
COMS E6998-9: Algorithms for Massive Data (Spring’19) Feb 14, 2019

Lecture 8: Fast dimension reduction, `1 regression

Instructor: Alex Andoni Scribes: Darshan Thaker, Yuchen Mo

1 Review

Recall from last class the Fast Johnson-Lindenstrauss Lemma, which tells us that there exists a linear

map φ : Rn → Rk, φ(x) = Sx where S = P · H · D. Here, P is a sparse projection matrix, H is a

Hadamard matrix, and D is a diagonal matrix with entries as random ±1’s. The total time complexity

for computing S is as follows: O(n) for (Dx), O(n log n) for (H · (Dx)), O(k) for (P · (HDx)). In total,

this means the time for dimensionality reduction is O(n log n+ k). Recall the following lemma.

Lemma 1. For vector y ∈ Rn, if k = Ω
(
log 1

δ
ε2
· n·||y||

2
∞

||y||22

)
, then with probability ≥ 1−δ, ||Py||2 ∈ (1±ε)||y||2

2 Fast JL (cont.)

We want to show that if y = H ·D · x, then ||y||∞ cannot be too large. More formally:

Claim 2. Let y = H ·D · x, Pr

[
||y||∞ ≤ c ·

√
log(n/δ)

n · ||x||2
]
≥ 1− δ

We just need to prove that ∀yi, |yi| ≤ c ·
√

log(n/δ)
n · ||x||2 with high probability.

Proof. Here Aij means ith row and jth column. We have that rj ∈
{

1√
n
,− 1√

n

}

yi = 〈H i, Dix〉 =
∑
j

rjxj

=
1√
n
· (±x1 ± x2 ± · · · ± xn)

We will use the following theorem now.

Theorem 3. Let a1, · · · , an ∈ R, r1, · · · , rn ∈ {±1}, Sn = |
∑

j rjaj |, then Pr
[
Sn ≥ t ·

√∑
j a

2
j

]
≤

e−t
2/2. (Proof: [1] equation 1.2)
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Thus, we have

Pr

[
|yi| ≥

√
2 log(n/δ)

n
· ||x||2

]
≤ δ

n

By taking union bound:

Pr

[
∀i ∈ [n], |yi| ≤

√
2 log(n/δ)

n
· ||x||2

]
≥ 1− δ

Subspace embedding

Recall the setup from last lecture: we are given {y ∈ Rn|y = Ux}, x ∈ Rn×d, and we have that d < n. If

S ∈ Rk×d, and for all x ∈ Rd and y = Ux, ||Sy||2 ∈ (1 ± ε)||y||2, then S is a subspace embedding of U.

From last time, we know the following claim:

Claim 4. If S is defined as in the JL Lemma, i.e., Si,j ∼ N
(
0, 1k

)
, k = Ω

(
d/ε2

)
, then S is a subspace

embedding of U.

The following claim also holds, but we do not prove it.

Claim 5. If S is defined as in fast JL, i.e., S = PHD, k = Ω
(
d+logn
ε2

log(d)
)

, then S is a subspace

embedding of U.

3 Least absolute deviation regression

We first introduce the least absolute deviation regression problem, also known as the `1 regression problem.

Definition 6. The least absolute deviation regression is as follows: Given A ∈ Rn×d, b ∈ Rd, we wish to

find minx∈Rd ||Ax− b||1. Here ||y||1 =
∑

i |yi| for a vector y (i.e. the `1 norm).

This can be reformulated into a linear program, where our objective is to minimize
∑n

i ti, subject to the

following linear constraints: ∀i ∈ [n],−ti ≤ 〈Ai, x〉 ≤ ti where ti ≥ 0, xi ≥ 0.

Observation 7. There are n+d variables and 2n constraints. Thus, using linear programming techniques

to solve it directly takes Poly(n · d) time, which is too slow for large n and d.

Suppose there is a linear mapping φ : Rn → Rk, i.e., φ(y) = S · y, S ∈ Rk×n, such that ∀y ∈ span(U),

||φ(y)||1 ∈ (1± ε) · ||y||1, where U ∈ Rn×(d+1) is a basis of the subspace spanned by (A1, . . . , Ad, b).

Then to solve the original `1 regression,

1. Solve minx ||φ (Ax− b) ||1. Let x’ be the solution to this reduced `1 case.
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2. Show x’ is also a solution to the original problem.

