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ABSTRACT
We present an evaluation of exhaustive testing of linked data
structures with sophisticated structural constraints. Specifi-
cally, we use the Korat testing framework to systematically
enumerate all legal inputs within a certain size. We then
evaluate the quality of this test suite according to several
measurements: ability to detect injected faults in the orig-
inal correct implementations, code coverage, and specifi-
cation coverage. Our results indicate that it is feasible to
use exhaustive testing to obtain, within a reasonable amount
of time, a high-quality test suite that can detect almost all
faults and achieve complete code and specification cover-
age. Moreover, our results show that our exhaustive tests
are of higher quality than randomly selected test suites that
contain the same number of inputs selected from a larger
potential input set. We conclude that exhaustive testing is a
practical and effective testing methodology for sophisticated
linked data structures.

1. INTRODUCTION
Testing is currently the dominant method for finding and

eliminating software errors and, as such, is critical to the
ability of the software industry to produce high-quality code.
Obtaining good test cases is obviously a key requirement to
successfully testing any software artifact, but many issues
complicate this activity. Requiring developers to manually
provide test cases is labor intensive (especially for linked
data structure with complex structural properties) and may
produce test cases that exercise only a restricted subset of
the functionality of the software.

The alternative is to automatically generate a range of test
cases, then filter out any test cases that do not satisfy the re-
quired input invariants of the system under test. While this
approach may work well for systems with simple input in-
variants, it may be prohibitively expensive for systems with
complex input invariants—the density of test cases that sat-
isfy the invariant in the search space may be so small that the
generator is unable to produce legal inputs within a reason-
able amount of time.

We have developed Korat [6], a technique for generat-
ing test cases that satisfy complex invariants. Korat enables
the developer to provide an operational way of identifying
the legal inputs. Specifically, the developer provides a pre-
condition predicate, written in a standard programming lan-
guage, that returns true if the input satisfies the required in-

variant and false otherwise. Korat processes this predicate
to efficiently produce a stream of structures that satisfy the
property identified by the pre-condition. To check the cor-
rectness of the implementation, Korat tests the implementa-
tion on the generated inputs to verify that the execution sat-
isfies the provided post-condition. Given a bound on the size
of inputs, called thescope, Korat generates all inputs within
the scope that satisfy the invariant. We call testing with such
inputsexhaustive testing.

1.1 Evaluation
In theory, exhaustive testing could detect any error in the

implementation. In practice, time constraints make it pos-
sible to test the implementation only up to certain scope,
raising the possibility that the resulting incomplete test suite
may fail to detect an error. To evaluate the effectiveness of
exhaustive testing, we have used it to test a benchmark set
of standard data structure implementations. Our evaluation
centers around two issues: the quality of the test suite and
the performance of the test case generation algorithms.

We usemutation testing[15,24,41] to measure the quality
of the test suites that Korat generates. Mutation testing first
produces a set of new (potentially) faulty versions of a pro-
gram, calledmutants, by performing syntactic modifications
on the program. It then measures how many mutants a test
suite detects. A test suite ismutation-adequateif it detects a
desired percentage of mutants. Results show that a test suite
that detects a high percentage of injected faults is likely to
detect real faults [41].

We evaluate the following hypotheses for exhaustive test-
ing of our data structure benchmarks:
• Mutation: There is a certain small scope that satisfies

mutation-adequacy criterion for data structures.
• Coverage:Mutation-adequacy criterion is stronger than

complete code coverage criterion.
• Feasibility: Korat can generate inputs and check cor-

rectness for the mutation-adequate scope.
• Randomness:Exhaustive test suites are of higher qual-

ity than randomly selected test suites that contain the
same number of inputs selected from a larger input set.

1.2 Correctness
The correctness of our evaluation depends on the correct-

ness of Korat. The correctness of Korat is also important in
practice—if Korat mistakenly produces a structure that does



not satisfy the input invariant, the developer may waste valu-
able time attempting to track down a non-existent error in
the implementation. If, on the other hand, Korat incorrectly
causes a set of structures to be systematically omitted, the
generated test cases will miss any error that is triggered only
by omitted structures.

We address these concerns by providing 1) a formaliza-
tion of Korat’s test case generation algorithm, and 2) a proof
that this algorithm is both sound (it only generates structures
that satisfy the input invariants) and complete (it generates
all such structures). This proof provides a strong guarantee
that should increase the confidence of the developer in the
correctness of the test case generation tool.

1.3 New Technique
We present a new technique,input property exploitation,

that increases the effectiveness of exhaustive test case gen-
eration. This technique usesdedicatedgenerators to opti-
mize the generation of common properties that often appear
within input invariants. It enables the test case generator to
substantially prune the search without eliminating any struc-
tures that satisfy the input invariant. We evaluate the effec-
tiveness of exploiting common input invariant properties by
comparing the performance of our Korat-based implementa-
tion with and without this technique. Our results show that
the use of this technique can speed up the performance of test
case generation for up to 75%. Moreover, dedicated genera-
tors make it easier to write pre- and post-conditions.

1.4 Contributions
This paper makes the following contributions:
• Evaluation: It presents an evaluation of exhaustive

testing for data structures. Our results show that:

– Exhaustive testing within small scope can gener-
ate mutation-adequate test suites.

– Exhaustive test suites can achieve complete cov-
erage for even smaller scopes, but such suites do
not detect all mutants.

– It is feasible to use Korat to generate inputs and
check correctness for these scopes.

– Exhaustive testing within some scope is often more
effective than random testing with somewhat big-
ger inputs.

We anticipate that our results will extend to a wide
range of programs whose inputs must satisfy complex
structural invariants.

• Correctness: It formalizes the test case generation al-
gorithm and presents a proof of its correctness.

• Input Property Exploitation: It shows how to exploit
the presence of common input properties to prune the
search during test case generation.

• Ferastrau: We present design and implementation of
a tool for mutation testing of Java programs.

• Novel Applications: We illustrate how to apply Ko-
rat to white-box testing and to testing sequences of
method calls.

class SearchTree {
Node root; // root node
int size; // number of nodes in the tree
static class Node {

Node left; // left child
Node right; // right child
Comparable info; // data

}

/*@ normal behavior // non-exceptional specification
@ // precondition
@ requires repOk();
@ // postcondition
@ ensures repOk() && !contains(info) &&
@ \result == \old (contains(info));
@*/

boolean remove( Comparable info) { ... }

boolean repOk() {
// checks that empty tree has size zero
if (root == null ) return size == 0;
// checks that the input is a tree
if (!isAcyclic()) return false ;
// checks that size is consistent
if (numNodes(root) != size) return false ;
// checks that data is ordered
if (!isOrdered(root)) return false ;
return true ;

}
}

Figure 1: Example code and specification.

2. EXAMPLE
This section illustrates how programmers can use Korat to

test their programs. As a running example, we use a method
for removing an element from a set implemented as a binary
search tree. Even though removal is conceptually simple,
the implementation involves intricate details to restore a tree
after removing an inner node. Figure 1 shows Java code that
declares a binary tree and itsremove method. Each object
of the classSearchTree represents a binary search tree. The
size field contains the number of nodes in the tree. Objects
of the inner classNode represent nodes of the trees. The
elements of the set are stored in theinfo fields. The ele-
ments implement the interfaceComparable , which provides
the methodcompareTo for comparisons. Appendix A shows
the full code for the exampleremove method.

The exampleremove method is annotated using the Java
Modeling Language (JML) [33]. Thenormal behavior key-
word specifies that if the precondition (keywordrequires )
is satisfied before the method, then the method must sat-
isfy the postcondition (keywordensures ) at the end and
must return without raising an exception. The methodre-

pOk is a Java predicate that checks therepresentation invari-
ant [35] of the corresponding data structure. For illustra-
tive purposes, we putrepOk in the pre/post-conditions; in
practice, it is usually given as a class invariant (keyword
invariant ) that is implicitly conjoined with the pre/post-
conditions [33]. Good programming practice suggests that
implementations of abstract data types provide these predi-
cates, as they are useful for checking correctness of the im-
plementations [35].

In this example,repOk checks if the input is a valid bi-
nary search tree with the correctsize First, repOk checks
if the tree is empty. If not,repOk checks that there are no
undirected cycles alongleft andright , that the number of
nodes reachable fromroot is size , and that all elements in
the left (right) subtree of a node are smaller (larger) than
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Figure 2: Trees generated for scope three.

the element in that node. Appendix A shows the full code
for repOk (and the methods it invokes). The samerepOk is
also used foradd and other methods inSearchTree . Manu-
ally developing a high-quality test suite for all methods in a
data structure is typically much harder than writing arepOk

invariant that Korat uses to automatically generate test in-
puts. The methodcontains checks that the tree contains the
given element. The JML keyword\result denotes the re-
turn value of the method;remove returnstrue iff it removes
an element from the tree. The JML keyword\old denotes
that its expression should be evaluated in the pre-state, i.e.,
the state immediately before the method’s invocation.

To test theremove method in a black-box setting, we use
Korat to generate valid inputs for the method. Each input
is a pair of a tree and an element. The precondition defines
valid inputs: the tree satisfiesrepOk , and the element is un-
constrained. To limit the number of inputs, Korat uses afini-
tization(Section 3.2) that specifies bounds on the number of
objects to be used to construct data structures and the values
stored in the fields of these objects. For trees, finitization
gives the maximum number of nodes and the possible el-
ements; a tree is in scopes if it has at mosts nodes and
s elements. Two trees areisomorphicif they have the same
branching structure and isomorphic elements, irrespective of
the identity of the actual nodes or elements in the trees.

Given a finitization and scope, Korat generates all non-
isomorphic input pairs that satisfy the precondition. For ex-
ample, in scope three, Korat generates 45 input pairs that are
the Cartesian product of the 15 trees (shown in Figure 2) and
the three elements. ForSearchTree , we use Korat to gener-
ate inputs and check correctness ofremove and add meth-
ods. In scope seven, Korat generates 41300 input pairs for
both these methods in less than ten seconds. With dedi-
cated generators (Section 5), it takes less than three seconds
to generate these inputs.

