COMS E6998-9: Algorithms for Massive Data (Spring'19)Feb 14, 2019Lecture 8: Fast dimension reduction, ℓ_1 regressionInstructor: Alex AndoniScribes: Darshan Thaker, Yuchen Mo

1 Review

Recall from last class the Fast Johnson-Lindenstrauss Lemma, which tells us that there exists a linear map $\phi : \mathbb{R}^n \to \mathbb{R}^k$, $\phi(x) = Sx$ where $S = P \cdot H \cdot D$. Here, P is a sparse projection matrix, H is a Hadamard matrix, and D is a diagonal matrix with entries as random ± 1 's. The total time complexity for computing S is as follows: O(n) for (Dx), $O(n \log n)$ for $(H \cdot (Dx))$, O(k) for $(P \cdot (HDx))$. In total, this means the time for dimensionality reduction is $O(n \log n + k)$. Recall the following lemma.

Lemma 1. For vector $y \in \mathbb{R}^n$, if $k = \Omega\left(\frac{\log \frac{1}{\delta}}{\epsilon^2} \cdot \frac{n \cdot ||y||_{\infty}^2}{||y||_2^2}\right)$, then with probability $\geq 1-\delta$, $||Py||_2 \in (1\pm\epsilon)||y||_2$

2 Fast JL (cont.)

We want to show that if $y = H \cdot D \cdot x$, then $||y||_{\infty}$ cannot be too large. More formally:

Claim 2. Let $y = H \cdot D \cdot x$, $\Pr\left[||y||_{\infty} \le c \cdot \sqrt{\frac{\log(n/\delta)}{n}} \cdot ||x||_2\right] \ge 1 - \delta$ We just need to prove that $\forall y_i, |y_i| \le c \cdot \sqrt{\frac{\log(n/\delta)}{n}} \cdot ||x||_2$ with high probability.

Proof. Here A_j^i means ith row and jth column. We have that $r_j \in \left\{\frac{1}{\sqrt{n}}, -\frac{1}{\sqrt{n}}\right\}$

$$y_i = \langle H^i, D_i x \rangle = \sum_j r_j x_j$$
$$= \frac{1}{\sqrt{n}} \cdot (\pm x_1 \pm x_2 \pm \dots \pm x_n)$$

We will use the following theorem now.

Theorem 3. Let $a_1, \dots, a_n \in \mathbb{R}$, $r_1, \dots, r_n \in \{\pm 1\}$, $S_n = |\sum_j r_j a_j|$, then $\Pr\left[S_n \ge t \cdot \sqrt{\sum_j a_j^2}\right] \le e^{-t^2/2}$. (Proof: [1] equation 1.2)

Thus, we have

$$\Pr\left[|y_i| \ge \sqrt{\frac{2\log(n/\delta)}{n}} \cdot ||x||_2\right] \le \frac{\delta}{n}$$

By taking union bound:

$$\Pr\left[\forall i \in [n], |y_i| \le \sqrt{\frac{2\log(n/\delta)}{n}} \cdot ||x||_2\right] \ge 1 - \delta$$

Subspace embedding

Recall the setup from last lecture: we are given $\{y \in \mathbb{R}^n | y = Ux\}$, $x \in \mathbb{R}^{n \times d}$, and we have that d < n. If $S \in \mathbb{R}^{k \times d}$, and for all $x \in \mathbb{R}^d$ and y = Ux, $||Sy||_2 \in (1 \pm \epsilon)||y||_2$, then S is a subspace embedding of U. From last time, we know the following claim:

Claim 4. If S is defined as in the JL Lemma, i.e., $S_{i,j} \sim N\left(0, \frac{1}{k}\right)$, $k = \Omega\left(d/\epsilon^2\right)$, then S is a subspace embedding of U.

The following claim also holds, but we do not prove it.

Claim 5. If S is defined as in fast JL, i.e., S = PHD, $k = \Omega\left(\frac{d+\log n}{\epsilon^2}\log(d)\right)$, then S is a subspace embedding of U.

3 Least absolute deviation regression

We first introduce the least absolute deviation regression problem, also known as the ℓ_1 regression problem.

Definition 6. The least absolute deviation regression is as follows: Given $A \in \mathbb{R}^{n \times d}$, $b \in \mathbb{R}^d$, we wish to find $\min_{x \in \mathbb{R}^d} ||Ax - b||_1$. Here $||y||_1 = \sum_i |y_i|$ for a vector y (i.e. the ℓ_1 norm).

This can be reformulated into a linear program, where our objective is to minimize $\sum_{i=1}^{n} t_i$, subject to the following linear constraints: $\forall i \in [n], -t_i \leq \langle A^i, x \rangle \leq t_i$ where $t_i \geq 0, x_i \geq 0$.

Observation 7. There are n+d variables and 2n constraints. Thus, using linear programming techniques to solve it directly takes $Poly(n \cdot d)$ time, which is too slow for large n and d.

