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ABSTRACT variant and false otherwise. Korat processes this predicate
to efficiently produce a stream of structures that satisfy the

We present an evaluation of exhaustive testing of linked data . - -
P g property identified by the pre-condition. To check the cor-

structures with sophisticated structural constraints. Specifi-

cally, we use the Korat testing framework to systematically "éctness of the implementation, Korat tests the implementa-
enumerate all legal inputs within a certain size. We then tion on the generated inputs to verify that the execution sat-

evaluate the quality of this test suite according to several ISfi€S the provided post-condition. Given a bound on the size
measurements: ability to detect injected faults in the orig- Of INPUts, called thecope Korat generates all inputs within
inal correct implementations, code coverage, and specifi-the scope that satisfy the invariant. We call testing with such

cation coverage. Our results indicate that it is feasible to NPUtséxhaustive testing
use exhaust_ive testing to obtailn, within a reasonable amount] 1 Evaluation

of time, a high-quality test suite that can detect almost all . . .
faults and achieve complete code and specification cover-, In theory, gxhausuve te.stlng_could deteqt any error in the
age. Moreover, our results show that our exhaustive testsiMPlementation.  In practice, time constraints make it pos-

are of higher quality than randomly selected test suites thatSiP/€ 10 test the implementation only up to certain scope,
contain the same number of inputs selected from a larger"2SINg the possibility that the resulting incomplete test suite

potential input set. We conclude that exhaustive testing is amay fail to detect an error. To evaluate the effectiveness of

practical and effective testing methodology for sophisticated exhaustive testing, we haye used it to test a benchmark_set
linked data structures. of standard data structure implementations. Our evaluation

centers around two issues: the quality of the test suite and
1. INTRODUCTION the performance of the test case generation algorithms.
L . - We usemnutation testing15,24,41] to measure the quality
Testing is currently the dominant method for finding and f the test suites that Korat generates. Mutation testing first

eliminating software errors and, as such, is critical to the produces a set of new (potentially) faulty versions of a pro-
ability of the software industry to produce high-quality code. gram, callecnutants by performing syntactic modifications

Obtaining good test cases is obviously a key requirement to 5, the program. It then measures how many mutants a test
successfully testing any software artifact, but many issues g it detects. A test suitelisutation-adequati it detects a
complicate this activity. Requiring developers to manually egjred percentage of mutants. Results show that a test suite
provide test cases is labor intensive (especially for linked 4t getects a high percentage of injected faults is likely to
data structure with complex structural properties) and may ?etect real faults [41].

produce test cases that exercise only a restricted subset of \ya evaluate the following hypotheses for exhaustive test-
the functionality of the software. ing of our data structure benchmarks:

The alternative is to automatically generate a range of test Mutation: There i tai I that satisfi
cases, then filter out any test cases that do not satisfy the re-  ® utation. 1here Is a certain smalfl Scope that satisfies
mutation-adequacy criterion for data structures.

quired input invariants of the system under test. While this . e~

approach may work well for systems with simple input in- ° Coverage:Mutatlon—adequa}cy criterion is stronger than

variants, it may be prohibitively expensive for systems with complete code coverage criterion.

complex input invariants—the density of test cases that sat- ® Feasibility: Korat can generate inputs and check cor-

isfy the invariant in the search space may be so small thatthe ~ rectness for the mutation-adequate scope.

generator is unable to produce legal inputs within a reason- ~® Randomness:Exhaustive test suites are of higher qual-

able amount of time. ity than randomly selected test suites that contain the
We have developed Korat [6], a technique for generat- same number of inputs selected from a larger input set.

ing test cases that satisfy complex invariants. Korat enables

the developer to provide an operational way of identifying 1-2 Correctness

the legal inputs. Specifically, the developer provides a pre- The correctness of our evaluation depends on the correct-

condition predicate, written in a standard programming lan- ness of Korat. The correctness of Korat is also important in

guage, that returns true if the input satisfies the required in- practice—if Korat mistakenly produces a structure that does



class

not satisfy the input invariant, the developer may waste valu-
able time attempting to track down a non-existent error in
the implementation. If, on the other hand, Korat incorrectly

causes a set of structures to be systematically omitted, the

generated test cases will miss any error that is triggered only
by omitted structures.

We address these concerns by providing 1) a formaliza-
tion of Korat’s test case generation algorithm, and 2) a proof
that this algorithm is both sound (it only generates structures
that satisfy the input invariants) and complete (it generates
all such structures). This proof provides a strong guarantee
that should increase the confidence of the developer in the
correctness of the test case generation tool.

1.3 New Technique
We present a new techniqueput property exploitation

that increases the effectiveness of exhaustive test case gen-

eration. This technique usetedicatedgenerators to opti-
mize the generation of common properties that often appear

SearchTree
Node root; // root node
int size; // number of nodes in the tree
static class Node {
Node left; // left child
Node right; // right child
Comparable info; // data

/*@ normal _behavior

/I precondition

requires repOk();

/I postcondition

ensures repOk() && !contains(info) &&
\result == \old (contains(info));

{1

/I non-exceptional specification
@
@
@
@

@
@/
boolean remove( Comparable info)

boolean repOk()
/I checks that empty tree has size zero
if (oot == null ) return size == 0;
/I checks that the input is a tree
it (lisAcyclic()) return false
/I checks that size is consistent
if  (numNodes(root) != size)
/I checks that data is ordered
if  (lisOrdered(root)) return false
return true

return false

within input invariants. It enables the test case generator to,

substantially prune the search without eliminating any struc-
tures that satisfy the input invariant. We evaluate the effec-
tiveness of exploiting common input invariant properties by
comparing the performance of our Korat-based implementa-
tion with and without this technique. Our results show that

Figure 1: Example code and specification.

2. EXAMPLE
This section illustrates how programmers can use Korat to

the use of thig technique can speed up the perfqrmance of testest their programs. As a running example, we use a method
case generation for up to 75%. Moreover, dedicated generaor removing an element from a set implemented as a binary

tors make it easier to write pre- and post-conditions.

1.4 Contributions
This paper makes the following contributions:

e Evaluation: It presents an evaluation of exhaustive
testing for data structures. Our results show that:

— Exhaustive testing within small scope can gener-
ate mutation-adequate test suites.

— Exhaustive test suites can achieve complete cov-
erage for even smaller scopes, but such suites do
not detect all mutants.

— It is feasible to use Korat to generate inputs and
check correctness for these scopes.

— Exhaustive testing within some scope is often more
effective than random testing with somewhat big-
ger inputs.

We anticipate that our results will extend to a wide
range of programs whose inputs must satisfy complex
structural invariants.

Correctness: It formalizes the test case generation al-
gorithm and presents a proof of its correctness.

Input Property Exploitation: It shows how to exploit
the presence of common input properties to prune the
search during test case generation.

Ferastrau: We present design and implementation of
a tool for mutation testing of Java programs.

Novel Applications: We illustrate how to apply Ko-
rat to white-box testing and to testing sequences of
method calls.

search tree. Even though removal is conceptually simple,
the implementation involves intricate details to restore a tree
after removing an inner node. Figure 1 shows Java code that
declares a binary tree and itsnove method. Each object

of the classsearchTree represents a binary search tree. The
size field contains the number of nodes in the tree. Objects
of the inner classode represent nodes of the trees. The
elements of the set are stored in thie fields. The ele-
ments implement the interfac@mparable , which provides
the methodtompareTo for comparisons. Appendix A shows
the full code for the examplemove method.

The exampleemove method is annotated using the Java
Modeling Language (JML) [33]. Theormal _behavior key-
word specifies that if the precondition (keywatduires )
is satisfied before the method, then the method must sat-
isfy the postcondition (keywor@nsures ) at the end and
must return without raising an exception. The methsad
pOk is a Java predicate that checks thpresentation invari-
ant [35] of the corresponding data structure. For illustra-
tive purposes, we putpOk in the pre/post-conditions; in
practice, it is usually given as a class invariant (keyword
invariant ) that is implicitly conjoined with the pre/post-
conditions [33]. Good programming practice suggests that
implementations of abstract data types provide these predi-
cates, as they are useful for checking correctness of the im-
plementations [35].

In this exampleyepok checks if the input is a valid bi-
nary search tree with the corregte First, repOk checks
if the tree is empty. If notrepok checks that there are no
undirected cycles alongfit andright , that the number of
nodes reachable fromot is size , and that all elements in
the left (right) subtree of a node are smaller (larger) than
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Figure 3: Variation of statement coverage (thick line)

o o o and rate of mutant killing (thin line) with scope.
root root root
o 1] N3] [NJ 3] Ny| 2 with assertions, on each input and reports a counterexample
gt lefy lef left tight if the method fails to satisfy the postcondition. This process
N3] [N1] N2 [N [ checks the correctness of the method for the given scope.
e/ N For example, for scope seven, it takes less than two seconds
N3] [N2] [Nf2] [N[1] to check bothemove andadd for all 41300 inputs.
Figure 3 shows how coverage and the rate of mutant killing
Figure 2: Trees generated for scope three. vary with the scope for theearchTree benchmark. Fore-

move, the mutation testing compares the outputs that consist
the element in that node. Appendix A shows the full code of both theboolean return value and the value of the re-

for repok (and the methods it invokes). The sarsgok is ceiver tree in the post-state, i.e., the state immediately after
also used fordd and other methods igearchTree . Manu- the method’s invocation. Scope five is sufficient to achieve
ally developing a high-quality test suite for all methods in a COmPplete coverage, but scope six is required to kill all non-
data structure is typically much harder than writinggok equivalent mutants. Generating inputs and checking correct-

invariant that Korat uses to automatically generate test in- N€SS for these scopes takes less than 15 seconds.