Korat uses the JML tool-set [8, 33] to translate method
postconditions (and JML assertions) into Java runtime asser-
tions. After generating the inputs, Korat invokes the method,
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Figure 3: Variation of statement coverage (thick line)
and rate of mutant killing (thin line) with scope.

with assertions, on each input and reports a counterexample
if the method fails to satisfy the postcondition. This process
checks the correctness of the method for the given scope.
For example, for scope seven, it takes less than two seconds
to check bothremove andadd for all 41300 inputs.

Figure 3 shows how coverage and the rate of mutant killing
vary with the scope for theSearchTree benchmark. Forre-

move, the mutation testing compares the outputs that consist
of both theboolean return value and the value of the re-
ceiver tree in the post-state, i.e., the state immediately after
the method’s invocation. Scope five is sufficient to achieve
complete coverage, but scope six is required to kill all non-
equivalent mutants. Generating inputs and checking correct-
ness for these scopes takes less than 15 seconds.

3. KORAT
This section describes how Korat finds inputs that satisfy

a Java predicate. We first give an informal overview of Ko-
rat. We then describe parts of Korat most relevant for for-
malization and extensions; more details on other parts can
be found in [6]. For illustration, we use therepOk method
from SearchTree as the predicate, and we show how Korat
generates valid trees.

3.1 Overview
Given a Java predicate and a bound on its input, Korat gen-

erates all non-isomorphic inputs that arevalid, i.e., inputs for
which the predicate always returnstrue . Korat uses afini-
tization (Section 3.2) to bound thestate space(Section 3.3)
of predicate inputs. Korat uses backtracking (Section 3.4)
to systematically explore this state space. Korat generates
candidate inputsand invokes the predicate on them to check
their validity.

Naive checking of all possible candidate inputs would pro-
hibit searching very large state spaces. Korat uses two op-
timizations: 1) pruning based on the fields that the predi-
cate accesses (to monitor the accesses, Korat instruments the
predicate and all methods that the predicate transitively in-
vokes) and 2) generating only non-isomorphic candidates.
These optimizations speed up the search without compro-
mising its correctness.

Most practical predicates are deterministic, i.e., given iden-
tical inputs, any two executions of the predicate are identi-
cal and produce identical result. Korat also handles predi-
cates that are non-deterministic either only in the execution
(i.e., given identical inputs, two executions may be different
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Finitization finSearchTree( int numNode,
int minSize, int maxSize, int minInfo, int maxInfo) {

Finitization f = new Finitization(SearchTree. class );
ObjSet nodes = f.createObjects("Node", numNode);
nodes.add( null );
f.set("root", nodes);
f.set("size", new IntSet(minSize, maxSize));
f.set("Node.left", nodes);
f.set("Node.right", nodes);
f.set("Node.info", new IntegerSet(minInfo, maxInfo));
return f;

}
Finitization finSearchTree( int scope) {

return finSearchTree(scope, 0, scope, 1, scope);
}

Figure 4: Two finitizations for the repOk method.

but produce identical result) or even in the result (i.e., given
identical inputs, two executions may produce different re-
sults). Letγ be an input for a predicateπ. We writeπ(γ) for
the set of results that executions ofπ can produce for inputγ;
γ is valid iff π(γ)= {true }; γ is invalid iff π(γ)= {false }.
Note that an input may be neither valid nor invalid.

Each candidate that Korat generates is an object graph
with one root object (Section 6 shows how to introduce a
class for root when generating several objects). Executing
the same Java program from two isomorphic states cannot
lead to observational difference in the execution. Thus, we
define structure isomorphism based on object identity; two
candidates are isomorphic iff the object graphs reachable
from the root are isomorphic.

DEFINITION 1. Let O1, . . . , On be some sets of objects
from n classes. LetO = O1 ∪ . . . ∪ On, and suppose that
candidates consist only of objects fromO (and primitive val-
ues), i.e., pointer fields of objects inO can either benull

or point to other objects inO. Let P be the set consisting
of null and all values of primitive types, such asint . Let
r ∈ O be a root object, and letRC(r) be the set of all ob-
jects reachable fromr in C. Two candidates,C andC ′, are
isomorphiciff there exists a permutationp on O ∪ P that is
identity onP and that maps objects fromOi to objects from
Oi for all 1 ≤ i ≤ n, such that:

∀o ∈ RC(r). ∀f ∈ fields(o). ∀v ∈ O ∪ P .
o.f = v within C ⇔ p(o).f = p(v) within C ′.

Isomorphism between candidates partitions the state space
into isomorphism partitions. Since candidates and valid in-
puts are rooted and edge-labeled, it is easy to check isomor-
phism. However, Korat does not do that explicitly; instead, it
avoids generating isomorphic valid inputs by not even con-
sidering isomorphic candidates.

In summary, Korat generates all non-isomorphic valid in-
puts within specified bounds; the search has these properties:
• Soundness:Korat generates no invalid input.
• Completeness:Korat generates at least one valid input

from each isomorphism partition.
• Optimality: Korat generates at most one (valid) input

from each isomorphism partition.

3.2 Finitization
To generate a finite state space for predicate’s inputs, Ko-

rat uses a finitization, i.e., a set of bounds that limits the size
of the inputs. The inputs can consist of objects from several
classes, and the finitization specifies the number of objects

for each of those classes. A set of objects from one class
forms aclass domain. The finitization also specifies a set of
values for each field; this set forms afield domain, which is
a union of several class domains.

Korat provides aFinitization class that allows finitiza-
tions to be written in Java. Korat automatically generates a
finitization skeletonfrom the type declarations in the Java
code. Testers can further specialize or generalize this skele-
ton. Figure 4 shows two finitizations for the examplerepOk

method; invokingfinSearchTree(s) creates a finitization
for scopes. The createObjects method specifies that the
input contains at mostnumNode objects from the classNode.
Theset method specifies a field domain for each field.

3.3 State space
Korat uses a finitization to construct a state space of pred-

icate inputs. For example, considerfinSearchTree(3) for
inputs to repOk . Korat first allocates oneSearchTree ob-
ject that forms theSearchTree class domain and threeNode

objects that form theNode class domain. In order to sys-
tematically explore the state space, Korat orders the objects
in these domains and during search uses indexes into these
domains. This data can be represented with these classes:
class ClassDomain { // ordered class domain

Object [] objects;
}
class ClassDomainIndex {

ClassDomain domain;
int index; // index into ’domain.objects’ array

}
class ObjField { // field of an object from some domain

Object object;
Field field;

}
Korat next assigns a field domain to each field. In this ex-

ample, there are11 = 2+3 · 3 fields: the singleSearchTree

object has two fields (root andsize ) and the threeNode ob-
jects have three fields each (left , right , and info ). Each
field domain is a sequence of class domain indexes, such
that all values that belong to the same class domain occur
consecutively. For example, the field domain forroot has
four elements,null and threeNode objects, wherenull (as
well as each primitive value) forms a class domain by it-
self. Therefore, the field domain forroot is represented as
[null,<nd,0>,<nd,1>,<nd,2>] , wherend is the class do-
main forNode objects.

Eachstateis a mapping from the object fields to the field
domain indexes. The whole state space consists of all possi-
ble mappings, i.e., it is the Cartesian product of the field do-
mains for all fields. In this example, the domains forroot ,
left , and right have four elements, the domain forsize

has four elements, and the domain forinfo has three ele-
ments; the state space has4 · 4 · (4 · 4 · 3)3 = 1769472 > 220

states. Forscope = n, the state space has(n + 1)2(n+1) · nn

states.Each state encodes acandidateinput that consists of
the Java objects from the finitization; each field of these ob-
jects is set according to the field domain indexes in the state.
The Korat search builds states for systematic exploring of
the state space, and it builds candidates as inputs to the pred-
icate. Because of the bijection between states and candi-
dates, we use terms “state” and “candidate” interchangeably.
We define two states to be isomorphic iff the corresponding
candidates are isomorphic.
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Figure 5: Candidate that is a valid SearchTree .
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Figure 6: Candidate that is not a valid SearchTree .

Figure 5 shows an example candidate that is a valid bi-
nary search tree with three nodes. Not all candidates rep-
resent valid binary search trees. Figure 6 shows an ex-
ample candidate that is not a tree;repOk returns false

for this candidate. Assume that the field domains are or-
dered as follows: forleft and right the same as for
root (first null then Node objects), forsize [0,1,2,3] ,
and for info [Int(1) ,Int(2) ,Int(3) ]. Then, the can-
didate in Figure 5 (Figure 6) corresponds to the state
[1,3,2,3,1,0,0,0,0,0,2] ([1,3,2,2,0,0,0,0,0,0,0] ).

3.4 Search
Figure 7 shows the pseudo-code of Korat’s search algo-

rithm. The search starts with the state set to all zeros. For
each state, Korat first creates the corresponding candidate.
Korat then executes the predicate to check the validity of the
candidate. During the execution, Korat monitors the fields
that the predicate accesses and maintains astack of fields
ordered by the first time the predicate accesses the corre-
sponding field, i.e., whenever the predicate accesses a field
not already on the stack, Korat pushes the field on the stack.
As an illustration, consider that the stack is empty and Ko-
rat invokesrepOk on the candidate shown in Figure 6. In this
case,repOk accesses only the fields [root ,N0.left ,N0.right ]
(in that order) before detecting a cycle and returningfalse .
Thus, the stack consists of only those three fields.

If the predicate returnstrue , Korat adds the current state
to the set of valid inputs. It also makes sure that all reachable
fields are on the stack, so that successive iterations generate
all (non-isomorphic) states that have the same values for the
accessed fields as the current state.