Suppose there is a linear mapping $\phi : \mathbb{R}^n \to \mathbb{R}^k$, i.e., $\phi(y) = S \cdot y$, $S \in \mathbb{R}^{k \times n}$, such that $\forall y \in \text{span}(U)$, $||\phi(y)||_1 \in (1 \pm \epsilon) \cdot ||y||_1$, where $U \in \mathbb{R}^{n \times (d+1)}$ is a basis of the subspace spanned by (A_1, \ldots, A_d, b) .

Then to solve the original ℓ_1 regression,

1. Solve $\min_{x} ||\phi(Ax - b)||_{1}$. Let x' be the solution to this reduced ℓ_{1} case.

2. Show x' is also a solution to the original problem.

Proof. We'll show that x' is an $1 + 2\epsilon$ approximation to the original problem. Let x^* be the optimal solution of the original $\min_x ||Ax - b||_1$ problem.

$$||Ax' - b||_1 \le \frac{1}{1 - \epsilon} \cdot ||SAx' - Sb||_1 \tag{1}$$

$$\leq \frac{1}{1-\epsilon} \cdot ||SAx^* - Sb||_1 \tag{2}$$

$$\leq \frac{1+\epsilon}{1-\epsilon} \cdot ||Ax^* - b||_1 \tag{3}$$

$$\leq (1+2\epsilon)||Ax^* - b||_1 \tag{4}$$

Details:

1: $\forall y \in \text{span}(U), ||Sy||_1 \ge (1 - \epsilon) \cdot ||y||_1$ 2: x' minimizes $||SAx - Sb||_1$ 3: let $y = Ax^* - b, ||Sy||_1 \le (1 + \epsilon)||y||_1$ 4: $\varepsilon \in (0, 1/2)$

Thus the total running time will be reduced to O(DR) + Poly(kd), where DR is the time to perform dimensionality reduction. We now see how efficient performing this dimensionality reduction actually is.

3.1 Sampling-based Method

Our goal then becomes the following: given $U \in \mathbb{R}^{n \times d}$, a basis of the subspace spanned by the columns of A and b, find the L1 subspace embedding. Note that here, d includes the columns of A as well as b, but is simply renamed to d for convenience. Recall that a L1 subspace embedding is a matrix S such that for all $x \in \mathbb{R}^d$, $\|SUx\|_1 \in (1 \pm \epsilon) \|Ux\|_1$. Let y = Ux.

We introduce a sampling-based method to find S. Specifically, let S be a diagonal matrix, where each entry on the diagonal is:

$$S_{ii} = \begin{cases} \frac{1}{p_i} & \text{with probability } p_i \\ 0 & else \end{cases}$$
(5)

We calculate the expected value of $||Sy||_1$, which is $\mathbb{E}[||Sy||_1] = \sum_{i=1}^n p_i \cdot \frac{1}{p_i} \cdot |y_i| + 0 = ||y||_1$. This looks promising, however, there are still certain edge cases that can reduce the effectiveness of $||Sy||_1$ as an approximation to $||y||_1$. Specifically, consider the case when y is very sparse, say with only one non-zero entry. To accurately estimate the norm, we must find the non-zero entry and with high probability, the norm of Sy will be zero. However, intuitively, we should sample each coordinate proportional to the value of y_i . We don't exactly know each value of y_i , but the subspace constrains y_i in a certain way, so we can pick p_i in a more careful way.

Definition 8. For all $x \in \mathbb{R}^d$, $||x||_2 \leq ||Ux||_1 \leq \kappa \cdot ||x||_2$, then the condition number of U is κ .

Define $p_i = \min\left(1, c \cdot \left[\log\left(\frac{1}{\delta}\right)/\epsilon^2\right] \cdot \|U^i\|_2\right)$, where U^i represents the *i*th row of U. We want to show that with probability at least $1 - \delta$, $\|Sy\|_1 \in (1 \pm \epsilon) \|y\|_1$. Before proceeding with this proof, we state a generalization of the Chernoff bound, known as *Bernstein's inequality*.

Theorem 9 (Bernstein's inequality). Suppose X_1, \ldots, X_n are *n* independent random variables (not necessarily identically distributed). For all $i \in [n]$, we have that $|X_i| \leq M$, then for any t > 0,

$$\Pr\left[\left|\sum_{i=1}^{n} X_i - \mathbb{E}\left[\sum_{i=1}^{n} X_i\right]\right| > t\right] \le 2 \cdot \exp\left\{-\frac{0.5t^2}{\sum_{i=1}^{n} \operatorname{Var}[X_i] + 1/3 \cdot Mt}\right\}$$

This allows us to prove the following claim.

Claim 10. If S is sampled as described in Equation 5 with $p_i = \min\left(1, c \cdot \left[\log\left(\frac{1}{\delta}\right)/\epsilon^2\right] \cdot \|U^i\|_2\right)$ for sufficiently large constant c, then with probability at least $1 - \delta$, $\|Sy\|_1 \in (1 \pm \epsilon) \|y\|_1$

Proof. Observe that by definition of L1 norm, we know that $||Sy||_1 = \sum_{i=1}^n |S_{ii}y_i|$. Define $X_i = |S_{ii}y_i|$, so $||Sy||_1 = \sum_{i=1}^n X_i$. Recall that $\mathbb{E}\left[\sum_{i=1}^n X_i\right] = ||y||_1$. Without loss of generality, assume that $||y||_1 = 1$ - we can simply rescale y if not.