puts. The methocbntains checks that the tree contains the

given element. The JML keywordesult denotes the re- 3. KORAT

turn value of the methodemove returnsirue iff it removes This section describes how Korat finds inputs that satisfy
an element from the tree. The JML keywordd denotes a Java predicate. We first give an informal overview of Ko-
that its expression should be evaluated in the pre-state, i.e.rat. We then describe parts of Korat most relevant for for-
the state immediately before the method’s invocation. malization and extensions; more details on other parts can

To test theemove method in a black-box setting, we use be found in [6]. For illustration, we use thepok method
Korat to generate valid inputs for the method. Each input from searchTree as the predicate, and we show how Korat
is a pair of a tree and an element. The precondition definesgenerates valid trees.
valid inputs: the tree satisfiespok , and the element is un- .
constrained. To limit the number of inputs, Korat usdisia 3.1 Overview
tization (Section 3.2) that specifies bounds on the number of Given a Java predicate and a bound on its input, Korat gen-
objects to be used to construct data structures and the valuegrates all non-isomorphic inputs that &edid, i.e., inputs for
stored in the fields of these objects. For trees, finitization which the predicate always returinige . Korat uses dini-
gives the maximum number of nodes and the possible el-tization (Section 3.2) to bound th&tate spacéSection 3.3)
ements; a tree is in scopeif it has at mosts nodes and  of predicate inputs. Korat uses backtracking (Section 3.4)
s elements. Two trees aigomorphicif they have the same  to systematically explore this state space. Korat generates
branching structure and isomorphic elements, irrespective ofcandidate inputsnd invokes the predicate on them to check
the identity of the actual nodes or elements in the trees. their validity.

Given a finitization and scope, Korat generates all non-  Naive checking of all possible candidate inputs would pro-
isomorphic input pairs that satisfy the precondition. For ex- hibit searching very large state spaces. Korat uses two op-
ample, in scope three, Korat generates 45 input pairs that ardimizations: 1) pruning based on the fields that the predi-
the Cartesian product of the 15 trees (shown in Figure 2) andcate accesses (to monitor the accesses, Korat instruments the
the three elements. FeearchTree , we use Korat to gener-  predicate and all methods that the predicate transitively in-
ate inputs and check correctnessr@fiove andadd meth- vokes) and 2) generating only non-isomorphic candidates.
ods. In scope seven, Korat generates 41300 input pairs forThese optimizations speed up the search without compro-
both these methods in less than ten seconds. With dedi-mising its correctness.
cated generators (Section 5), it takes less than three seconds Most practical predicates are deterministic, i.e., given iden-
to generate these inputs. tical inputs, any two executions of the predicate are identi-

Korat uses the JML tool-set [8, 33] to translate method cal and produce identical result. Korat also handles predi-
postconditions (and JML assertions) into Java runtime asser-cates that are non-deterministic either only in the execution
tions. After generating the inputs, Korat invokes the method, (i.e., given identical inputs, two executions may be different



Finitization finSearchTree( int  numNode,

_int  minSize, ~int maxSize, int mininfo, int maxinfo)  { for each of those classes. A set of objects from one class
Finitization f = new Finitization(SearchTree. class ); L .. R e
ObjSet nodes = f.createObjects("Node”, numNode); forms aclass domainThe finitization also specifies a set of
nodes.add( null ); values for each field; this set formdiald domain which is
f.set("root", nodes); . .
f.set("size", new IntSet(minSize, maxSize)); a union of se_veral class domains. o
;.setg"moge-leﬂ;, nodgs);) Korat provides &initization class that allows finitiza-
.set("Node.right", nodes); . . . .
f set("Node.info". new IntegerSet(mininfo, maxinfo)): tions to be written in Java. Korat automatically generates a
return  f; finitization skeletonfrom the type declarations in the Java
} iali i i -
Linitization finsearchTree(  int scope) { code. Testers can further_spgma_llze or generalize this skele
return  finSearchTree(scope, 0, scope, 1, Scope); ton. Figure 4 shows two finitizations for the exampigok
method; invokingfinSearchTree(s) creates a finitization
Figure 4: Two finitizations for the repok method. for scopes. ThecreateObjects ~ method specifies that the

input contains at mosiumNode objects from the classode.
but produce identical result) or even in the result (i.e., given Theset method specifies a field domain for each field.
identical inputs, two executions may produce different re-
sults). Lety be an input for a predicate We writer () for 3.3 State space

the set of results that executionsmo€an produce for input; Korat uses a finitization to construct a state space of pred-
visvalidiff 7(v)= {wue };~yisinvalidiff 7(vy)= {false }. icate inputs. For example, consid@iSearchTree(3) for
Note that an input may be neither valid nor invalid. inputs torepok . Korat first allocates ongearchTree o0b-

Each candidate that Korat generates is an object graphject that forms thesearchTree class domain and threede
with one root object (Section 6 shows how to introduce a objects that form thelode class domain. In order to sys-
class for root when generating several objects). Executingtematically explore the state space, Korat orders the objects
the same Java program from two isomorphic states cannotin these domains and during search uses indexes into these
lead to observational difference in the execution. Thus, we domains. This data can be represented with these classes:
define structure isomorphism based on object identity; two “5r o 5 oneas | Coered class domain

candidates are isomorphic iff the object graphs reachable}

; ; class ClassDomainindex  {
from the root are isomorphic. _ ClassDomain | domain:
DEFINITION 1. LetOq,... ,0, be some sets of objects int index; // index into ‘domain.objects’ array
— }
from n classes. I_‘eO - 01 U_‘ U O”’ and sgpp_ose that class ObjField { // field of an object from some domain
candidates consist only of objects frai(and primitive val- Object _object;
ues), i.e., pointer fields of objects { can either benull Field field,
or point to other objects irD. Let P be the set consisting Korat next assigns a field domain to each field. In this ex-

of nul  and all values of primitive types, such as . Let ample, there arél = 2+ 3 - 3 fields: the singlesearchTree

r € O be aroot object, and leR¢(r) be the set of all ob-  object has two fieldsdot andsize ) and the thre@iode ob-
jects reachable from in C. Two candidates;’ andC’, are jects have three fields eaclaf , right , andinfo ). Each
isomorphiciff there exists a permutatiomon O U P that is field domain is a sequence of class domain indexes, such
identity onP and that maps objects fro); to objects from  that all values that belong to the same class domain occur

O; forall 1 <14 < n, such that: consecutively. For example, the field domain fest has
Yo € Ro(r). Vf € fields(o). Vv € OU P. four elementspull  and threeNode objects, wheraull  (as
o.f =vwithinC < p(o).f = p(v) within C". well as each primitive value) forms a class domain by it-

) ) i self. Therefore, the field domain fesot is represented as
Isomorphism between candidates partitions the state SPaC, il <nd,0>,<nd, 1> <nd,2>] . wherend is the class do-

into isomorphism partitionsSince candidates and valid in-  14in fornode objects.

puts are rooted and edge-labeled, it is easy to check isomor-  g5chstateis a mapping from the object fields to the field
phism. However, Korat does not do that explicitly; instead, it gomain indexes. The whole state space consists of all possi-
avoids generating isomorphic valid inputs by not even con- pje mappings, i.e., it is the Cartesian product of the field do-
sidering isomorphic candidates. _ .. mains for all fields. In this example, the domains fan ,

In summary, Korat generates all non-isomorphic valid in- ¢ andright  have four elements, the domain fere
puts within specified bounds; the search has these propertiesy 55 four elements, and the domain fas has three ele-

e SoundnessKorat generates no invalid input. ments; the state space hiast - (4-4-3)3 = 1769472 > 220
o CompletenessKorat generates at least one valid input  states. Foscope = n, the state space hés + 1)2("+1) . »
from each isomorphism partition. states.Each state encodesamdidateinput that consists of
e Optimality: Korat generates at most one (valid) input the Java objects from the finitization; each field of these ob-
from each isomorphism partition. jects is set according to the field domain indexes in the state.
. The Korat search builds states for systematic exploring of
3.2 Finitization the state space, and it builds candidates as inputs to the pred-

To generate a finite state space for predicate’s inputs, Ko-icate. Because of the bijection between states and candi-
rat uses a finitization, i.e., a set of bounds that limits the size dates, we use terms “state” and “candidate” interchangeably.
of the inputs. The inputs can consist of objects from several We define two states to be isomorphic iff the corresponding
classes, and the finitization specifies the number of objectscandidates are isomorphic.



Set <Map<ObjField , int >>

SearchTree No N, N, koratSearch(  Predicate  pred, Finitization fin)

root size left right info  left right info left right info Map<ObjField , ClassDomainindex []> space = fin.getSpace();

Object root = fin.getRootObject();
Set <Map<ObjField ,int >> inputs = new Set();
Stack <ObjField > stack = new Stack();
Map<ObjField ,int > state = new Map();
foreach  (ObjField f in fin.getObjFields())

. . . . state[f] = O;
Figure 5: Candidate that is a valid SearchTree . do { f
N N N /I create candi_date input_ ] -
Serglch';ze left rigﬂt info  left rigfln info left rigﬁl info foreach (Ob]Fleld fin fm'getObJFle'dSO) {

Figure 6: Candidate that is not a valid SearchTree .

Figure 5 shows an example candidate that is a valid bi-
nary search tree with three nodes. Not all candidates rep-
resent valid binary search trees. Figure 6 shows an ex-
ample candidate that is not a treepOk returnsfalse
for this candidate. Assume that the field domains are or-
dered as follows: forneft andright the same as for
root (first null then Node objects), forsize [0,1,2,3] ,
and forinfo [int(d) ,int2) ,Int3) ]. Then, the can-
didate in Figure 5 (Figure 6) corresponds to the state
[1,3,2,3,1,0,0,0,0,0,2] (1,3,2,2,0,0,0,0,0,0,0] ).