Korat then generates the next state backtracking on the ac-
cessed fields. Korat first increments the field domain index
for the last field in the stack. If the index exceeds the domain
size, Korat resets the index to zero and moves to the previ-
ous field in the stack, unless the stack is empty. Continuing
with our example, the next candidate takes the next value for
N0.right , which isN2 by the above order; the other fields do
not change. This prunes from the search all45 · 33 = 27648
states of the form[1, ,2,2, , , , , , , ] that have the (par-
tial) valuation: root =N0, N0.left =N1, N0.right =N1. Intu-
itively, the pruning based on accessed fields does not rule
out any valid data structure becauserepOk did not read the
other fields, and it could have returnedfalse irrespective of
the values of those fields.

Set <Map<ObjField , int >>
koratSearch( Predicate pred, Finitization fin) {

Map<ObjField , ClassDomainIndex []> space = fin.getSpace();
Object root = fin.getRootObject();
Set <Map<ObjField , int >> inputs = new Set();
Stack <ObjField > stack = new Stack();
Map<ObjField , int > state = new Map();
foreach ( ObjField f in fin.getObjFields())

state[f] = 0;
do {

// create candidate input
foreach ( ObjField f in fin.getObjFields()) {

ClassDomainIndex cdi = space[f][state[f]];
f.set(cdi.domain.objects[cdi.index]);

}
// execute "pred(root)" and update "stack"
boolean result = observeExecution(pred, root, stack);
// if state is valid, add it to the valid inputs
if (result) inputs.add(state);
// if *not* optimizing, add other fields to the stack
if (!PRUNING || result) {

// add all reachable fields not already in stack
foreach ( ObjField f in reachableObjFields(root))

if (!stack.contains(f)) stack.push(f);
}
// backtrack
while (!stack.isEmpty()) {

ObjField f = stack.top(); // field on the top of stack
if (ISOMORPHISM_BREAKING) {

int m = -1; // $m_f$ from the first Korat paper
ClassDomain d = space[f][state[f]].domain;
// a straightforward way to compute ’m_f’
foreach ( ObjField fp in stack.withoutTop())

if (space[fp][state[fp]].domain == d)
m = max(m, space[fp][state[fp]].index);

// if an isomorphic candidate would be next...
if (space[f][state[f]].index > m)

// ...skip to the end of domain
while (state[f] < space[f].length - 1 &&

space[f][state[f] + 1].domain == d)
state[f]++;

}
if (state[f] < space[f].length - 1) {

state[f]++; // increment this field
break ; // stop backtracking

} else {
state[f] = 0; // reset this field
stack.pop(); // keep backtracking

}
}

} while (!stack.isEmpty()); // end do
return inputs;

}
Figure 7: Pseudo-code of Korat’s search algorithm.

We next present the isomorphism-breaking optimization.
Recall that a state is a mapping from object fields to field
domain indexes that have a natural order. Additionally, each
stack imposes a (partial) order on the fields. Together, these
orders induce a (partial) lexicographic order on the states.
Korat generates inputs in this lexicographical order. More-
over, Korat avoids generating states that are isomorphic to
each other: for each isomorphism partition, Korat generates
only the lexicographically smallest state in that partition.
Conceptually, Korat avoids generating isomorphic states by
incrementing some field domain indexes by more than one.

For the fieldf on top of the stack, Korat findsm, the max-
imum class domain index of all fieldsfp that are deeper on
the stack and have the same domain asf (or -1 if there is no
suchfp ). (The actual implementation uses caching to com-
putem.) For the example state from Figure 6 with the stack as
discussed above,m=1 for f =N0.right . When backtracking
on f , Korat checks if the field domain index forf is greater
thanm. If it is, Korat increments the field domain index off

to the end of the current class domain forf .
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4. CORRECTNESS
This section presents the correctness of the Korat search

algorithm. We first state assumptions and prove properties
of the predicates that the search operates on. The output
of the search is a set of predicate inputs. This set depends
on the results that the predicate returns for the candidate in-
puts. If the predicate is non-deterministic in result, Korat can
generate different sets of inputs for the same predicate and
finitization. We prove that all those sets satisfy soundness,
completeness, and optimality properties.

Several issues complicate proving Korat’s correctness:
• Encoding: For efficiency, Korat encodes Java objects

using integers (that index into the finitization).
• Field ordering: Korat searches the state space based

on adynamicorder in which the predicate executions
access the fields.

• Isomorphism optimization: Korat generates only
non-isomorphic inputs, but does so without explicitly
checking isomorphism of pairs of inputs.

• Non-deterministic predicates:Korat generates all in-
puts for which the predicate always returnstrue and
no input for which the predicate always returnsfalse ;
Korat may or may not generate the other inputs.

We prove that the Korat search is correct for all predicates
π ∈ Π whose executions satisfy the following conditions:

1. Each execution terminates (returningtrue or false ).
2. Each field that the execution accesses is: 1) reachable

from the input or 2) a field of some object that the pred-
icate locally allocates.

3. No execution invokes System.identityHashCode

method.
The user of Korat needs to write the predicate so that Condi-
tion 1 holds. Condition 2 is easy to establish: the predicate
should not access global data (through instance fields), but
only the input. Condition 3 is easy to statically check.

We first show that the execution of a predicate does not
depend on the fields that the predicate does not access.

LEMMA 1. Consider two candidatesγ andγ′ that have
identical values for all fields from some setφ. If an execution
ofπ with inputγ accesses only fields fromφ before returning
a result, then there exists an execution ofπ that acccesses the
same fields and returns the same result.

PROOF. Easy induction on the length of execution of the
predicate forγ. As the witness execution forγ′, choose
the execution that makes the same steps as the execution
for γ, i.e., the execution that forγ′ makes the same non-
deterministic choices as the execution forγ. At each corre-
sponding step of these two executions, the states have identi-
cal values for all fields that are inφ, because no step accesses
a field not inφ.

The following is a simple corollary.
COROLLARY 1. If two candidates have identical values

for more fields than inφ, these two candidates have the same
set of executions.

We show that isomorphic inputs return the same result.
LEMMA 2. For all isomorphicγ andγ′, π(γ) = π(γ′).

PROOF. We need to show that for each execution ofπ
with input γ, there exists an execution ofπ with input γ′

such that the two executions generate the same result. Proof
proceeds by induction on the length of execution forγ. As
the witness execution forγ′, choose the execution that makes
the same steps as the execution forγ. By Condition 2, no ex-
ecution ofπ accesses a field from the finitization that is not
reachable from the root object (the input to the predicate).
Thus, at each corresponding step of these two executions,
the states have the same values for all fields 1) reachable
from the root object or 2) belonging to the objects locally al-
located. Further, by Condition 3, no step depends on the ob-
ject identity, so the states are isormophic for these fields and
in the final state, the executions return the same result.

It follows that isomorphic inputs have the same (in)validity,
which in fact allows Korat to consider as a candidate only
one representative from each isomorphism partition.

We next consider properties of the search. We introduce
some additional notation. We useσ to denote the value of
thestack of fields that the predicate executions access. We
write len(σ) for the length of the stackσ andσ(i) for the
field at offseti, where 0 is the offset at the bottom, and
len(σ) − 1 is the offset at the top. We define a partial order
between states based on lexicographic order of values in the
stack. LetΣ andΣ′ be two states. We say thatΣ isσ-smaller
thanΣ′, in notationΣ <σ Σ′, iff ∃i < len(σ). Σ′(σ(i)) <
Σ(σ(i)) ∧ ∀i′ < i. Σ(σ(i′)) = Σ′(σ(i′)).

THEOREM 1 (SOUNDNESS). Korat does not generate
an invalid input for any predicate (even if not fromΠ).

PROOF. By contradiction; suppose that Korat generates
an invalid inputγ for some predicateπ. It means that all
executions ofπ for inputγ returnfalse . However, the algo-
rithm in Figure 7 generatesγ (i.e., addsγ to the setinputs )
only if an execution ofπ returnstrue . Contradiction!

A search is complete if it generates at least one valid input
from each isomorphism partition. To prove completeness of
Korat, we consider Korat∗, the Korat search with the param-
eterPRUNINGset tofalse .

LEMMA 3. If Korat∗ is complete for some predicate from
Π, then Korat is also complete for that predicate.

PROOF. Assume that Korat∗ is complete, i.e., it always
generates at least one valid input from each isomorphism
partition. An input is generated if it is executed as a can-
didate input, and the execution returnstrue . For a valid
input, all executions returntrue , so a valid input is gener-
ated if it is executed as a candidate. Since Korat∗ generates
at least one valid input from each isomorphism partition, it
also considers as a candidate at least one valid input from
each isomorphism partition. Due to pruning, Korat consid-
ers less candidates than Korat∗. We will show that Korat
still considers as a candidate at least one valid input from
each isomorphism partition. Thus, Korat generates at least
one valid input from each isomorphism partition, i.e., Korat
is complete.

By contradiction, suppose that Korat does not consider as
a candidate any valid input from some isomorphism parti-
tion. Since Korat∗ considers such an input, it must be that
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Korat prunes this valid candidate inputγ. This pruning oc-
curs after the predicate executes some candidate inputγ′ and
returnsfalse . Let the stack after the execution ofγ′ be
σ. Before returningfalse , this execution has accessed only
(some of the) fields fromσ. Further, it is easy to show that
Korat∗ prunes only candidate inputs that have the same val-
uation for all fields inσ asγ′, i.e., ∀f ∈ σ.γ[f ] = γ′[f ].
By Corollary 1, there exists an execution ofγ that returns
false . This contradicts the assumption thatγ is valid, i.e.,
all executions for inputγ returntrue .

LEMMA 4. Korat∗ is complete for all predicates fromΠ.

PROOF. (Sketch) We need to show that for Korat∗ gener-
ates at least one valid input from each isomorphism partition.
It is sufficient to show that Korat∗ considers as a candidate
at least one valid input from each isomorphism partition.