To apply Bernstein's inequality, we first try bound to the sum of variances of X_i as follows:

$$\begin{split} \sum_{i=1}^{n} \operatorname{Var}[X_{i}] &\leq \sum_{i=1}^{n} \mathbb{E}[X_{i}^{2}] \\ &= \sum_{i=1}^{n} p_{i} \cdot \left(\frac{y_{i}}{p_{i}}\right)^{2} \\ &= \sum_{i=1}^{n} \left|\frac{y_{i}}{p_{i}}\right| \cdot |y_{i}| \\ &\leq \max_{i} \left|\frac{y_{i}}{p_{i}}\right| \cdot |y\|_{1} \\ &= \max_{i} \left|\frac{y_{i}}{p_{i}}\right| \\ &\leq \frac{\epsilon^{2}}{c \log\left(\frac{1}{\delta}\right)} \cdot \frac{|\langle U^{i}, x \rangle|}{||U^{i}||_{2}} \qquad (Expand out p_{i}) \\ &\leq \frac{\epsilon^{2}}{c \log\left(\frac{1}{\delta}\right)} \cdot \frac{|U^{i}||_{2}||x||_{2}}{||U^{i}||_{2}} \qquad (Cauchy-Schwarz) \\ &\leq \frac{\epsilon^{2}}{c \log\left(\frac{1}{\delta}\right)} \cdot ||x||_{2} \end{split}$$

$$\leq \frac{\epsilon^2}{c\log\left(\frac{1}{\delta}\right)} \cdot \|y\|_1 = \frac{\epsilon^2}{c\log\left(\frac{1}{\delta}\right)} \qquad (\|x\|_2 \leq \|Ux\|_1 \leq \kappa \|x\|_2)$$

Next, we find a bound on each $|X_i|$, which is less than $\left|\frac{y_i}{p_i}\right|$. Applying the same inequalities as above, we conclude that $|X_i| \leq \frac{\epsilon^2}{c \log(\frac{1}{\delta})}$. Now, can apply Bernstein's inequality with $t = \epsilon$, which gives

$$\Pr\left[\left|\sum_{i=1}^{n} X_{i} - \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]\right| > \epsilon\right] \le 2 \cdot \exp\left\{-\frac{0.5\epsilon^{2}}{\frac{\epsilon^{2}}{c\log(1/\delta)} + \frac{\epsilon^{3}}{3c\log(1/\delta)}}\right\}$$

For constant c large enough, we can make this probability at most δ . Thus, with probability at least $1 - \delta$, $\|Sy\|_2 \in (1 \pm \epsilon) \|y\|_1$.

To prove that we can obtain a subspace embedding across the entire subspace, we can discretize the L1 norm ball and show the following result: For any fixed vector y = Ux such that $||Sy||_1 \in (1 \pm \epsilon) ||y||_1$ with probability at least $1 - \left(\frac{10n}{\epsilon}\right)^{-d}$, then we can show that $\Pr_S[\forall y = Ux, ||Sy||_1 \in (1 \pm \epsilon) ||y||_1] \ge 0.9$. We do not prove this.

Finally, we claim that the expected number of non-zero elements in S is not too large. Let $\delta = \left(\frac{10n}{\epsilon}\right)^{-d}$, and let κ be the condition number of U.

$$\begin{split} \mathbb{E}[\# \text{ of non-zero elements in } S] &= \sum_{i=1}^{n} p_i \\ &\leq \sum_{i=1}^{n} \frac{\log(1/\delta)}{\epsilon^2} \cdot \|U^i\|_2 \\ &\leq O\left(\frac{d}{\epsilon^2} \cdot \log\left(\frac{n}{\epsilon}\right)\right) \cdot \sum_{i=1}^{n} \sum_{i=1}^{n} \|U^i\|_2 \\ &\leq O\left(\frac{d}{\epsilon^2} \cdot \log\left(\frac{n}{\epsilon}\right)\right) \cdot \sum_{i,j} |U_{ij}| \\ &\leq O\left(\frac{d}{\epsilon^2} \cdot \log\left(\frac{n}{\epsilon}\right)\right) \cdot d \cdot \kappa \\ &\leq O\left(\frac{d^2}{\epsilon^2} \cdot \log\left(\frac{n}{\epsilon}\right)\right) \cdot \kappa \end{split}$$

The second to last step above follows from the fact that $||x||_2 \leq ||Ux||_1 \leq \kappa ||x||_2$ for all x. Thus, we can choose x to be the vector of all-zeros and a single 1, and the statement follows.

We state the following fact without the proof. For any d dimensional subspace, there is always a basis U whose condition number κ is at most poly(d).

References

[1] Pinelis, Iosif. "An asymptotically Gaussian bound on the Rademacher tails." Electronic Journal of Probability 17 (2012).