distortion at most O(log2 n) with high

probability, where k = O(log3 n). We write vi, i ∈ [n−s+1], to denote the embedding
of Ai. Note that the TEMD distance between two different Ai’s is at least 1/s ≥ 1/n,
and so is the distance between two different vi’s. We multiply all coordinates of vi’s
by 2kn = Õ(n) and round them to the nearest integer. This way we obtain vectors v′i
with integer coordinates in {−2knM−1, . . . , 2knM+1}. Consider two vectors vi and
vj . Let D be their distance, and let D′ be the distance between the corresponding
v′i and v′j . We claim that knD ≤ D′ ≤ 3knD, and it suffices to show this claim for
vi 6= vj , in which case we know that D ≥ 1/n. Each coordinate of the min-product is
`k1 , and we know that in each of the coordinates the distance is at least D. Consider
a given coordinate of the min-product, and let d and d′ be the distance before and
after the scaling and rounding, respectively. On the one hand,

d′

d
≥ 2knd− k

d
≥ 2kn− k

D
≥ 2kn− kn = kn,

and on the other,

d′

d
≤ 2knd+ k

d
≤ 2kn+

k

D
≤ 2kn+ kn = 3kn.

Therefore, in each coordinate, the distance gets scaled by a factor in the range
[kn, 3kn]. We now apply Lemma 3.3 to v′i’s and obtain their embedding into a min-
product of tree metrics. Then, we divide all distances in the trees by kn, and achieve
an embedding of vi’s into a min-product of trees with distortion at most 3 times larger
than that implied by Lemma 3.3, which is O(logn).

The resulting min-product of tree metrics need not be a metric, but it is a γ-near
metric, where γ = O(log3 n) is the expansion incurred so far. We therefore embed
the min-product of tree metrics into the shortest-path metric of a weighted graph by
using Lemma 3.4 with expansion at most γ. Finally, we embed this metric into a low
dimensional `1 metric space with distortion O(log2 n) by using Lemma 3.6.

4. Applications. We now present two applications mentioned in the introduc-
tion: sublinear-time approximation of edit distance, and approximate pattern match-
ing under edit distance.

4.1. Sublinear-time approximation. We now present a sublinear-time algo-
rithm for distinguishing pairs of strings with small edit distance from pairs with large
edit distance. Let x and y be the two strings. The algorithm partitions them into
blocks x̃i and ỹi of the same length such that x = x̃1 . . . x̃b and y = ỹ1 . . . ỹb. Then it
compares x̃i to ỹi for a number of random i. If it finds a very different pair of blocks
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x̃i to ỹi, the distance between x and y is large. Otherwise, the edit distance between
x and y is likely to be small. Our edit distance algorithm is used for approximating
the distance between specific x̃i and ỹi.

Theorem 4.1. Let α and β be two constants such that 0 ≤ α < β ≤ 1. There
is an algorithm that distinguishes pairs of strings with edit distance O(nα) from those
with distance Ω(nβ) in time nα+2(1−β)+o(1).

Proof. Let f(n) = 2O(
√

log n log log n) be a non-decreasing function that bounds the
approximation factor of the algorithm given by Theorem 1.1. Let b = nβ−α

f(n)·log n . We
partition the input strings x and y into b blocks, denoted x̃i and ỹi for i ∈ [b], of
length n/b each.

If ed(x, y) = O(nα), then maxi ed(x̃i, ỹi) ≤ ed(x, y) = O(nα). On the other hand,
if ed(x, y) = Ω(nβ), then maxi ed(x̃i, ỹi) ≥ ed(x, y)/b = Ω(nα ·f(n) · log n). Moreover,
the number of blocks i such that ed(x̃i, ỹi) ≥ ed(x, y)/2b = Ω(nα · f(n) · logn) is at
least

ed(x, y)− b · ed(x, y)/2b
n/b

= Ω(nβ−1 · b).

Therefore, we can tell the two cases apart with constant probability by sampling
O(n1−β) pairs of blocks (x̃i, ỹi) and checking if any of the pairs is at distance Ω(nα ·
f(n) · log n). Since for each such pair of strings, we only have to tell edit distance
O(nα) from Ω(nα ·f(n) · log n), we can use the algorithm of Theorem 1.1. We amplify
the probability of success of that algorithm in the standard way by running it O(log n)
times. The total running time of the algorithm is O(n1−β) · O(log n) · (n/b)1+o(1) =
O(nα+2(1−β)+o(1)).

4.2. Pattern matching. Our algorithm can be used for approximating the edit
distance between a pattern P of length n and all length-n substrings of a text T .
Let N = |T |. For every s ∈ [N − 2n + 1] of the form in + 1, we concatenate T ’s
length-2n substring that starts at index s with P , and compute an embedding of edit
distance between all length-n substrings of the newly created string into `α1 for α =
2O(

√
log n log log n). We routinely amplify the probability of success of each execution

of the algorithm by running it for O(logN) times and selecting the median of the
returned values. The running time of the algorithm is O(N logN) · 2O(

√
log n log log n).

The distance between each of the substrings and the pattern is approximate up to
a factor of 2O(

√
log n log log n), and can be used both for finding approximate occurrences

of P in T , and for finding a substring of T that is approximately closest to P .

Acknowledgment. The authors thank Piotr Indyk for helpful discussions, and
Robert Krauthgamer, Sofya Raskhodnikova, Ronitt Rubinfeld, and Rahul Sami for
early discussions on near-linear algorithms for edit distance.

REFERENCES

[1] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer, Earth mover distance over
high-dimensional spaces, in Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2008, pp. 343–352.

[2] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar, Approximating
edit distance efficiently, in Proceedings of the Symposium on Foundations of Computer
Science (FOCS), 2004, pp. 550–559.
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