The proof proceeds by induction on the number of con-
sidered candidates, i.e., the number of iterations of the main
loop of Korat∗. Each iteration consists of a predicate exe-
cution with potential adding of fields to the stack, and back-
tracking with isomorphism breaking. Letσ and Σ be the
values ofstack andstate , respectively, after backtracking.
Let Γ be the set of candidates considered up to that itera-
tion. Recall the ordering between statesΣ <σ Σ′. Let s
be {Σ′|Σ <σ Σ′} if σ is not empty and the set of all can-
didates ifσ is empty. An easy induction can show thatΓ
contains at least one representative from each isomorphism
partition that has a representative ins. Since the search ter-
minates when the stack becomes empty, it follows that the
search considers at least one candidate input from each iso-
morphism partition of candidates.

THEOREM 2 (COMPLETENESS). Korat is complete
for all predicates fromΠ.

PROOF. Follows from Lemma 3 and Lemma 4.

We finally prove optimality.
THEOREM 3 (OPTIMALITY ). Korat is optimal for all

predicates fromΠ.

PROOF. Let Γ be the set of candidate inputs for which
Korat executes the predicate. Since the result of Korat is a
subset ofΓ, it suffices to show that the search executes the
predicate for at most one input from each isomorphism par-
tition. By contradiction; suppose that there are two isomor-
phic distinct candidate inputs,γ andγ′. Let p be a permu-
tation between these candidates. Consider the stacks,σ and
σ′, after the backtracking for candidatesγ andγ′, respec-
tively. Let σ0 be the common prefix for these two stacks.
There are two cases:
• For some field inσ0, the candidates have different val-

ues. Leti be the index such that

γ[σ0(i)] 6= γ′[σ0(i)]. (1)

and

∀i′ < i.γ[σ0(i)] = γ′[σ0(i)]. (2)

Sinceγ andγ′ are isomorphic,

∀i ∈ len(σ).p(γ[σ0(i)]) = γ′[σ0(i)]. (3)

From 2 and 3, we have thatp is identity for alli′ < i:

∀i′ < i.p(γ[σ0(i′)]) = γ[σ0(i′)]. (4)

We next consider two cases based on the value for the
i-th field already appearing before in the stack:

∃i′ < i.γ[σ0(i)] = γ[σ0(i′)]. (5)

– If (5) holds, let i′ be the previous index. We
havep(γ[σ0(i)]) = p(γ[σ0(i′)]). From (4), we
have thatp(γ[σ0(i)]) = γ[σ0(i′)]. Further, again
from (5), we havep(γ[σ0(i)]) = γ[σ0(i)] and
then from (3)γ′[σ0(i)] = γ[σ0(i)], which con-
tradicts (1).

– If (5) does not hold, then∀i′ < i.γ[σ0(i)] 6=
γ[σ0(i′)]. Let maxIndex(γ, σ0, i) be the unique
valuem that the search computes inm. For field
σ0(i), the search generates values up tom. Since
γ[σ0(i)] is different thanγ[σ0(i′)] for all i′ < i,
it means thatγ[σ0(i)] = m, and this is the only
such candidate. Thus,γ′[σ0(i)] = m also, and
againγ[σ0(i)] = γ′[σ0(i)]; contradiction!

• For all fields inσ0, the candidates have the same value.
There are two cases depending whetherσ0 is the same
asσ or σ′.

– If σ0 is the same as one of the stacks, assume
w.l.o.g. thatσ = σ0. Consider the smallest in-
dexi such thatγ[σ′(i)] 6= γ′[σ′(i)]; there must be
such a field sinceγ 6= γ′. (More precisely, this
value is not0 in γ′; it is 0 in γ, because it is not
in the stack forγ.) Since the search generatesγ′,
it means that the for all indicesi of σ′, the val-
ues of the fieldsγ′[σ′(i)] ≤ maxIndex(γ′, σ′, i).
Further, for all i′ ≤ i, fields γ′[i′] are reach-
able in bothγ and γ′. However, one of those
fields, σ′(i), has different values inγ and γ′:
γ[σ′(i)] < γ′[σ′(i)] ≤ maxIndex(γ′, σ′, i). Thus,
γ andγ′ are not isomorphic; contradiction!

– If σ0 is not the same as any of the stacks, then
the two stacks have a different field right afterσ0.
Assume w.l.o.g. that the search first generates the
stackσ. The only way to change the value of the
field afterσ0, sayf , is during backtracking if the
search tries all possibilities forf and then back-
tracks on the previous field, the last inσ0. This
backtracking, however, changes the value of this
last field inσ0. Therefore,σ0 cannot be the com-
mon prefix forσ andσ′, if the candidates have the
same values for all fields inσ0. Contradiction!

This cover all the cases, and in each of them gives a contra-
diction if we suppose that the search considers two distinct,
isomorphic candidate inputs. Hence, Korat is optimal.

5. INPUT PROPERTY EXPLOITATION
We have found certain checks to be common in class in-

variants (repOk methods), e.g., that a linked data structure is
acyclic along some fields or that an array has all elements

7



different or ordered. Similar checks are also present in com-
binatorial optimization problems, and they are supported in
libraries or languages such as Comet [38].

We have extended Korat with a library ofdedicated gen-
erators that make it easier to write specifications and also
enable faster generation of valid inputs. The library provides
methods for the common checks. The specifications, or any
other code, can use these methods; in regular execution, they
behave like other Java methods. However, when Korat gen-
erates valid inputs, it uses the special knowledge about the
methods to further optimize its search.

For example,repOk in SearchTree invokes the method
isAcyclic that checks that the nodes reachable from the
root field form a tree along theleft and right fields.
Appendix A shows a way to writeisAcyclic in about 20
lines of code. Instead, we could just use the library method
korat.isTree(root, new String[] {"left", "right" }) .
This method is parametrized over the root node and the
names of the fields. Given a root node,isTree checks that
the reachable nodes form a tree; essentially, it means that no
node repeats in the traversal of the nodes reachable from the
root. The search for the library method is implemented to
take into account this fact.

When Korat generates an input that satisfiesisTree along
some fields, it does not try all (non-isomorphic) possibili-
ties for those fields. Instead, each field is eithernull or
points to a node that is not already in the tree. In our ex-
amplefinSearchTree(s) , this reduces the number of pos-
sibilities for one field froms+1 to 2. In the library, the im-
plementation ofisTree uses the basic dedicated generator
korat.isIn(field, set) that, while searching, assigns to
the field only the values from theset , and while checking,
checks that the value offield is in theset .

The library includes thebasic dedicated generators for
checking the following properties: 1) a value is in a set;
2) two values are equal; 3) a value is less/greater than an-
other value; and 4) a value is of a certain class (instanceof ).
The library also includescombinatorsthat allow creating
complex generators for checking: 1) negation, 2) conjunc-
tion, and 3) disjunction. Finally, the library includes several
higher-level generators, implemented using basic generators
and combinators, which check structural constraints such as
acyclicity or that elements of an array are sorted.

It is easy to add new generators; in theory, we could
even add for each data structure that we consider a special-
purpose generator that generates all valid inputs without any
backtracking. For example, such a generator for red-black
trees was developed and used for testing in [3]. However,
we do not do that; the library that we use in the experiments
has only generators that are applicable for several data struc-
tures. In practice, we do not expect Korat users to extend the
library, but instead to use Korat as a general-purpose search.

6. TESTING USING KORAT
This section describes how Korat automates test-input

generation and correctness checking for Java programs. Ko-
rat constructs appropriate predicates from the specification
and the code under test. We describe how to apply Korat

class SearchTree_remove { // inputs to "remove"
SearchTree This; // (implicit) "this" parameter
Comparable info; // "info" parameter

// for black-box testing of "remove"
boolean removePre() { // precondition for "remove"

return This.repOk();
}

// for white-box testing of "remove"
boolean removeFail() { // failure for "remove"

if (!removePre()) return false ;
try { // invoke "remove" with JML assertions

This.remove(info);
} catch ( JMLAssertionException e) {

return true ; // postcondition not satisfied
}
return false ;

}
}

Figure 8: Class for inputs to theremove method.

to black-box (Section 6.1) and white-box (Section 6.2) test-
ing.We also describe how to test sequences of method calls
(Section 6.3). Sequences often arise in the context of al-
gebraic specifications [23], for example insertion of an ele-
ment followed immediately by its deletion from a structure
leaves the structure contents unchanged. The sequences can
also describe correctness properties at an abstract level, as
in model-based specifications [47]; Korat can test such se-
quences using appropriate abstraction functions [35]. Not
only Korat enables testing sequences, it also enablesgener-
ating sequences of interest. This allows Korat to generate
tests that use API calls to construct input objects in addition
to tests that directly represent concrete object graphs.

6.1 Black-box testing
In black-box testing, Korat tests a method without consid-

ering the method’s code. Korat exhaustively generates inputs
that satisfy the method precondition, executes the method on
each of the inputs and checks the output using atest oracle.
To generate test inputs for a methodm, Korat first constructs
a Java class corresponding to them’s inputs and a predicate
corresponding to them’s precondition. Korat then generates
valid inputs for that predicate; each of these inputs corre-
sponds to a valid test input form. For theremove method
from Section 2, the corresponding class and the predicate
removePre are shown in Figure 8. The predicate simply in-
vokesrepOk on the (implicit)this parameter ofremove ; the
parameterinfo is unconstrained.

After generating all valid test inputs for a method, Korat
invokes the method on each input and checks each output
with a test oracle. A simple test oracle could check partial
correctness of a method by invokingrepOk in the post-state
to check if the method preserves its class invariant. If the
result isfalse , the method under test is incorrect, and the
input provides a concrete counterexample.