3.4 Search

Figure 7 shows the pseudo-code of Korat's search algo-
rithm. The search starts with the state set to all zeros. For
each state, Korat first creates the corresponding candidate.
Korat then executes the predicate to check the validity of the
candidate. During the execution, Korat monitors the fields
that the predicate accesses and maintaistaca of fields

ClassDomainindex cdi = space[f][state[f]];
f.set(cdi.domain.objects[cdi.index]);

/I execute "pred(root)" and update "stack"

boolean result = observeExecution(pred, root, stack);

/I if state is valid, add it to the valid inputs

if (result) inputs.add(state);

/I'if *not* optimizing, add other fields to the stack

if (IPRUNING || result)
/I add all reachable fields not already in stack
foreach  (ObjField f in reachableObjFields(root))

if (Istack.contains(f)) stack.push(f);

¥
/I backtrack
while  (!stack.isEmpty())
ObjField  f = stack.top(); // field on the top of stack
if (ISOMORPHISM_BREAKING) {
int  m = -1; // $m_f$ from the first Korat paper
ClassDomain d = spacelf][state[f]].domain;
/I a straightforward way to compute 'm_f'
foreach  (ObjField fp in stack.withoutTop())
if  (spacel[fp][state[fp]].domain == d)
m = max(m, spacel[fp][state[fp]].index);
/I if an isomorphic candidate would be next...
if  (spacelf][state[f]].index > m)
/I ...skip to the end of domain

while (state[f] < spacel[f].length - 1 &&
spacelf][state[f] + 1].domain == d)
state[f]++;
}
if (state[f] < space[f]l.length - 1) {

state[f]++; // increment this field
break ; /I stop backtracking
} else {
state[f] = 0; // reset this field
stack.pop(); // keep backtracking

ordered by the first time the predicate accesses the corre- }
sponding field, i.e., whenever the predicate accesses a field
not already on the stack, Korat pushes the field on the stack.
As an illustration, consider that the stack is empty and Ko- }
rat invokesepok on the candidate shown in Figure 6. In this
caseyepOk accesses only the fields¢t ,Ny.left ,Ng.right ]
(in that order) before detecting a cycle and returriimng
Thus, the stack consists of only those three fields. We next present the isomorphism-breaking optimization.
If the predicate returnsue , Korat adds the current state Recall that a state is a mapping from object fields to field
to the set of valid inputs. It also makes sure that all reachabledomain indexes that have a natural order. Additionally, each
fields are on the stack, so that successive iterations generatsetack imposes a (partial) order on the fields. Together, these
all (non-isomorphic) states that have the same values for theorders induce a (partial) lexicographic order on the states.
accessed fields as the current state. Korat generates inputs in this lexicographical order. More-
Korat then generates the next state backtracking on the ac-over, Korat avoids generating states that are isomorphic to
cessed fields. Korat first increments the field domain index each other: for each isomorphism partition, Korat generates
for the last field in the stack. If the index exceeds the domain only the lexicographically smallest state in that partition.
size, Korat resets the index to zero and moves to the previ-Conceptually, Korat avoids generating isomorphic states by
ous field in the stack, unless the stack is empty. Continuing incrementing some field domain indexes by more than one.
with our example, the next candidate takes the next value for  For the fieldf on top of the stack, Korat findg the max-
Ng.right , which isN, by the above order; the other fields do  imum class domain index of all fields that are deeper on
not change. This prunes from the searchiall 33 = 27648 the stack and have the same domain éar -1 if there is no
states of the formt, 2,2, _, _ _ . ., ] thathavethe (par- suchfp). (The actual implementation uses caching to com-
tial) valuation: root =Ny, Ng.left =N;, Ng.right =N;. Intu- putem) For the example state from Figure 6 with the stack as
itively, the pruning based on accessed fields does not rulediscussed aboves=1 for f =Ng.right . When backtracking
out any valid data structure becausgok did not read the onf, Korat checks if the field domain index feris greater
other fields, and it could have returntede irrespective of thanm Ifit is, Korat increments the field domain index fof
the values of those fields. to the end of the current class domain for

} while
return

(Istack.isEmpty()); // end do
inputs;

Figure 7: Pseudo-code of Korat’s search algorithm.



4. CORRECTNESS

PrOOFE We need to show that for each executionnof

This section presents the correctness of the Korat searchVith input 7, there exists an execution af with input ~/

algorithm. We first state assumptions and prove properties

such that the two executions generate the same result. Proof

of the predicates that the search operates on. The outpuProceeds by induction on the length of execution-forAs
of the search is a set of predicate inputs. This set dependsthe witness execution for', choose the execution that makes

on the results that the predicate returns for the candidate in-the same steps as the executiomfoBy Condition 2, no ex-

puts. If the predicate is non-deterministic in result, Korat can

ecution ofr accesses a field from the finitization that is not

generate different sets of inputs for the same predicate and’€@chable from the root object (the input to the predicate).

finitization. We prove that all those sets satisfy soundness,
completeness, and optimality properties.

Several issues complicate proving Korat’s correctness:

e Encoding: For efficiency, Korat encodes Java objects
using integers (that index into the finitization).
Field ordering: Korat searches the state space based
on adynamicorder in which the predicate executions
access the fields.
Isomorphism optimization: Korat generates only
non-isomorphic inputs, but does so without explicitly
checking isomorphism of pairs of inputs.
Non-deterministic predicates:Korat generates all in-
puts for which the predicate always retutng and
no input for which the predicate always returaise ;
Korat may or may not generate the other inputs.

We prove that the Korat search is correct for all predicates
m € I whose executions satisfy the following conditions:

1. Each execution terminates (returnifg: or false ).

Thus, at each corresponding step of these two executions,
the states have the same values for all fields 1) reachable
from the root object or 2) belonging to the objects locally al-
located. Further, by Condition 3, no step depends on the ob-
ject identity, so the states are isormophic for these fields and
in the final state, the executions return the same resiit.

It follows that isomorphic inputs have the same (in)validity,
which in fact allows Korat to consider as a candidate only
one representative from each isomorphism partition.

We next consider properties of the search. We introduce
some additional notation. We useto denote the value of
thestack of fields that the predicate executions access. We
write len() for the length of the stack ando (i) for the
field at offseti, where O is the offset at the bottom, and
len(c) — 1 is the offset at the top. We define a partial order
between states based on lexicographic order of values in the
stack. Lets andX’ be two states. We say thatis o-smaller
than>, in notationX <, ¥/, iff 3 < len(o). X'(0 (7)) <

2. Each field that the execution accesses is: 1) reachable®((2)) A Vi' <i. S(a(i')) = ¥'(a(i')).

from the input or 2) a field of some object that the pred-
icate locally allocates.
3. No execution invokes System.identityHashCode
method.
The user of Korat needs to write the predicate so that Condi-
tion 1 holds. Condition 2 is easy to establish: the predicate

THEOREM1 (SOUNDNESS). Korat does not generate
an invalid input for any predicate (even if not frdr).

PROOFE By contradiction; suppose that Korat generates
an invalid inputy for some predicater. It means that all
executions ofr for input~ returnfalse . However, the algo-
rithm in Figure 7 generates(i.e., addsy to the setnputs )

should not access global data (through instance fields), butonly if an execution ofr returnstrue . Contradiction! (1

only the input. Condition 3 is easy to statically check.
We first show that the execution of a predicate does not
depend on the fields that the predicate does not access.
LEMMA 1. Consider two candidateg and~’ that have
identical values for all fields from some getlf an execution
of = with inputy accesses only fields frogrbefore returning
a result, then there exists an executiomr¢fiat acccesses the
same fields and returns the same result.

PROOF Easy induction on the length of execution of the
predicate fory. As the witness execution foy’, choose
the execution that makes the same steps as the executio
for v, i.e., the execution that foy’ makes the same non-
deterministic choices as the execution forAt each corre-
sponding step of these two executions, the states have identi
cal values for all fields that are ify because no step accesses
afield noting. 0O

The following is a simple corollary.

COROLLARY 1. If two candidates have identical values
for more fields than i, these two candidates have the same
set of executions.

We show that isomorphic inputs return the same result.
LEMMA 2. For all isomorphicy and+/, 7(y) = w(v').

A search is complete if it generates at least one valid input
from each isomorphism partition. To prove completeness of
Korat, we consider Korat the Korat search with the param-
eterPRUNINGSet tofalse .

LEMMA 3. If Korat* is complete for some predicate from
11, then Korat is also complete for that predicate.

PrROOF Assume that Kordtis complete, i.e., it always
generates at least one valid input from each isomorphism
partition. An input is generated if it is executed as a can-
I;ijidate input, and the execution retunnge . For a valid
input, all executions returfiue , so a valid input is gener-
ated if it is executed as a candidate. Since Koganerates
at least one valid input from each isomorphism partition, it
also considers as a candidate at least one valid input from
each isomorphism partition. Due to pruning, Korat consid-
ers less candidates than KoratWe will show that Korat
still considers as a candidate at least one valid input from
each isomorphism partition. Thus, Korat generates at least
one valid input from each isomorphism patrtition, i.e., Korat
is complete.

By contradiction, suppose that Korat does not consider as
a candidate any valid input from some isomorphism parti-
tion. Since Korat considers such an input, it must be that



Korat prunes this valid candidate input This pruning oc- From 2 and 3, we have thatis identity for alli’ < i:
curs after the predicate executes some candidate i und g Ny .

returnsfalse . Let thestack after the execution of’ be Vit <ip(r[oo()]) = [oo()]. )
o. Before returningalse , this execution has accessed only
(some of the) fields frona. Further, it is easy to show that
Korat® prunes only candidate inputs that have the same val-

We next consider two cases based on the value for the
i-th field already appearing before in the stack:

uation for all fields inc as+/, i.e.,Vf € a~[f] = ¥[f]- 3i’ < iy[oo(i)] = v]oo(i"))]. (5)

By Corollary 1, there exists an execution pfhat returns

false . This contradicts the assumption thats valid, i.e., — If (5) holds, leti’ be the previous index. We

all executions for input returntrue . [ havep(v[oo(i)]) = p(v[o (i')])- From (4), we

_ ) have thatp(y[oo(7)]) = v[oo (4 )] Further, again

LEMMA 4. Korat* is complete for all predicates frof. from (5), we havep(v[oo(i)] 7[oo(#)] and
PROOF. (Sketch) We need to show that for Koragener- then from (3)y/[o0(4)] = ~[oo(i )] which con-

ates at least one valid input from each isomorphism partition. tradicts (1).

It is sufficient to show that Koratconsiders as a candidate — If (5) does not hold, thervi’ < i.y[og(i)] #
at least one valid input from each isomorphism partition. vloo(i')]. Let maxindexy, oo,4) be the unique
The proof proceeds by induction on the number of con- valuem that the search computesin For field
sidered candidates, i.e., the number of iterations of the main oo(%), the search generates values uanoSince

loop of Korat'. Each iteration consists of a predicate exe- vloo(4)] is different thany[o(i')] for all i' < 4,
cution with potential adding of fields to the stack, and back- it means thaty[o( ()] = m, and this is the only
tracking with isomorphism breaking. Let and X be the such candidate. Thus/[o¢(i)] = m also, and
values ofstack andstate , respectively, after backtracking. againy[oo(i)] = 7[00 (4)]; contradiction!

Let I" be the set of candidates considered up to that itera-

tion. Recall the ordering between statés<, Y'. Let s e For all fields inog, the candida_\tes have the same value.
be {¥'|~ <, X'} if o is not empty and the set of all can- There are two cases depending whethgis the same
didates ifo is empty. An easy induction can show tHat aso oro’.

contains at least one representative from each isomorphism — If o, is the same as one of the stacks, assume
partition that has a representativesinSince the search ter- w.l.o.g. thatec = oy. Consider the smallest in-
minates when the stack becomes empty, it follows that the dexi such thaty[o”(i)] # ~'[0’(4)]; there must be
search considers at least one candidate input from each iso- such a field sincey # +'. (More precisely, this
morphism partition of candidates. value is noto in +/; itis 0 in +, because it is not

THEOREM2 (COMPLETENESS). Korat is complete In the stack fory.) Since t.he.se'?“c“ Qe”eraﬁés
for all predicates fronl. it means that the for 'aII indicesof ¢/, the val-
ues of the fieldsy’[0'(7)] < maxIndeXy’,o’,1).

PROOF Follows from Lemma 3 and Lemma 4[] Further, for alli’ < ¢, fields 4'[i'] are reach-
able in bothw and+’. However, one of those
fields, o'(i), has different values my and ~":
vlo’(9)] <+'[¢'(i)] < maxindexy’,o’,4). Thus,
~ and~’ are not isomorphic; contradiction!

— If oq is not the same as any of the stacks, then
the two stacks have a different field right after.
Assume w.l.0.g. that the search first generates the
stacko. The only way to change the value of the
field afteroy, sayf, is during backtracking if the
search tries all possibilities fof and then back-
tracks on the previous field, the lastdg. This
backtracking, however, changes the value of this
last field inoy. Thereforegy cannot be the com-
mon prefix fore ando”’, if the candidates have the
same values for all fields imy. Contradiction!

. , ' This cover all the cases, and in each of them gives a contra-
Yloo(9)] # +'loo(7)]- 1) diction if we suppose that the search considers two distinct,
isomorphic candidate inputs. Hence, Korat is optimall

We finally prove optimality.
THEOREM3 (OPTIMALITY ). Korat is optimal for all
predicates fronI.

PROOF Let I' be the set of candidate inputs for which
Korat executes the predicate. Since the result of Korat is a
subset ofl", it suffices to show that the search executes the
predicate for at most one input from each isomorphism par-
tition. By contradiction; suppose that there are two isomor-
phic distinct candidate inputs, and~’. Letp be a permu-
tation between these candidates. Consider the stacksd
o', after the backtracking for candidatesand~’, respec-
tively. Let op be the common prefix for these two stacks.
There are two cases:

e For some field inrg, the candidates have different val-

ues. Leti be the index such that

and
Vil < inyloo(@)] = '[oo(d)]- (20 5. INPUT PROPERTY EXPLOITATION
Sincey andy’ are isomorphic, We have found certain checks to be common in class i.n-
, ) , ) variants (epok methods), e.g., that a linked data structure is
Vi € len(a).p(v[oo(i)]) = ~'[o0(i)]. ®3) acyclic along some fields or that an array has all elements



different or ordered. Similar checks are also present in COM- ¢jass  searchTree remove  { / inputs to “remove”

binatorial optimization problems, and they are supported in SearchTree  This; /1 (implicit) "this" parameter
libraries or languages such as Comet [38]. Comparable info; /I "info" parameter

We have extended Korat with a library dédicated gen- /I for black-box testing of "remove”
eratorsthat make it easier to write specifications and also boolean removePre() = { // precondition for “remove”

. A X X tl This.repOk();
enable faster generation of valid inputs. The library provides } e fs1epOK0

methods for the common checks. The specifications, or any if for white-box testing of "remove”

other code, can use these methods; in regular execution, they  poolean  removeFail)  { // failure for “remove

behave like other Java methods. However, when Korat gen- if (removePre()) return false = ;

erates valid inputs, it uses the special knowledge about the I oo Ve vt ML assertons

methods to further optimize its search. } catch (JMLAssertionException ) {
For examplerepok in SearchTree invokes the method ) retun true ;// postcondition not satisfied

isAcyclic ~ that checks that the nodes reachable from the return false

root field form a tree along theeft andright fields. }

Appendix A shows a way to writgAcyclic  in about 20 !

lines of code. Instead, we could just use the library method
korat.isTree(root, new String[] {"left", "right" b.
This method is parametrized over the root node and the to black-box (Section 6.1) and white-box (Section 6.2) test-
names of the fields. Given a root nodaree checks that ing.We also describe how to test sequences of method calls
the reachable nodes form a tree; essentially, it means that ndSection 6.3). Sequences often arise in the context of al-
node repeats in the traversal of the nodes reachable from thegebraic specifications [23], for example insertion of an ele-
root. The search for the library method is implemented to ment followed immediately by its deletion from a structure
take into account this fact. leaves the structure contents unchanged. The sequences can
When Korat generates an input that satisiiese along also describe correctness properties at an abstract level, as
some fields, it does not try all (non-isomorphic) possibili- in model-based specifications [47]; Korat can test such se-

Figure 8: Class for inputs to theremove method.

ties for those fields. Instead, each field is eithar or quences using appropriate abstraction functions [35]. Not
points to a node that is not already in the tree. In our ex- only Korat enables testing sequences, it also enajgaer-
amplefinsearchTree(s)  , this reduces the number of pos- ating sequences of interest. This allows Korat to generate

sibilities for one field froms+1 to 2. In the library, the im- tests that use API calls to construct input objects in addition
plementation ofsTree uses the basic dedicated generator to tests that directly represent concrete object graphs.

korat.isIn(field, set) that, while searching, assigns to )
thefield  only the values from theet , and while checking, 6.1 Black-box testing
checks that the value @éld is in theset . In black-box testing, Korat tests a method without consid-

The library includes théasic dedicated generators for  ering the method’s code. Korat exhaustively generates inputs
checking the following properties: 1) a value is in a set; that satisfy the method precondition, executes the method on
2) two values are equal; 3) a value is less/greater than an-each of the inputs and checks the output usitgsioracle
other value; and 4) a value is of a certain clagsapceof ). To generate test inputs for a methag Korat first constructs
The Iibrary also includesombinatorsthat allow Creating a Java class Corresponding to thés inputs and a predicate
complex generators for checking: 1) negation, 2) conjunc- corresponding to the:’s precondition. Korat then generates
tion, and 3) diSjUnCtion. Fina”y, the "brary includes several valid inputs for that predicate; each of these inputs corre-
higher-level generators, implemented using basic generatorssponds to a valid test input for. For theremove method
and combinators, which check structural constraints such aSfrom Section 2, the Corresponding class and the predicate
acyclicity or that elements of an array are sorted. removePre are shown in Figure 8. The predicate simply in-

It is easy to add new generators; in theory, we could yokesrepok on the (implicit)this parameter ofemove ; the
even add for each data structure that we consider a specialparametemfo is unconstrained.
purpose generator that generates all valid inputs without any  After generating all valid test inputs for a method, Korat
backtracking. For example, such a generator for red-blackinyokes the method on each input and checks each output
trees was developed and used for testing in [3]. However, with a test oracle. A simple test oracle could check partial
we do not do that; the library that we use in the experiments correctness of a method by invokirgok in the post-state
has only generators that are applicable for several data structg check if the method preserves its class invariant. If the
tures. In practice, we do not expect Korat users to extend theresult isfaise , the method under test is incorrect, and the
library, but instead to use Korat as a general-purpose searchinput provides a concrete counterexample.