Korat currently uses the JML tool-set [33] to automati-
cally generate test oracles from method postconditions (and
method assertions in general), as in the jmlunit frame-
work [8]. The JML tool-set translates JML postconditions
(and assertions) into runtime Java assertions. If an execu-
tion of a method violates such an assertion, an exception is
raised. Test oracle catches these exceptions and reports cor-
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rectness violations. These exceptions are different from the
exceptions that the method specification allows, and Korat
leverages JML to check both normal and exceptional behav-
ior of methods. More details on the JML tool-set and trans-
lation can be found in [33].

6.2 White-box testing
In white-box testing, Korat tests a method considering the

method’s code. To test a methodm, Korat first constructs a
predicate corresponding to the negation ofm’s correctness.
If a valid input is found for this predicate,m is incorrect,
and the input provides a counterexample. For theremove

method, the corresponding predicateremoveFail is shown
in Figure 8. This predicate first invokesremovePre ; if it is
not satisfied, the input is not a valid test input forremove and
cannot be a counterexample. If the input is valid,remove is
executed, together with the JML-translated assertions. If this
execution raises a JML exception,remove failed to satisfy its
specification.

The difference between predicates for white-box and
black-box testing is in the invocation of the method under
test; in our example,removeFail invokesremove , but re-

movePre does not. It means that for generating valid inputs to
removeFail , Korat instrumentsremove , among other meth-
ods, and monitors the accesses thatremove makes to the can-
didate. This by itself makes one execution ofremove slower.
However, it “opens” the body ofremove for the optimiza-
tions that Korat performs to prune the search. In general,
this can significantly reduce the time to test the method.

6.3 Sequences of method calls
We next consider testing a sequence of method calls.

It is straightforward to translate the problem of testing
a fixed sequence to the problem of testing one method.
As an illustration, consider the following two example se-
quences that specify properties ofremove : 1) the sequence
t.add(e).remove(e).equals(t) that arises in an axiom in
an algebraic specification and 2) the sequence

JMLObjectSet sPre = t.abstract();
t.remove(e);
JMLObjectSet sPost = t.abstract();
return sPost.equals(sPre.delete(e));

that arises in a model-based specification forremove , and
states that each tree is abstracted into a set andremove from
a tree commutes with removing the element from the set.
(This form of specification can be expressed in JML using
model fields.)

The sequences are translated respectively into the methods
axiom andimplements :
/*@ requires t.repOk();

@ ensures \result == true ; */
boolean axiom( SearchTree t, Comparable e) {

return t.add(e).remove(e).equals(t);
}

/*@ requires t.repOk();
@ ensures \result == true ; */

boolean implements( SearchTree t, Comparable e) {
JMLObjectSet sPre = t.abstract();
t.remove(e);
JMLObjectSet sPost = t.abstract();
return sPost.equals(sPre.delete(e));

}

These methods can now be tested in the same way thatre-

move is tested, either in black-box or white-box mode.
Korat not only enables testing sequences of method calls,

it also enablesgeneratingsequences of interest. The user
needs to build a representation of desired sequences and a
predicate that defines their validity; generating a valid input
to the predicate then provides a sequence with desired prop-
erty. Clearly, Korat can generate all such sequences (up to
a given length). Each such sequence corresponds to a com-
mon test input that consists of method calls; this contrasts
with the typical use of Korat to generate inputs as concrete
object graphs. However, the ability to generate sequences,
allows Korat to discover a sequence that builds a given ob-
ject graph. This enables Korat to output counterexamples (or
other inputs of interest) as sequences of method calls.

7. MUTATION TESTING
This section presents design and implementation of Feras-

trau, a tool for mutation testing of Java programs.Mutation
testingis a criterion for assessing the quality of a set of test
inputs [15, 41]. There are mutation testing tools for several
languages, such as Mothra [31] for Fortran and Proteum [13]
for C. We have implemented Ferastrau for Java; to the best
of our knowledge, the first mutation-testing tool for Java.
Mutation testing proceeds in two steps.

In the first step, a set ofmutants is generated from the
original program by applyingmutation operatorsto perform
one or more syntactic modifications, e.g., replacing a vari-
able with another variable (of a compatible type), sayn.left

with n.right . Mutation operators model typical software
faults; the operators were characterized [2,30,31,42] for sev-
eral languages, including Java. Section 7.1 presents mutant
generation in Ferastrau.

In the second step, the original program and each mutant
are executed on each input and the corresponding outputs are
compared. If a mutant generates an output different from the
original program, the test input is said tokill the mutant. For
a given set of inputs, the rate of mutant killing is the ratio
of the number of killed mutants to the total number of mu-
tants. Section 7.2 presents how Ferastrau executes mutants
and compares the outputs.

7.1 Mutant generation
We have implemented mutant generation by changing

the Sun’sjavac compiler. Ferastrau performs a source-to-
source translation: it parses each class of the original pro-
gram into an abstract syntax tree, applies some mutation op-
erators to the trees, and outputs the source of the mutants.
Ferastrau applies the following mutation operators:
• Mutate a Java operator to another operator (of the same

type), e.g., ‘+’ to ‘ - ’, ‘ ==’ to ‘ != ’, ‘ <’ to ‘ <=’ etc.
• Mutate a variable to another variable (of a compatible

type), e.g., a local variablei to j or an instance variable
n.left to n.right .

• Mutate an invocation of a method to another method
(of a compatible signature). (Ferastrau does not re-
place some special methods, such asnotify ; program-
mers typically do not make such mistakes.)
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benchmark “target” methods some “helper” methods # ncnb # #
lines branches mutants

SearchTree add , remove contains 85 20 272
DisjSet union , find compressPath 29 8 243

HeapArray insert , extractMax heapifyUp , heapifyDown 51 9 274
BinomialHeap insert , extractMin contains , decrease 182 33 292

union , delete merge , findMin
FibonacciHeap insert , extractMin contains , decrease 171 31 297

union , delete cascadingCut , cut , consolidate
LinkedList add , remove , reverse contains , ListIterator.next 102 16 244
SortedList insert , remove contains 176 29 231

sort , merge
TreeMap put , remove get , fixAfterInsertion 230 47 293

containsKey , fixAfterDeletion
rotateLeft , rotateRight

HashSet add , remove contains , HashMap.containsKey 113 20 244
HashMap.put , HashMap.remove

HashMap.rehash
AVTree lookup extract 199 26 205

Table 1: Benchmarks and target methods. Each benchmark is named after the main class; Korat generates data struc-
tures that also contain objects from other classes. Korat generates inputs and checks outputs for the target methods,
thereby also testing helper methods. We tabulate the number of non-comment non-blank lines of source code in all
those methods, the number of branches, and the number of mutants generated by Ferastrau.

The above operators modify only the code of methods, and
not classes, i.e., do not add/remove a method or a field.
These operators correspond to subtle mistakes that manifest
only for non-trivial inputs, as the results in Section 8.3 show.
It is easy to add new operators to Ferastrau to test different
kind of mistakes.

Ferastrau generates mutant classes that have the same
name as the corresponding original classes. For reasons ex-
plained below, Ferastrau provides two approaches: 1) gen-
erate the same classes with both the original program and
the mutants or 2) generate different classes. Suppose that
the original programs containstemp.right that is to be
mutated toleft.right . The first approach usesmetamu-
tants [51]: the mutations are guarded by boolean variables
that are appropriately set during mutant execution; it gen-
erates one class with(MUT ? left : temp).right . The
second approach simply generatesleft/*temp*/.right in
another class.

7.2 Mutant execution
After generating the mutants, Ferastrau uses a set of test

inputs to perform mutation testing. Our experiments use
inputs generated by Korat. Ferastrau executes the original
program and the mutants for each input and compares their
respective outputs. Ferastrau assumes that the original pro-
gram terminates for all test inputs; mutation testing tools for
other languages [13, 31] make the same assumption. Since
Ferastrau operates on Java and has to handle potentially large
number of inputs, additional questions arise:
• How to compare outputs and name mutated classes?

• Whether to execute the original program and the mu-
tants in a single run or in separate runs?

• How to handle non-termination and exceptional termi-
nation of the original program and the mutants?

We next describe how Ferastrau addresses these questions
and then list the criteria that Ferastrau uses to kill a mutant.

Recall that the “output” of a method refers to both the re-
turn value and the objects in the post-state. Comparison is

easy when these are primitive values, but the objects can rep-
resent complex structures. Ferastrau by default usesequals

methods to compare outputs, following Java convention of
usingequals for equality comparisons of objects. This al-
lows comparisons based onabstract values; for example,
two binary search trees that implement sets may be struc-
turally different at theconcretelevel of the implementation,
but if they represent the same set, they are equal according to
the equals method. The use ofequals requires that Feras-
trau generates mutant classes that have the same name as the
corresponding original classes.

Ferastrau executes the original program and the mutants in
a single run; otherwise, it would need to serialize all the out-
puts, which could produce very large files for inputs exhaus-
tively generated by Korat. Recall that Ferastrau can generate
metamutants or generate the original program and the mu-
tants in different classes. If Ferastrau uses metamutants, the
guarding boolean variables slow down the execution. This
approach is better for small code with large data. If Feras-
trau generates different classes, it needs to execute several
classes with the same name in a single Java Virtual Machine
(JVM). Ferastrau then uses a differentClassLoader [50] for
the original program and each mutant, and uses serialization
through a buffer in memory to compare objects. This ap-
proach is better for large code with small data.