Korat currently uses the JML tool-set [33] to automati-
cally generate test oracles from method postconditions (and
6. TESTING USING KORAT method assertions in general), as in the jmlunit frame-

This section describes how Korat automates test-input work [8]. The JML tool-set translates JML postconditions
generation and correctness checking for Java programs. Ko{and assertions) into runtime Java assertions. If an execu-
rat constructs appropriate predicates from the specificationtion of a method violates such an assertion, an exception is
and the code under test. We describe how to apply Korat raised. Test oracle catches these exceptions and reports cor-



rectness violations. These exceptions are different from the These methods can now be tested in the same wayethat
exceptions that the method specification allows, and Korat move is tested, either in black-box or white-box mode.

leverages JML to check both normal and exceptional behav-

ior of methods. More details on the JML tool-set and trans-
lation can be found in [33].

6.2 White-box testing

In white-box testing, Korat tests a method considering the
method’s code. To test a methed Korat first constructs a
predicate corresponding to the negatiomd$ correctness.

If a valid input is found for this predicateyp is incorrect,
and the input provides a counterexample. For réngve
method, the corresponding predicatgoveFail is shown
in Figure 8. This predicate first invokesmovepre ; if it is
not satisfied, the input is not a valid test input f@hove and
cannot be a counterexample. If the input is valithove is

executed, together with the JML-translated assertions. If this 7,

execution raises a JML exceptioamove failed to satisfy its
specification.

The difference between predicates for white-box and
black-box testing is in the invocation of the method under
test; in our exampleremoveFail  invokesremove , but re-
movePre does not. It means that for generating valid inputs to
removeFail , Korat instrumentgemove , among other meth-
ods, and monitors the accesses teatve makes to the can-
didate. This by itself makes one executionefove slower.
However, it “opens” the body ofmove for the optimiza-
tions that Korat performs to prune the search. In general,
this can significantly reduce the time to test the method.

6.3 Sequences of method calls

We next consider testing a sequence of method calls.

It is straightforward to translate the problem of testing

a fixed sequence to the problem of testing one method.

As an illustration, consider the following two example se-
guences that specify propertiesrefove : 1) the sequence
t.add(e).remove(e).equals(t) that arises in an axiom in
an algebraic specification and 2) the sequence

JMLObjectSet  sPre = t.abstract();
t.remove(e);
JMLObjectSet  sPost = t.abstract();

return  sPost.equals(sPre.delete(e));

that arises in a model-based specification rtafove , and
states that each tree is abstracted into a seteaftde from

a tree commutes with removing the element from the set.
(This form of specification can be expressed in JML using
model fields.)

Korat not only enables testing sequences of method calls,
it also enablegieneratingsequences of interest. The user
needs to build a representation of desired sequences and a
predicate that defines their validity; generating a valid input
to the predicate then provides a sequence with desired prop-
erty. Clearly, Korat can generate all such sequences (up to
a given length). Each such sequence corresponds to a com-
mon test input that consists of method calls; this contrasts
with the typical use of Korat to generate inputs as concrete
object graphs. However, the ability to generate sequences,
allows Korat to discover a sequence that builds a given ob-
ject graph. This enables Korat to output counterexamples (or
other inputs of interest) as sequences of method calls.

MUTATION TESTING

This section presents design and implementation of Feras-
trau, a tool for mutation testing of Java prograrivkitation
testingis a criterion for assessing the quality of a set of test
inputs [15, 41]. There are mutation testing tools for several
languages, such as Mothra [31] for Fortran and Proteum [13]
for C. We have implemented Ferastrau for Java; to the best
of our knowledge, the first mutation-testing tool for Java.
Mutation testing proceeds in two steps.

In the first step, a set ahutans is generated from the
original program by applyinghutation operator$o perform
one or more syntactic modifications, e.g., replacing a vari-
able with another variable (of a compatible type), sat
with n.right Mutation operators model typical software
faults; the operators were characterized [2,30,31,42] for sev-
eral languages, including Java. Section 7.1 presents mutant
generation in Ferastrau.

In the second step, the original program and each mutant
are executed on each input and the corresponding outputs are
compared. If a mutant generates an output different from the
original program, the test input is saidkill the mutant. For
a given set of inputs, the rate of mutant killing is the ratio
of the number of killed mutants to the total number of mu-
tants. Section 7.2 presents how Ferastrau executes mutants
and compares the outputs.

7.1 Mutant generation

We have implemented mutant generation by changing
the Sun’siavac compiler. Ferastrau performs a source-to-
source translation: it parses each class of the original pro-

The sequences are translated respectively into the method@ram into an abstract syntax tree, applies some mutation op-

axiom andimplements

I*@ requires  t.repOk();
@ensures  \result == true ; */
boolean axiom( SearchTree t, Comparable e) {
return  t.add(e).remove(e).equals(t);

I*@ requires  t.repOk();
@ ensures  \result == true ; */
boolean implements( SearchTree t, Comparable e) {
JMLObjectSet  sPre = t.abstract();
t.remove(e);
JMLObjectSet  sPost = t.abstract();

return  sPost.equals(sPre.delete(e));

erators to the trees, and outputs the source of the mutants.
Ferastrau applies the following mutation operators:
e Mutate a Java operator to another operator (of the same
type), e.g.,+'to ‘-’ "=="to ‘1=, ‘<’ to ' <=" etc.
e Mutate a variable to another variable (of a compatible
type), e.g., alocal variabletoj or an instance variable
nleft  ton.right

e Mutate an invocation of a method to another method
(of a compatible signature). (Ferastrau does not re-
place some special methods, suchaig/ ; program-
mers typically do not make such mistakes.)



benchmark “target” methods some “helper” methods # ncnb # #
lines | branches mutants
SearchTree add, remove contains 85 20 272
DisjSet union , find compressPath 29 8 243
HeapArray insert , extractMax heapifyUp , heapifyDown 51 9 274
BinomialHeap insert , extractMin contains |, decrease 182 33 292
union , delete merge, findMin
FibonacciHeap insert , extractMin contains |, decrease 171 31 297
union , delete cascadingCut , cut , consolidate

LinkedList add, remove , reverse contains , Listlterator.next 102 16 244
SortedList insert ,remove contains 176 29 231
sort , merge
TreeMap put , remove get , fixAfterTnsertion 230 47 293
containsKey , fixAfterDeletion
rotateLeft |, rotateRight
HashSet add, remove contains , HashMap.containsKey 113 20 244
HashMap.put , HashMap.remove
HashMap.rehash
AVTree fookup extract 199 26 205

Table 1: Benchmarks and target methods. Each benchmark is named after the main class; Korat generates data struc-
tures that also contain objects from other classes. Korat generates inputs and checks outputs for the target methods,
thereby also testing helper methods. We tabulate the number of non-comment non-blank lines of source code in all
those methods, the number of branches, and the number of mutants generated by Ferastrau.

The above operators modify only the code of methods, and aSY when these are primitive values, but the objects can rep-
not classes, i.e., do not add/remove a method or a field."€S€nt complex structures. Ferastrau by default eess
These operators correspond to subtle mistakes that manifesf1€thods to compare outputs, following Java convention of
only for non-trivial inputs, as the results in Section 8.3 show. USingequals for equality comparisons of objects. This al-
It is easy to add new operators to Ferastrau to test different/OWs comparisons based @bstractvalues; for example,
kind of mistakes. two binary search trees that implement sets may be struc-
Ferastrau generates mutant classes that have the sam@irally different at theconcretelevel of the implementation,
name as the corresponding original classes. For reasons exPutif they represent the same set, they are equal according to
plained below, Ferastrau provides two approaches: 1) gen_theequals method. The use afquals requires that Feras-
erate the same classes with both the original program andtrau generates mutant classes that have the same name as the
the mutants or 2) generate different classes. Suppose thaforresponding original classes. _
the original programs containemp.right  that is to be Ferastrau executes the original program and the mutants in
mutated toleft.right . The first approach usesetamu- a single run; otherwise, it would need to serialize all the out-

tants[51]: the mutations are guarded by boolean variables Puts, which could produce very large files for inputs exhaus-

that are appropriately set during mutant execution; it gen- tively generated by Korat. Recall that Ferastrau can generate
erates one class WithiuT 2 left - temp).right _ The metamutants or generate the original program and the mu-

second approach simply generakeg temp*/.right in tants in different classes. If Ferastrau uses metamutants, the
another class. guarding boolean variables slow down the execution. This
approach is better for small code with large data. If Feras-
trau generates different classes, it needs to execute several
lasses with the same name in a single Java Virtual Machine
JVM). Ferastrau then uses a differ@mssLoader [50] for

7.2 Mutant execution
After generating the mutants, Ferastrau uses a set of tes

inputs to perform mutation testing. Our experiments use he original d h q lizat
inputs generated by Korat. Ferastrau executes the originall '€ ©rginal program and each mutant, and uses serialization
through a buffer in memory to compare objects. This ap-

program and the mutants for each input and compares their his b for | 46 with Id
respective outputs. Ferastrau assumes that the original proprgac IS better for arghe coh & with srlna ata. . ‘
gram terminates for all test inputs; mutation testing tools for erastrau assumes that the original program terminates for
other languages [13, 31] make the same assumption. Sincé"" test inputs, either normally or exceptionally. These ex-

Ferastrau operates on Java and has to handle potentially larg&€Ptions are allowed by the specification, so they are not er-
number of inputs, additional questions arise: rors. Ferastrau handles non-termination of mutants by run-

ning them in a separate thread with a time limit for execu-
e How to compare outputs and name mutated classes? 0" The limit is set tol,, = 107, + 1sec, whereT, is
e Whether to execute the original program and the mu- the time the original program runs for that input. We have
tants in a single run or in separate runs? found these constants sufficient to account for fluctuations
e How to handle non-termination and exceptional termi- in the execution time of Java programs, e.g., due to garbage
nation of the original program and the mutants? collection. (The minimum ol sec is necessary, at least for

We next describe how Ferastrau addresses these question‘%unS tqava 2 SDJK\}J’}X I;]VMS' whent th(ta. mu_tar;; ra|se§t an
and then list the criteria that Ferastrau uses to kill a mutant. EX¢€PUION, since aKes some extra ime n those situa-

Recall that the “output” of a method refers to both the re- :!ons.”) TEe mLf[tants Ctaﬂ tern|1||nate e{[her norTallyr;rWexcep-
turn value and the objects in the post-state. Comparison is ionally. Ferastrau catches all exceptions (in Javarhedly-
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generation checking
gen. [ ded. | Spec. coverage| # time [ code coverage| mutants
[ benchmark [ scope| [sec] | [sec] [ St. [%] ] br. [%] | inputs | [sec] | St. [%] [ br. [%] | killed [%]
SearchTree 6 1.39 0.52 94.74 96.67 8772 0.46 100.00 100.00 99.26
7 9.03 2.19 94.74 96.67 41300 1.25 100.00 100.00 99.26
DISjSet 4 0.29 0.31 100.00 100.00 18280 0.43 100.00 100.00 95.06
5 10.91 9.87 100.00 100.00 1246380 19.93 100.00 100.00 95.06
HeapArray 6 0.90 0.71 90.00 92.86 118251 1.88 100.00 100.00 96.35
7 7.09 6.21 90.00 92.86 1175620 17.58 100.00 100.00 96.71
BinomialHeap 6 3.30 2.35 97.67 98.00 159642 4.61 100.00 100.00 95.89
7 35.60 28.06 97.67 98.00 2577984 75.96 100.00 100.00 96.91
FibonacciHeap 4 1.22 0.90 97.78 98.28 34650 1.08 95.70 98.39 81.48
5 14.14 12.94 97.78 98.28 941058 23.37 100.00 100.00 88.88
LinkedList 6 0.33 0.31 100.00 100.00 11741 0.48 90.57 84.38 99.59
7 0.74 0.71 100.00 100.00 58175 1.54 90.57 84.38 99.59
SortedList 6 1.94 1.77 100.00 100.00 73263 2.57 92.50 89.66 97.40
7 22.68 21.13 100.00 100.00 1047608 37.91 92.50 89.66 97.40
TreeMap 6 0.94 0.61 100.00 100.00 3924 0.38 100.00 91.49 89.76
7 3.28 1.75 100.00 100.00 12754 0.73 100.00 91.49 89.76
HashSet 6 0.91 0.71 89.47 92.31 12932 0.62 100.00 100.00 91.80
7 3.38 2.88 89.47 92.31 54844 1.55 100.00 100.00 92.21
AVTree 4 3.16 1.86 96.67 96.88 27734 8.36 94.12 92.31 91.21
5 87.13 43.41 96.67 96.88 417878 | 134.51 94.12 92.31 93.65

Table 2: Korat's performance for test generation (with regular and dedicated generators), specification coverage (state-
ment and branch), correctness checking, code coverage (statement and branch), and rate of mutant killing. All times
are elapsed real times in seconds from the start of Korat to its completion.

able objects) that the executions raise. This allows Ferastrauand rank estimation heuristics to improve efficieneya-

to compare the outputs, even exceptional, as well as to catctpArray is an array-based implementation of the heap (pri-
all errors in the mutants, including the situations when the ority queues) data structurBinomialHeap andFibonacci-

mutant runs out of stack or heap memory and JVM raises Heap are dynamic data structures that also implement heaps,

StackOverflowError or OutOfMemoryError . but differ in complexity for certain operations [12].
Ferastrau uses the following criteria to kill a mutant: LinkedList  is the implementation of linked lists in the
e The mutant’s output does not satisfy some class invari- Java Collections Framework, a part of the standard Java li-
ant epok ), which is a precondition fosquals . braries [50]. This implementation uses doubly-linked, cir-

) . . cular lists. This benchmark is also representative for linked
e The mutant's output differs from the output of the orig- 415 structures such as stacks and queues. The elements in
inal program; any of the outputs can be normal or €x- | cqiist  are arbitrary objectssortedList  is structurally
ceptional. identical toLinkedList , but the elements are sorted. This
e The mutant’s execution exceeds the time limit. benchmark is similar to the examples used in some shape
analyses [34, 39]rreeMap implements thevap interface us-
ing red-black trees [12]Hashset implements theset inter-
face, backed by a hash table [12].

8. EXPERIMENTAL RESULTS AvTree implements thententional nametrees that de-

This section presents the experiments that evaluate eX_scribe properties of services in the Intentional Naming Sys-

haustive testing. We first discuss the quality of generated tem .(lNS)t [1],kan _?r:Ch't‘?C.tur? _for Iserwcte tl_ocatlslang ﬁyd
test suites showing how the rate of mutant killing and cov- namic NEWorks. € original impliementation o a

erage vary with the scope. We then discuss Korat's perfor- bugs that we revealed with exhau_stive testing_[36] and cor-
mance for test input generation and checking method cor- rected. We use the corrected version as the original program
rectness. We finally compare exhaustive testing with ran- in these experiments, but (some of) the mutants have errors.

domly selected test inputs.

e The mutant’s execution runs out of memory.

8.2 Mutation

8.1 Benchmarks For mutation testing, we use Ferastrau. We instruct Feras-
Table 1 lists the benchmarks and methods that we use totrau to generate between 200 and 300 mutants for each
measure Korat's performance. We use Korat to generatebenchmark, mutating the target methods and the helper
inputs and check the correctness of outputs forttrget methods they invoke, but not the helper methods that only
methods. These methods implement the standard operationspecifications invoke. Table 1 shows the number of mu-
on their corresponding data structures [12]. Executing thesetants for each benchmark. Table 2 shows the rate of mutant
methods also tests sonmelper methods because they are Kkilling for several scopes. (The numbers for smaller scopes
invoked either when executing the target methods or whenare in Appendix B.) For all benchmarks beibonacci-
checking their correctness (e.g., from postconditions). Heap andTreeMap, inputs in these scopes kill over 90% of
SearchTree IS presented in Section 2DisjSet is an the mutants.
array-based implementation of the fast union-find data struc- We inspected a selection of the mutants that survived for
ture [12]; this implementation uses both path compression these two benchmarks to detect if they are syntactically dif-
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Figure 9: Variation of statement code coverage (thick line) and rate of mutant killing (thin line) with scope. Forall
benchmarks, Korat generates inputs that achieve the maximum coverage that is possible without directly generating
inputs for helper methods.

ferent butsemanticallyequivalent to the original program, coverage of code and the rate of mutant killing. The code
and thus no input could kill them. Since we implemented coverage is measured for all target and helper methods, since
FibonacciHeap , we were able to determine that all inspected they are all executed. For most benchmarks, Korat generates
mutants are indeed semantically equivalent. Due to the com-inputs that achieve 100% coverage, both for statements and
plexity of TreeMap and our lack of familiarity with it, we branches. For other benchmarks, the coverage is not 100%,
were not able to definitely establish the equivalence for all because no input for target methods could trigger some ex-
inspected mutants. However, we also tested surviving mu- ceptional behavior of helper methods.
tants for inputs of scope eight and all still survived increasing  For example, the (targe®jverse method for lists creates
our confidence that they are indeed semantically equivalent. a Listiterator and invokes some (helper) methods oniit. In
general, these helper methods could raise exceptions, such as
8.3 Coverage ConcurrentModificationException Or NoSuchElementEx-
ception , but the target methods never invoke the helper
methods in such a way. In terms of JML specifications, the

; target methods invoke the helper methods in pre-states that
coverage[7] as code coverage fo'r. the predicate that corre- satisfy the precondition fofiormal _behavior , and not for
sponds to the method’s precondition (ergmovePre ). We exceptional _behavior

measure this coverage while Korat generates valid inputs £ o henchmarks, the minimum scope needed to achieve
for the predicate, i.e., valid test cases for the method. For complete coverage is not sufficient to kill all mutants; in-

most bencgmﬁrl]fs, the tabulated chpes r?chleve. Compleltecreasing the scope increases the rate of mutant killing. It
coverage,o oth for statements and branches. Itis not al-is ell-known [5] that in general complete statement and

ways 100%, because finitizations do not even put for fields pranch coverage (or for that matter, any coverage criteria)
some values that do not satisfy the predicate (éig., does not guarantee absence of faults. Our experiments vali-

SearchTree does not pubull forinfo ). Specification COV-  yata this for data structures. As an illustration, consider the
erage becomes complete for smaller scopes than code Coverfollowin% code snippet fronsearchTree.remove
ode t left; '

age (Appendix B) which means that specification coverage de temp = left;
is a weaker criterion than code coverage. Wh"etenﬂf”‘:”'{;gr:;ﬂ?ghgt.!z nall) {
Figure 9 shows graphs that relate scope with the statement 1

Table 2 also shows specification/code coverage. Since Ko-
rat uses executable specifications, we measpegification
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Suppose that the mutation changes only the loop body: {ﬁﬂ%%rg exhaustive
Ng_tfe te(rtnp =_Ieg{;_ " ) g [ benchmark [ scope] Killed [%] | scope-1] scope
while emp.right.right != nu — =

temp = left /[*temp*/ .right; SeD:’iirscjg'I(;{ee ; ggég ; ;

i . . HeapArray 7 95.99 < <

If the loop is executed zero or one times, the original pro- | BinomialHeap 7 95.10 < <
gram and the mutant have the same behavior. For trees with FIE?nnk%%cﬂiil?ap 3 gg-g; - <
up to four nodes, the loop cannot execute more than once,| SortedList 7 96.40 < <
but these trees achieve complete coveragefasve . How- TreeMap 7 89.08 < <
s L HashSet 7 91.39 < <

ever, for a tree with five nodes, the loop executes twice in the AVTree 5 0317 N <

original program, while the mutant loops infinitely. (Recall
that Ferastrau detects and kills such mutants.) Because offable 3: Comparison of exhaustive testing with ran-
this, we do not measure the effectiveness of Korat by con- domly chosen test inputs. £’ means that both sets are
sidering only the scope that achieves complete coverage. equally good, <’ random is worse,*>’ random is better.