Ferastrau assumes that the original program terminates for
all test inputs, either normally or exceptionally. These ex-
ceptions are allowed by the specification, so they are not er-
rors. Ferastrau handles non-termination of mutants by run-
ning them in a separate thread with a time limit for execu-
tion. The limit is set toTm = 10To + 1sec, whereTo is
the time the original program runs for that input. We have
found these constants sufficient to account for fluctuations
in the execution time of Java programs, e.g., due to garbage
collection. (The minimum of1sec is necessary, at least for
Sun’s Java 2 SDK1.3.x JVMs, when the mutant raises an
exception, since JVM takes some extra time in those situa-
tions.) The mutants can terminate either normally or excep-
tionally. Ferastrau catches all exceptions (in Java, allThrow-
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generation checking
gen. ded. spec. coverage # time code coverage mutants

benchmark scope [sec] [sec] st. [%] br. [%] inputs [sec] st. [%] br. [%] killed [%]
SearchTree 6 1.39 0.52 94.74 96.67 8772 0.46 100.00 100.00 99.26

7 9.03 2.19 94.74 96.67 41300 1.25 100.00 100.00 99.26
DisjSet 4 0.29 0.31 100.00 100.00 18280 0.43 100.00 100.00 95.06

5 10.91 9.87 100.00 100.00 1246380 19.93 100.00 100.00 95.06
HeapArray 6 0.90 0.71 90.00 92.86 118251 1.88 100.00 100.00 96.35

7 7.09 6.21 90.00 92.86 1175620 17.58 100.00 100.00 96.71
BinomialHeap 6 3.30 2.35 97.67 98.00 159642 4.61 100.00 100.00 95.89

7 35.60 28.06 97.67 98.00 2577984 75.96 100.00 100.00 96.91
FibonacciHeap 4 1.22 0.90 97.78 98.28 34650 1.08 95.70 98.39 81.48

5 14.14 12.94 97.78 98.28 941058 23.37 100.00 100.00 88.88
LinkedList 6 0.33 0.31 100.00 100.00 11741 0.48 90.57 84.38 99.59

7 0.74 0.71 100.00 100.00 58175 1.54 90.57 84.38 99.59
SortedList 6 1.94 1.77 100.00 100.00 73263 2.57 92.50 89.66 97.40

7 22.68 21.13 100.00 100.00 1047608 37.91 92.50 89.66 97.40
TreeMap 6 0.94 0.61 100.00 100.00 3924 0.38 100.00 91.49 89.76

7 3.28 1.75 100.00 100.00 12754 0.73 100.00 91.49 89.76
HashSet 6 0.91 0.71 89.47 92.31 12932 0.62 100.00 100.00 91.80

7 3.38 2.88 89.47 92.31 54844 1.55 100.00 100.00 92.21
AVTree 4 3.16 1.86 96.67 96.88 27734 8.36 94.12 92.31 91.21

5 87.13 43.41 96.67 96.88 417878 134.51 94.12 92.31 93.65

Table 2: Korat’s performance for test generation (with regular and dedicated generators), specification coverage (state-
ment and branch), correctness checking, code coverage (statement and branch), and rate of mutant killing. All times
are elapsed real times in seconds from the start of Korat to its completion.

able objects) that the executions raise. This allows Ferastrau
to compare the outputs, even exceptional, as well as to catch
all errors in the mutants, including the situations when the
mutant runs out of stack or heap memory and JVM raises
StackOverflowError or OutOfMemoryError .

Ferastrau uses the following criteria to kill a mutant:

• The mutant’s output does not satisfy some class invari-
ant (repOk ), which is a precondition forequals .

• The mutant’s output differs from the output of the orig-
inal program; any of the outputs can be normal or ex-
ceptional.

• The mutant’s execution exceeds the time limit.

• The mutant’s execution runs out of memory.

8. EXPERIMENTAL RESULTS
This section presents the experiments that evaluate ex-

haustive testing. We first discuss the quality of generated
test suites showing how the rate of mutant killing and cov-
erage vary with the scope. We then discuss Korat’s perfor-
mance for test input generation and checking method cor-
rectness. We finally compare exhaustive testing with ran-
domly selected test inputs.

8.1 Benchmarks
Table 1 lists the benchmarks and methods that we use to

measure Korat’s performance. We use Korat to generate
inputs and check the correctness of outputs for thetarget
methods. These methods implement the standard operations
on their corresponding data structures [12]. Executing these
methods also tests somehelper methods because they are
invoked either when executing the target methods or when
checking their correctness (e.g., from postconditions).

SearchTree is presented in Section 2.DisjSet is an
array-based implementation of the fast union-find data struc-
ture [12]; this implementation uses both path compression

and rank estimation heuristics to improve efficiency.Hea-

pArray is an array-based implementation of the heap (pri-
ority queues) data structure.BinomialHeap andFibonacci-

Heap are dynamic data structures that also implement heaps,
but differ in complexity for certain operations [12].

LinkedList is the implementation of linked lists in the
Java Collections Framework, a part of the standard Java li-
braries [50]. This implementation uses doubly-linked, cir-
cular lists. This benchmark is also representative for linked
data structures such as stacks and queues. The elements in
LinkedList are arbitrary objects;SortedList is structurally
identical toLinkedList , but the elements are sorted. This
benchmark is similar to the examples used in some shape
analyses [34,39].TreeMap implements theMap interface us-
ing red-black trees [12].HashSet implements theSet inter-
face, backed by a hash table [12].

AVTree implements theintentional nametrees that de-
scribe properties of services in the Intentional Naming Sys-
tem (INS) [1], an architecture for service location in dy-
namic networks. The original implementation of INS had
bugs that we revealed with exhaustive testing [36] and cor-
rected. We use the corrected version as the original program
in these experiments, but (some of) the mutants have errors.

8.2 Mutation
For mutation testing, we use Ferastrau. We instruct Feras-

trau to generate between 200 and 300 mutants for each
benchmark, mutating the target methods and the helper
methods they invoke, but not the helper methods that only
specifications invoke. Table 1 shows the number of mu-
tants for each benchmark. Table 2 shows the rate of mutant
killing for several scopes. (The numbers for smaller scopes
are in Appendix B.) For all benchmarks butFibonacci-

Heap andTreeMap , inputs in these scopes kill over 90% of
the mutants.

We inspected a selection of the mutants that survived for
these two benchmarks to detect if they are syntactically dif-
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Figure 9: Variation of statement code coverage (thick line) and rate of mutant killing (thin line) with scope. Forall
benchmarks, Korat generates inputs that achieve the maximum coverage that is possible without directly generating
inputs for helper methods.

ferent butsemanticallyequivalent to the original program,
and thus no input could kill them. Since we implemented
FibonacciHeap , we were able to determine that all inspected
mutants are indeed semantically equivalent. Due to the com-
plexity of TreeMap and our lack of familiarity with it, we
were not able to definitely establish the equivalence for all
inspected mutants. However, we also tested surviving mu-
tants for inputs of scope eight and all still survived increasing
our confidence that they are indeed semantically equivalent.

8.3 Coverage
Table 2 also shows specification/code coverage. Since Ko-

rat uses executable specifications, we measurespecification
coverage[7] as code coverage for the predicate that corre-
sponds to the method’s precondition (e.g.,removePre ). We
measure this coverage while Korat generates valid inputs
for the predicate, i.e., valid test cases for the method. For
most benchmarks, the tabulated scopes achieve complete
coverage, both for statements and branches. It is not al-
ways 100%, because finitizations do not even put for fields
some values that do not satisfy the predicate (e.g.,fin-

SearchTree does not putnull for info ). Specification cov-
erage becomes complete for smaller scopes than code cover-
age (Appendix B) which means that specification coverage
is a weaker criterion than code coverage.

Figure 9 shows graphs that relate scope with the statement

coverage of code and the rate of mutant killing. The code
coverage is measured for all target and helper methods, since
they are all executed. For most benchmarks, Korat generates
inputs that achieve 100% coverage, both for statements and
branches. For other benchmarks, the coverage is not 100%,
because no input for target methods could trigger some ex-
ceptional behavior of helper methods.

For example, the (target)reverse method for lists creates
aListIterator and invokes some (helper) methods on it. In
general, these helper methods could raise exceptions, such as
ConcurrentModificationException or NoSuchElementEx-

ception , but the target methods never invoke the helper
methods in such a way. In terms of JML specifications, the
target methods invoke the helper methods in pre-states that
satisfy the precondition fornormal behavior , and not for
exceptional behavior .

For all benchmarks, the minimum scope needed to achieve
complete coverage is not sufficient to kill all mutants; in-
creasing the scope increases the rate of mutant killing. It
is well-known [5] that in general complete statement and
branch coverage (or for that matter, any coverage criteria)
does not guarantee absence of faults. Our experiments vali-
date this for data structures. As an illustration, consider the
following code snippet fromSearchTree.remove :

Node temp = left;
while (temp.right.right != null ) {

temp = temp.right;
}
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Suppose that the mutation changes only the loop body:
Node temp = left;
while (temp.right.right != null ) {

temp = left /*temp*/ .right;
}

If the loop is executed zero or one times, the original pro-
gram and the mutant have the same behavior. For trees with
up to four nodes, the loop cannot execute more than once,
but these trees achieve complete coverage forremove . How-
ever, for a tree with five nodes, the loop executes twice in the
original program, while the mutant loops infinitely. (Recall
that Ferastrau detects and kills such mutants.) Because of
this, we do not measure the effectiveness of Korat by con-
sidering only the scope that achieves complete coverage.

8.4 Feasibility
Table 2 also shows Korat’s performance for test generation

and correctness checking. For each benchmark, the tabu-
lated scope is mutation-adequate. We tabulate the time Korat
takes to generate all valid test inputs (without and with ded-
icated generators) and to check the correctness of methods.
All times are elapsed real times in seconds from the start of
Korat to its completion, without the JVM initialization that
takes around 0.5 seconds. We performed the experiments on
a Linux machine with a 1.8GHz Pentium 4 processor using
Sun’s Java 2 SDK1.3.1 JVM.

Number of inputs that is generated is the sum of numbers
of inputs forall target methods. Also, the generation and
checking times are sums of times for all methods. We use
Korat to separately generate inputs for each method. How-
ever, when two methods have the same precondition (e.g.,
remove andadd for SearchTree ), we could reuse the inputs
and thus reduce the generation time. For scopes in Table 2,
the size of the search space is between225 and2250. In all
cases, Korat completes generation in less than two minutes,
often in just a few seconds.