8.4 Feasibility sidered candidates, but it mainly reduces the number of valid
Table 2 also shows Korat’s performance for test generation inputs and thus checking time.

and correctness checking. For each benchmark, the tabu- It is important to note that Korat generates exactly the

lated scope is mutation-adequate. We tabulate the time Koratnumber of non-isomorphic data structures as given in the

takes to generate all valid test inputs (without and with ded- Sloane’s On-Line Encyclopedia of Integer Sequences [46].

icated generators) and to check the correctness of methodsThis increases our confidence that the implementation of Ko-

All times are elapsed real times in seconds from the start of rat is correct; we proved that its algorithm is correct.

Korat to its completion, without the JVM initialization that

takes around 0.5 seconds. We performed the experiments orp-2 Randomness

a Linux machine with a 1.8GHz Pentium 4 processor using Exhaustive testing generates all tests (within a certain size)

Sun’s Java 2 SDK1.3.1 JVM. that satisfy the input invariant. A natural question is what
Number of inputs that is generated is the sum of numbers test selection strategy can be applied to reduce the size of an

of inputs forall target methods. Also, the generation and exhaustive test suite without sacrificing its quality. The sim-

checking times are sums of times for all methods. We use plest selection strategy is random sampling. We next evalu-

Korat to separately generate inputs for each method. How-ate its quality.

ever, when two methods have the same precondition (e.g., Consider one benchmark, and {Efs) be the set of all

remove andadd for SearchTree ), we could reuse the inputs  (non-isomorphic) test inputs within scopeFromT'(s), we

and thus reduce the generation time. For scopes in Table 2randomly chose a subsB{s) whose cardinality is the same

the size of the search space is betwe&hand22°°. In all as the cardinality of'(s — 1). We then compare the quality
cases, Korat completes generation in less than two minutesof R(s) againstl’(s — 1) andT'(s). For comparison, we use
often in just a few seconds. the rate of mutant killing, as this criterion most directly mea-

The use of dedicated generators reduces the generatiorsures the quality of test suite in detecting faults. It is impor-
times from a few percent to 75% (feearchTree ). Since tant to note that randomly chosen inputs are also generated
dedicated generators have a higher overhead, their use somewith Korat; for complex data structures, it is not feasible to
times increases the generation time, especially for very smallsimply generate random inputs that satisfy the invariants.
scopes. As mentioned in Section 5, Korat library is not  Table 3 shows the comparison for several random sam-
aimed at providing the most efficient generation for our ples. The randomly selected test suites give a lower rate of
benchmarks, but at providing generators that are applicablemutant killing in half of the benchmarks; only fetonac-
for many data structures. Furthermore, dedicated generatorgiHeap andAvTree, the rate is higher for randomly selected
make it easier to write specifications for all our benchmarks. inputs than for all inputs from the smaller scope. This means

The postconditions for all methods specify typical partial that exhaustive testing for all inputs within some scope can
correctness properties; they require resulting data structuresbe more effective than random testing with bigger inputs.
to be valid and, depending on the method, to contain or not There may be, however, another test selection strategy, be-
to contain input elements. The checking times depend onsides random, that can reduce the size of an exhaustive test
the complexity of methods and their postconditions. Over- suite without reducing its quality.
all, the checking times are within the same magnitude as the
corresponding generation times across all our benchmarks. 9. RELATED WORK

These results show that Korat can efficiently generate all We first discuss other projects on specification-based test-
inputs even for very large search spaces, primarily becauseing. We then compare Korat with static analysis and model
the search pruning allows Korat to explore only a tiny frac- checking; Korat is related to them although it performs test-
tion of these spaces. The key to effective pruning is back- ing, i.e., dynamic analysis, because it does so exhaustively.
tracking based on fields accessed duripgk 's executions. e - .

Without backtracking, and even with isomorphism optimiza- 9-1 ~ Specification-based testing
tion, Korat would consider infeasibly many candidates. Iso- There is a large body of research on specification-based
morphism optimization further reduces the number of con- testing. An early paper by Goodenough and Gerhart [20]
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emphasizes its importance. Many projects propose tech-9.2  Static analysis

niques and tools that automate test case generation from geyeral projects aim at developing static analyses for ver-
specifications, such as Z specifications [16, 25, 49], UML fying program properties. The Extended Static Checker
statecharts [40], or ADL specifications [7, 44]. These Speci- (ESC) [17] uses a theorem prover to verify partial correct-
fications typically do not consider linked data structures with a5s of classes annotated with JML specifications. ESC can

complex invariants. _ , verify absence of errors such as null pointer dereferences,
Korat is reimplemented in the AsmL Test Generation tool array bounds violations, and division by zero. However

(AsmLT) [18] that generates test cases from AsmL specifi- 1o0|5 like ESC do not verify properties of complex linked
cations [22]. Korat adds structure generation to generation yata structures.
based on finite-state machines [21]. AsmLT was success- gome recent projects attempt to address this issue. The
fully used for detecting fault in a production-quality XPath Three-Valued-Logic Analyzer (TVLA) [34, 43] is the first
compiler [48]. Scalability of exhaustive testing tools does gystem to verify that the list structure is preserved in pro-
not depend as much on the complexity/size of the tested codeyrams that perform list reversals via destructive updates.
as it depends on the complexity of inputs that the code OPer-TVLA has been used to analyze programs that manipulate
ates on. This paper evaluates the effectiveness of exhaustivgjoyply linked lists and circular lists, as well as some sorting
testing for data structures. programs. The pointer assertion logic engine (PALE) [39]
The TestEra framework [36] generates Java data structures;an, verify a large class of data structures that can be repre-
from declarative specificatio_ns given in Alloy [27]. TestEra ggnted by a spanning tree backbone. These data structures
uses the SAT-based analysis of the Alloy tool-set [26] for nclude doubly linked lists, trees with parent pointers, and
test generation and correctness checking. Even though Al-ihreaded trees. TVLA and PALE are primarily intraproce-
loy provid.es some non—iso_morphic generation, for eﬁicient dural, whereas Role Analysis [32] supports compositional
enumeration TestEra requires users to manually write Sym-jnterprocedural analysis and verifies similar properties.
metry breakmg_pre_dmates [29]. Also, Te_stEra requires the  \wnile static analysis of program properties is a promis-
use of a specification language much different from Java. ing approach for ensuring program correctness in the long
The experimental results [6] show that Korat provides faster yn the current static analysis techniques can only verify
test generation than TestEra (even when TestEra users manimited program properties. For example, none of the above
ually add symmetry breaking). . techniques can verify correctness of implementations of bal-
Cheon and Leavens [8] describe jmlunit, an automatic gnceq trees, such as red-black trees. Testing, on the other
translation of JML specifications into test oracles for JU- hand, is very general and can verify any decidable program
nit [4], a popular framework for unit testing of Java mod- property, but for inputs bounded by a given size.
ules. JUnit automates test execution and error reporting, but Jalloy [28, 52] analyzes methods that manipulate linked
requires programmers to provide test inputs and test oraclesyaia structures by first building an Alloy model of Java
In jmlunit, the Cartesian product is directly used to generate -gge and then checking it exhaustively with the Alloy tool-
testinputs, which cannot handle very large input spaces. Ad-gg¢ [26]. This approach provides static analysis, but un-
ditionally, jmlunit does not generate complex inputs, but re- gound with respect to both the size of input and the length
quires users to create and provide them. Korat further auto-of computation. Korat checks the entire computation and
mates and optimizes generation of test inputs, thus automatnandles larger inputs and more complex data structures than

ing the entire testing process. , in [28,52]. Further, Korat does not require Alloy, but IML
There are many tools that produce test inputs from a de-speciﬁcationsl

scription of tests. QuickCheck [9] is a tool for testing
Haskell programs. It requires the tester to write Haskell .
functions that can produce valid test inputs; executions of 9.3 Software model checking
such functions with different random seeds produce different  There has been a lot of recent interest in applying model
test inputs. Korat differs in that it requires only an invariant checking to software. JavaPathFinder [53] and VeriSoft [19]
that characterizes valid test inputs and then uses a generaloperate directly on a Java, respectively C, program and sys-
purpose search to generati valid inputs. DGL [37] and tematically explore its state to check correctness. Other
lava [45] generate test inputs from context grammars. They Projects, such as Bandera [11] and JCAT [14], translate Java
were used mostly for random testing, although they can alsoPrograms into the input language of existing model check-
exhaustively generate test inputs. However, they do not con-€rs like SPIN and SMV . They handle a significant portion
sider inputs with complex invariants. of Java, including dynamic allocation, object references, ex-
AETG [10] is a popular system for generating test inputs ceptions, inheritance, and threads. They also provide auto-
that cover all pair-wise (on-wise) combinations of test pa- mated support for reducing program’s state space through
rameters (that correspond to object fields in Korat). Using Program slicing and data abstraction.
pair-wise testing is applicable when parameters are relatively However, most of the work on applying model checking
independent. However, in Korat fields are dependent, andto software has focused on checking event sequences and
Korat can be viewed as an efficient approach to generate allnot linked data structures. Where data structures have been

inputs whem is the same as the number of parameters. Ad- considered, the purpose has been to reduce the state space to
ditionally, Korat takes into account isomorphism and gener- be explored and not to check the data structures themselves.