The use of dedicated generators reduces the generation
times from a few percent to 75% (forSearchTree ). Since
dedicated generators have a higher overhead, their use some-
times increases the generation time, especially for very small
scopes. As mentioned in Section 5, Korat library is not
aimed at providing the most efficient generation for our
benchmarks, but at providing generators that are applicable
for many data structures. Furthermore, dedicated generators
make it easier to write specifications for all our benchmarks.

The postconditions for all methods specify typical partial
correctness properties; they require resulting data structures
to be valid and, depending on the method, to contain or not
to contain input elements. The checking times depend on
the complexity of methods and their postconditions. Over-
all, the checking times are within the same magnitude as the
corresponding generation times across all our benchmarks.

These results show that Korat can efficiently generate all
inputs even for very large search spaces, primarily because
the search pruning allows Korat to explore only a tiny frac-
tion of these spaces. The key to effective pruning is back-
tracking based on fields accessed duringrepOk ’s executions.
Without backtracking, and even with isomorphism optimiza-
tion, Korat would consider infeasibly many candidates. Iso-
morphism optimization further reduces the number of con-

random exhaustive
mutants

benchmark scope killed [%] scope-1 scope
SearchTree 7 99.26 = =

DisjSet 5 95.06 = =
HeapArray 7 95.99 < <

BinomialHeap 7 95.10 < <
FibonacciHeap 5 86.87 > <

LinkedList 7 99.59 = =
SortedList 7 96.40 < <

TreeMap 7 89.08 < <
HashSet 7 91.39 < <
AVTree 5 93.17 > <

Table 3: Comparison of exhaustive testing with ran-
domly chosen test inputs. ‘=’ means that both sets are
equally good, ‘<’ random is worse,‘>’ random is better.

sidered candidates, but it mainly reduces the number of valid
inputs and thus checking time.

It is important to note that Korat generates exactly the
number of non-isomorphic data structures as given in the
Sloane’s On-Line Encyclopedia of Integer Sequences [46].
This increases our confidence that the implementation of Ko-
rat is correct; we proved that its algorithm is correct.

8.5 Randomness
Exhaustive testing generates all tests (within a certain size)

that satisfy the input invariant. A natural question is what
test selection strategy can be applied to reduce the size of an
exhaustive test suite without sacrificing its quality. The sim-
plest selection strategy is random sampling. We next evalu-
ate its quality.

Consider one benchmark, and letT (s) be the set of all
(non-isomorphic) test inputs within scopes. FromT (s), we
randomly chose a subsetR(s) whose cardinality is the same
as the cardinality ofT (s− 1). We then compare the quality
of R(s) againstT (s− 1) andT (s). For comparison, we use
the rate of mutant killing, as this criterion most directly mea-
sures the quality of test suite in detecting faults. It is impor-
tant to note that randomly chosen inputs are also generated
with Korat; for complex data structures, it is not feasible to
simply generate random inputs that satisfy the invariants.

Table 3 shows the comparison for several random sam-
ples. The randomly selected test suites give a lower rate of
mutant killing in half of the benchmarks; only forFibonac-

ciHeap andAVTree , the rate is higher for randomly selected
inputs than for all inputs from the smaller scope. This means
that exhaustive testing for all inputs within some scope can
be more effective than random testing with bigger inputs.
There may be, however, another test selection strategy, be-
sides random, that can reduce the size of an exhaustive test
suite without reducing its quality.

9. RELATED WORK
We first discuss other projects on specification-based test-

ing. We then compare Korat with static analysis and model
checking; Korat is related to them although it performs test-
ing, i.e., dynamic analysis, because it does so exhaustively.

9.1 Specification-based testing
There is a large body of research on specification-based

testing. An early paper by Goodenough and Gerhart [20]
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emphasizes its importance. Many projects propose tech-
niques and tools that automate test case generation from
specifications, such as Z specifications [16, 25, 49], UML
statecharts [40], or ADL specifications [7, 44]. These speci-
fications typically do not consider linked data structures with
complex invariants.

Korat is reimplemented in the AsmL Test Generation tool
(AsmLT) [18] that generates test cases from AsmL specifi-
cations [22]. Korat adds structure generation to generation
based on finite-state machines [21]. AsmLT was success-
fully used for detecting fault in a production-quality XPath
compiler [48]. Scalability of exhaustive testing tools does
not depend as much on the complexity/size of the tested code
as it depends on the complexity of inputs that the code oper-
ates on. This paper evaluates the effectiveness of exhaustive
testing for data structures.

The TestEra framework [36] generates Java data structures
from declarative specifications given in Alloy [27]. TestEra
uses the SAT-based analysis of the Alloy tool-set [26] for
test generation and correctness checking. Even though Al-
loy provides some non-isomorphic generation, for efficient
enumeration TestEra requires users to manually write sym-
metry breaking predicates [29]. Also, TestEra requires the
use of a specification language much different from Java.
The experimental results [6] show that Korat provides faster
test generation than TestEra (even when TestEra users man-
ually add symmetry breaking).

Cheon and Leavens [8] describe jmlunit, an automatic
translation of JML specifications into test oracles for JU-
nit [4], a popular framework for unit testing of Java mod-
ules. JUnit automates test execution and error reporting, but
requires programmers to provide test inputs and test oracles.
In jmlunit, the Cartesian product is directly used to generate
test inputs, which cannot handle very large input spaces. Ad-
ditionally, jmlunit does not generate complex inputs, but re-
quires users to create and provide them. Korat further auto-
mates and optimizes generation of test inputs, thus automat-
ing the entire testing process.

There are many tools that produce test inputs from a de-
scription of tests. QuickCheck [9] is a tool for testing
Haskell programs. It requires the tester to write Haskell
functions that can produce valid test inputs; executions of
such functions with different random seeds produce different
test inputs. Korat differs in that it requires only an invariant
that characterizes valid test inputs and then uses a general-
purpose search to generateall valid inputs. DGL [37] and
lava [45] generate test inputs from context grammars. They
were used mostly for random testing, although they can also
exhaustively generate test inputs. However, they do not con-
sider inputs with complex invariants.

AETG [10] is a popular system for generating test inputs
that cover all pair-wise (orn-wise) combinations of test pa-
rameters (that correspond to object fields in Korat). Using
pair-wise testing is applicable when parameters are relatively
independent. However, in Korat fields are dependent, and
Korat can be viewed as an efficient approach to generate all
inputs whenn is the same as the number of parameters. Ad-
ditionally, Korat takes into account isomorphism and gener-
ates only one input from each isomorphism partition.

9.2 Static analysis
Several projects aim at developing static analyses for ver-

ifying program properties. The Extended Static Checker
(ESC) [17] uses a theorem prover to verify partial correct-
ness of classes annotated with JML specifications. ESC can
verify absence of errors such as null pointer dereferences,
array bounds violations, and division by zero. However,
tools like ESC do not verify properties of complex linked
data structures.

Some recent projects attempt to address this issue. The
Three-Valued-Logic Analyzer (TVLA) [34, 43] is the first
system to verify that the list structure is preserved in pro-
grams that perform list reversals via destructive updates.
TVLA has been used to analyze programs that manipulate
doubly linked lists and circular lists, as well as some sorting
programs. The pointer assertion logic engine (PALE) [39]
can verify a large class of data structures that can be repre-
sented by a spanning tree backbone. These data structures
include doubly linked lists, trees with parent pointers, and
threaded trees. TVLA and PALE are primarily intraproce-
dural, whereas Role Analysis [32] supports compositional
interprocedural analysis and verifies similar properties.

While static analysis of program properties is a promis-
ing approach for ensuring program correctness in the long
run, the current static analysis techniques can only verify
limited program properties. For example, none of the above
techniques can verify correctness of implementations of bal-
anced trees, such as red-black trees. Testing, on the other
hand, is very general and can verify any decidable program
property, but for inputs bounded by a given size.

Jalloy [28, 52] analyzes methods that manipulate linked
data structures by first building an Alloy model of Java
code and then checking it exhaustively with the Alloy tool-
set [26]. This approach provides static analysis, but un-
sound with respect to both the size of input and the length
of computation. Korat checks the entire computation and
handles larger inputs and more complex data structures than
in [28, 52]. Further, Korat does not require Alloy, but JML
specifications.

9.3 Software model checking
There has been a lot of recent interest in applying model

checking to software. JavaPathFinder [53] and VeriSoft [19]
operate directly on a Java, respectively C, program and sys-
tematically explore its state to check correctness. Other
projects, such as Bandera [11] and JCAT [14], translate Java
programs into the input language of existing model check-
ers like SPIN and SMV . They handle a significant portion
of Java, including dynamic allocation, object references, ex-
ceptions, inheritance, and threads. They also provide auto-
mated support for reducing program’s state space through
program slicing and data abstraction.

However, most of the work on applying model checking
to software has focused on checking event sequences and
not linked data structures. Where data structures have been
considered, the purpose has been to reduce the state space to
be explored and not to check the data structures themselves.
Korat, on the other hand, checks correctness of methods that
manipulate linked data structures.
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10. CONCLUSIONS
This paper evaluated effectiveness of exhaustive testing

for several implementations of data structures. We measured
how statement coverage, branch coverage, and rate of mu-
tant killing vary with scope. We used Korat and its exten-
sions to perform exhaustive testing. The experimental re-
sults show that: 1) exhaustive testing within small scopes
can achieve complete coverage and kill almost all of the mu-
tants for data structure benchmarks; 2) mutation adequacy is
a stronger criterion than code coverage; 3) Korat can be used
effectively to generate inputs and check correctness for these
scopes; and 4) exhaustive testing within some scope can be
more effective than random testing with bigger inputs.