ates only one input from each isomorphism partition. Korat, on the other hand, checks correctness of methods that
manipulate linked data structures.
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}

if (right == null) return left;

if (left.right == null) {
current.info = left.info;
current.left = left.left;
return current;

Node temp = left;
while (temp.right.right !'= null) {
temp = temp.right;

current.info = temp.right.info;
temp.right = temp.right.left;
return current;

boolean repOk() {

}

/I checks that empty tree has size zero
if (root == null) return size == 0;

/I checks that the input is a tree

if (lisAcyclic()) return false;

/I checks that size is consistent

if (numNodes(root) != size) return false;
/I checks that data is ordered

if (lisOrdered(root)) return false;

return true;

private boolean isAcyclic() {

Set visited = new HashSet();
visited.add(root);

LinkedList workList = new LinkedList();
workList.add(root);

while (workList.isEmpty()) {
Node current = (Node)workList.removeFirst();
if (current.left != null) {
/I checks that the tree has no cycle
if (lvisited.add(current.left))
return false;
workList.add(current.left);

APPENDIX
A. FULL CODE FOR THE EXAMPLE

import java.util.*;

class SearchTree {
Node root; // root node }
int size; // number of nodes in the tree if (currentright != null) {

StatiCN(gz\SeS Ie'\fItOde//{ eft child /I checks that the tree has no cycle
; | if (lvisited.add(current.right
Node right; // right child ( return fal(se- o)
) Comparable info; // data workList.add(current.right);
}
}

/*@ normal_behavior // non-exceptional specification return true:

@ /I precondition }

@ requires repOKk();

@ /I postcondition o private int humNodes(Node n) {

@ ensures repOk() && !contains(info) && if (n == null) return O;

g*/ \result == \old(contains(info)); return 1 + numNodes(n.left) + numNodes(n.right);
}

boolean remove(Comparable info) {
Node parent = null;

private boolean isOrdered(Node n) {
Node current = root;

return isOrdered(n, null, null);

while (current != null) { }
int cmp = info.compareTo(current.info);
if (cmp < 0) {

private boolean isOrdered(Node n, Compara-
ble min, Comparable max) {
if (n.info == null) return false;
if ((min != null && n.info.compareTo(min) <= 0) ||
(max != null && n.info.compareTo(max) >= 0))
return false;

parent = current;
current = current.left;
} else if (cmp > 0) {
parent = current;
current = current.right;

} else { if (n.left = null)
break; if (lisOrdered(n.left, min, n.info))
return false;
} if (n.right !'= null)
if (current == null) return false; if (lisOrdered(n.right, n.info, max))

Node change = removeNode(current);

! return false;
if (parent == null) {

return true;

root = change; }
} else if (parent.left == current) { }
parent.left = change;
} else {
parent.right = change;
}
return true;
}
Node removeNode(Node current) {

size--;
Node left = current.left, right = current.right;
if (left == null) return right;
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B. EXPERIMENTAL RESULTS

generation checking
en. | ded. [ Spec. coverage| # fime [ code coverage| mutants
[ benchmark [ scope| [sec] | [sec] [ St. [%] [ br. [%] | inputs | [sec] | St. [%] [ br. [%] | killed [%]
1 0.06 0.01 57.89 60.00 4 0.06 38.46 40.00 26.10
2 0.05 0.01 94.74 96.67 20 0.06 79.49 87.50 69.85
3 0.07 0.10 94.74 96.67 90 0.07 87.18 92.50 79.77
SearchTree 4 0.17 0.10 94.74 96.67 408 0.14 97.44 97.50 92.64
5 0.38 0.25 94.74 96.67 1880 0.24 100.00 100.00 98.52
6 1.39 0.52 94.74 96.67 8772 0.46 100.00 100.00 99.26
7 9.03 2.19 94.74 96.67 41300 1.25 100.00 100.00 99.26
1 0.01 0.01 61.54 55.00 4 0.04 23.08 25.00 0.41
2 0.01 0.01 100.00 95.00 30 0.09 69.23 68.75 30.45
Diste'[ 3 0.04 0.04 100.00 100.00 456 0.09 100.00 100.00 88.47
4 0.29 0.31 100.00 100.00 18280 0.43 100.00 100.00 95.06
5 10.91 9.87 100.00 100.00 1246380 19.93 100.00 100.00 95.06
1 0.01 0.01 80.00 85.71 16 0.04 79.31 66.67 39.05
2 0.01 0.01 90.00 92.86 75 0.05 79.31 66.67 43.79
3 0.02 0.02 90.00 92.86 396 0.09 93.10 83.33 69.70
HeapArray 4 0.08 0.09 90.00 92.86 2240 0.17 96.55 88.89 86.13
5 0.22 0.21 90.00 92.86 15352 0.38 96.55 94.44 89.78
6 0.90 0.71 90.00 92.86 118251 1.88 100.00 100.00 96.35
7 7.09 6.21 90.00 92.86 1175620 17.58 100.00 100.00 96.71
1 0.02 0.01 62.79 62.00 12 0.07 52.87 57.58 31.16
2 0.03 0.02 93.02 94.00 54 0.08 87.36 84.85 62.67
3 0.12 0.09 93.02 94.00 336 0.14 98.85 96.97 89.72
BinomialHeap 4 0.40 0.30 97.67 98.00 1800 0.24 100.00 98.48 93.15
5 0.81 0.65 97.67 98.00 16848 0.69 100.00 100.00 94.86
6 3.30 2.35 97.67 98.00 159642 4.61 100.00 100.00 95.89
7 35.60 28.06 97.67 98.00 2577984 75.96 100.00 100.00 96.91
1 0.01 0.07 55.55 51.72 12 0.07 35.48 43.55 15.82
2 0.03 0.03 91.11 93.10 108 0.09 75.27 80.64 44.10
FibonacciHeap 3 0.28 0.24 97.78 98.28 1632 0.24 95.70 98.39 75.08
4 1.22 0.90 97.78 98.28 34650 1.08 95.70 98.39 81.48
5 14.14 12.94 97.78 98.28 941058 23.37 100.00 100.00 88.88
1 0.01 0.01 100.00 100.00 15 0.08 64.15 68.75 58.19
2 0.01 0.01 100.00 100.00 50 0.09 90.57 84.38 98.77
3 0.03 0.03 100.00 100.00 169 0.12 90.57 84.38 99.59
LinkedList 4 0.07 0.07 100.00 100.00 627 0.16 90.57 84.38 99.59
5 0.18 0.18 100.00 100.00 2584 0.26 90.57 84.38 99.59
6 0.33 0.31 100.00 100.00 11741 0.48 90.57 84.38 99.59
7 0.74 0.71 100.00 100.00 58175 1.54 90.57 84.38 99.59
1 0.03 0.04 71.43 62.50 7 0.11 62.50 50.00 33.33
2 0.04 0.07 100.00 100.00 36 0.11 80.00 74.14 52.81
3 0.07 0.07 100.00 100.00 188 0.15 92.50 89.66 90.04
SortedList 4 0.22 0.20 100.00 100.00 1066 0.28 92.50 89.66 93.93
5 0.53 0.48 100.00 100.00 7427 0.50 92.50 89.66 96.53
6 1.94 1.77 100.00 100.00 73263 2.57 92.50 89.66 97.40
7 22.68 21.13 100.00 100.00 1047608 37.91 92.50 89.66 97.40
1 0.02 0.02 57.14 63.33 6 0.06 14.41 14.89 5.46
2 0.03 0.03 100.00 100.00 28 0.06 45.95 50.00 28.66
3 0.07 0.04 100.00 100.00 96 0.09 63.96 73.40 61.09
TreeMap 4 0.18 0.15 100.00 100.00 328 0.15 89.19 85.11 78.15
5 0.38 0.31 100.00 100.00 1150 0.24 100.00 91.49 87.37
6 0.94 0.61 100.00 100.00 3924 0.38 100.00 91.49 89.76
7 3.28 1.75 100.00 100.00 12754 0.73 100.00 91.49 89.76
1 0.01 0.01 57.89 69.23 4 0.04 51.92 50.00 29.91
2 0.01 0.01 89.47 92.31 34 0.05 96.15 95.00 77.45
3 0.06 0.05 89.47 92.31 212 0.09 100.00 100.00 90.57
HashSet 4 0.23 0.22 89.47 92.31 1170 0.19 100.00 100.00 90.98
5 0.36 0.34 89.47 92.31 3638 0.27 100.00 100.00 91.39
6 0.91 0.71 89.47 92.31 12932 0.62 100.00 100.00 91.80
7 3.38 2.88 89.47 92.31 54844 1.55 100.00 100.00 92.21
1 0.01 0.01 53.33 56.25 2 0.07 55.29 51.92 40.00
2 0.05 0.03 90.00 87.50 86 0.14 75.29 78.85 60.00
AVTree 3 0.21 0.17 96.67 96.88 1702 0.78 88.23 84.61 75.12
4 3.16 1.86 96.67 96.88 27734 8.36 94.12 92.31 91.21
5 87.13 43.41 96.67 96.88 417878 | 134.51 94.12 92.31 93.65

Table 4: Korat’s performance for test generation (with regular and dedicated generators), specification coverage (state-
ment and branch), correctness checking, code coverage (statement and branch), and rate of mutant killing. All times
are elapsed real times in seconds from the start of Korat to its completion.
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