We particularly point out the feasibility of exhaustive test-
ing for data structures. The community has been aware of the
potential utility of generating structures that satisfy sophisti-
cated invariants [3], but the problem has been considered to
be too difficult to attempt to solve:

“Trying to generate a random heap state, with
a rats’ [sic] nest of references, and then select
those that represent queues, would be both dif-
ficult and hopeless in practice.” [9, page 68]

Our results show that it is, in fact, perfectly feasible in prac-
tice to efficiently generate structures that satisfy not just
the queue property, but arbitrary data structure invariants as
specified by arbitrary pieces of code written in a standard
programming language. These results, together with pre-
vious studies that used exhaustive testing to detect faults in
real applications [36, 48], suggest that exhaustive checking
within a selected scope [6,18,52] is a practical way to obtain
a high-quality test suite for data structure implementations.
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APPENDIX

A. FULL CODE FOR THE EXAMPLE
import java.util.*;
class SearchTree {

Node root; // root node
int size; // number of nodes in the tree
static class Node {

Node left; // left child
Node right; // right child
Comparable info; // data

}

/*@ normal_behavior // non-exceptional specification
@ // precondition
@ requires repOk();
@ // postcondition
@ ensures repOk() && !contains(info) &&
@ \result == \old(contains(info));
@*/

boolean remove(Comparable info) {
Node parent = null;
Node current = root;
while (current != null) {

int cmp = info.compareTo(current.info);
if (cmp < 0) {

parent = current;
current = current.left;

} else if (cmp > 0) {
parent = current;
current = current.right;

} else {
break;

}
}
if (current == null) return false;
Node change = removeNode(current);
if (parent == null) {

root = change;
} else if (parent.left == current) {

parent.left = change;
} else {

parent.right = change;
}
return true;

}

Node removeNode(Node current) {
size--;
Node left = current.left, right = current.right;
if (left == null) return right;

if (right == null) return left;
if (left.right == null) {

current.info = left.info;
current.left = left.left;
return current;

}
Node temp = left;
while (temp.right.right != null) {

temp = temp.right;
}
current.info = temp.right.info;
temp.right = temp.right.left;
return current;

}

boolean repOk() {
// checks that empty tree has size zero
if (root == null) return size == 0;
// checks that the input is a tree
if (!isAcyclic()) return false;
// checks that size is consistent
if (numNodes(root) != size) return false;
// checks that data is ordered
if (!isOrdered(root)) return false;
return true;

}

private boolean isAcyclic() {
Set visited = new HashSet();
visited.add(root);
LinkedList workList = new LinkedList();
workList.add(root);
while (!workList.isEmpty()) {

Node current = (Node)workList.removeFirst();
if (current.left != null) {

// checks that the tree has no cycle
if (!visited.add(current.left))

return false;
workList.add(current.left);

}
if (current.right != null) {

// checks that the tree has no cycle
if (!visited.add(current.right))

return false;
workList.add(current.right);

}
}
return true;

}

private int numNodes(Node n) {
if (n == null) return 0;
return 1 + numNodes(n.left) + numNodes(n.right);

}

private boolean isOrdered(Node n) {
return isOrdered(n, null, null);

}

private boolean isOrdered(Node n, Compara-
ble min, Comparable max) {

if (n.info == null) return false;
if ((min != null && n.info.compareTo(min) <= 0) ||

(max != null && n.info.compareTo(max) >= 0))
return false;

if (n.left != null)
if (!isOrdered(n.left, min, n.info))

return false;
if (n.right != null)

if (!isOrdered(n.right, n.info, max))
return false;

return true;
}

}
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B. EXPERIMENTAL RESULTS

generation checking
gen. ded. spec. coverage # time code coverage mutants

benchmark scope [sec] [sec] st. [%] br. [%] inputs [sec] st. [%] br. [%] killed [%]
1 0.06 0.01 57.89 60.00 4 0.06 38.46 40.00 26.10
2 0.05 0.01 94.74 96.67 20 0.06 79.49 87.50 69.85
3 0.07 0.10 94.74 96.67 90 0.07 87.18 92.50 79.77

SearchTree 4 0.17 0.10 94.74 96.67 408 0.14 97.44 97.50 92.64
5 0.38 0.25 94.74 96.67 1880 0.24 100.00 100.00 98.52
6 1.39 0.52 94.74 96.67 8772 0.46 100.00 100.00 99.26
7 9.03 2.19 94.74 96.67 41300 1.25 100.00 100.00 99.26
1 0.01 0.01 61.54 55.00 4 0.04 23.08 25.00 0.41
2 0.01 0.01 100.00 95.00 30 0.09 69.23 68.75 30.45

DisjSet 3 0.04 0.04 100.00 100.00 456 0.09 100.00 100.00 88.47
4 0.29 0.31 100.00 100.00 18280 0.43 100.00 100.00 95.06
5 10.91 9.87 100.00 100.00 1246380 19.93 100.00 100.00 95.06
1 0.01 0.01 80.00 85.71 16 0.04 79.31 66.67 39.05
2 0.01 0.01 90.00 92.86 75 0.05 79.31 66.67 43.79
3 0.02 0.02 90.00 92.86 396 0.09 93.10 83.33 69.70

HeapArray 4 0.08 0.09 90.00 92.86 2240 0.17 96.55 88.89 86.13
5 0.22 0.21 90.00 92.86 15352 0.38 96.55 94.44 89.78
6 0.90 0.71 90.00 92.86 118251 1.88 100.00 100.00 96.35
7 7.09 6.21 90.00 92.86 1175620 17.58 100.00 100.00 96.71
1 0.02 0.01 62.79 62.00 12 0.07 52.87 57.58 31.16
2 0.03 0.02 93.02 94.00 54 0.08 87.36 84.85 62.67
3 0.12 0.09 93.02 94.00 336 0.14 98.85 96.97 89.72

BinomialHeap 4 0.40 0.30 97.67 98.00 1800 0.24 100.00 98.48 93.15
5 0.81 0.65 97.67 98.00 16848 0.69 100.00 100.00 94.86
6 3.30 2.35 97.67 98.00 159642 4.61 100.00 100.00 95.89
7 35.60 28.06 97.67 98.00 2577984 75.96 100.00 100.00 96.91
1 0.01 0.07 55.55 51.72 12 0.07 35.48 43.55 15.82
2 0.03 0.03 91.11 93.10 108 0.09 75.27 80.64 44.10

FibonacciHeap 3 0.28 0.24 97.78 98.28 1632 0.24 95.70 98.39 75.08
4 1.22 0.90 97.78 98.28 34650 1.08 95.70 98.39 81.48
5 14.14 12.94 97.78 98.28 941058 23.37 100.00 100.00 88.88
1 0.01 0.01 100.00 100.00 15 0.08 64.15 68.75 58.19
2 0.01 0.01 100.00 100.00 50 0.09 90.57 84.38 98.77
3 0.03 0.03 100.00 100.00 169 0.12 90.57 84.38 99.59

LinkedList 4 0.07 0.07 100.00 100.00 627 0.16 90.57 84.38 99.59
5 0.18 0.18 100.00 100.00 2584 0.26 90.57 84.38 99.59
6 0.33 0.31 100.00 100.00 11741 0.48 90.57 84.38 99.59
7 0.74 0.71 100.00 100.00 58175 1.54 90.57 84.38 99.59
1 0.03 0.04 71.43 62.50 7 0.11 62.50 50.00 33.33
2 0.04 0.07 100.00 100.00 36 0.11 80.00 74.14 52.81
3 0.07 0.07 100.00 100.00 188 0.15 92.50 89.66 90.04

SortedList 4 0.22 0.20 100.00 100.00 1066 0.28 92.50 89.66 93.93
5 0.53 0.48 100.00 100.00 7427 0.50 92.50 89.66 96.53
6 1.94 1.77 100.00 100.00 73263 2.57 92.50 89.66 97.40
7 22.68 21.13 100.00 100.00 1047608 37.91 92.50 89.66 97.40
1 0.02 0.02 57.14 63.33 6 0.06 14.41 14.89 5.46
2 0.03 0.03 100.00 100.00 28 0.06 45.95 50.00 28.66
3 0.07 0.04 100.00 100.00 96 0.09 63.96 73.40 61.09

TreeMap 4 0.18 0.15 100.00 100.00 328 0.15 89.19 85.11 78.15
5 0.38 0.31 100.00 100.00 1150 0.24 100.00 91.49 87.37
6 0.94 0.61 100.00 100.00 3924 0.38 100.00 91.49 89.76
7 3.28 1.75 100.00 100.00 12754 0.73 100.00 91.49 89.76
1 0.01 0.01 57.89 69.23 4 0.04 51.92 50.00 29.91
2 0.01 0.01 89.47 92.31 34 0.05 96.15 95.00 77.45
3 0.06 0.05 89.47 92.31 212 0.09 100.00 100.00 90.57

HashSet 4 0.23 0.22 89.47 92.31 1170 0.19 100.00 100.00 90.98
5 0.36 0.34 89.47 92.31 3638 0.27 100.00 100.00 91.39
6 0.91 0.71 89.47 92.31 12932 0.62 100.00 100.00 91.80
7 3.38 2.88 89.47 92.31 54844 1.55 100.00 100.00 92.21
1 0.01 0.01 53.33 56.25 2 0.07 55.29 51.92 40.00
2 0.05 0.03 90.00 87.50 86 0.14 75.29 78.85 60.00

AVTree 3 0.21 0.17 96.67 96.88 1702 0.78 88.23 84.61 75.12
4 3.16 1.86 96.67 96.88 27734 8.36 94.12 92.31 91.21
5 87.13 43.41 96.67 96.88 417878 134.51 94.12 92.31 93.65

Table 4: Korat’s performance for test generation (with regular and dedicated generators), specification coverage (state-
ment and branch), correctness checking, code coverage (statement and branch), and rate of mutant killing. All times
are elapsed real times in seconds from the start of Korat to its completion.
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