Proof. We’ll show that x’ is an 1 + 2ε approximation to the original problem. Let x∗ be the optimal

solution of the original minx ||Ax− b||1 problem.

||Ax′ − b||1 ≤
1

1− ε
· ||SAx′ − Sb||1 (1)

≤ 1

1− ε
· ||SAx∗ − Sb||1 (2)

≤ 1 + ε

1− ε
· ||Ax∗ − b||1 (3)

≤ (1 + 2ε)||Ax∗ − b||1 (4)

Details:

1: ∀y ∈ span(U), ||Sy||1 ≥ (1− ε) · ||y||1

2: x’ minimizes ||SAx− Sb||1

3: let y = Ax∗ − b, ||Sy||1 ≤ (1 + ε)||y||1

4: ε ∈ (0, 1/2)

Thus the total running time will be reduced to O(DR) + Poly(kd), where DR is the time to perform

dimensionality reduction. We now see how efficient performing this dimensionality reduction actually is.

3.1 Sampling-based Method

Our goal then becomes the following: given U ∈ Rn×d, a basis of the subspace spanned by the columns

of A and b, find the L1 subspace embedding. Note that here, d includes the columns of A as well as b,

but is simply renamed to d for convenience. Recall that a L1 subspace embedding is a matrix S such

that for all x ∈ Rd, ‖SUx‖1 ∈ (1± ε)‖Ux‖1. Let y = Ux.

We introduce a sampling-based method to find S. Specifically, let S be a diagonal matrix, where each

entry on the diagonal is:

Sii =

{
1
pi

with probability pi

0 else
(5)

We calculate the expected value of ‖Sy‖1, which is E[‖Sy‖1] =
∑n

i=1 pi ·
1
pi
· |yi| + 0 = ‖y‖1. This looks

promising, however, there are still certain edge cases that can reduce the effectiveness of ‖Sy‖1 as an

approximation to ‖y‖1. Specifically, consider the case when y is very sparse, say with only one non-zero

entry. To accurately estimate the norm, we must find the non-zero entry and with high probability, the

norm of Sy will be zero. However, intuitively, we should sample each coordinate proportional to the value

of yi. We don’t exactly know each value of yi, but the subspace constrains yi in a certain way, so we can

3



pick pi in a more careful way.

Definition 8. For all x ∈ Rd, ‖x‖2 ≤ ‖Ux‖1 ≤ κ · ‖x‖2, then the condition number of U is κ.

Define pi = min
(
1, c ·

[
log
(
1
δ

)
/ε2
]
· ‖U i‖2

)
, where U i represents the ith row of U . We want to show

that with probability at least 1 − δ, ‖Sy‖1 ∈ (1 ± ε)‖y‖1. Before proceeding with this proof, we state a

generalization of the Chernoff bound, known as Bernstein’s inequality.

Theorem 9 (Bernstein’s inequality). Suppose X1, . . . , Xn are n independent random variables (not nec-

essarily identically distributed). For all i ∈ [n], we have that |Xi| ≤M , then for any t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]∣∣∣∣∣ > t

]
≤ 2 · exp

{
− 0.5t2∑n

i=1 Var[Xi] + 1/3 ·Mt

}

This allows us to prove the following claim.

Claim 10. If S is sampled as described in Equation 5 with pi = min
(
1, c ·

[
log
(
1
δ

)
/ε2
]
· ‖U i‖2

)
for

sufficiently large constant c, then with probability at least 1− δ, ‖Sy‖1 ∈ (1± ε)‖y‖1

Proof. Observe that by definition of L1 norm, we know that ‖Sy‖1 =
∑n

i=1 |Siiyi|. Define Xi = |Siiyi|,
so ‖Sy‖1 =

∑n
i=1Xi. Recall that E [

∑n
i=1Xi] = ‖y‖1. Without loss of generality, assume that ‖y‖1 = 1

- we can simply rescale y if not.

To apply Bernstein’s inequality, we first try bound to the sum of variances of Xi as follows:

n∑
i=1

Var[Xi] ≤
n∑
i=1

E[X2
i ]

=
n∑
i=1

pi ·
(
yi
pi

)2

=
n∑
i=1

∣∣∣∣yipi
∣∣∣∣ · |yi|

≤ max
i

∣∣∣∣yipi
∣∣∣∣ · ‖y‖1

= max
i

∣∣∣∣yipi
∣∣∣∣

≤ ε2

c log
(
1
δ

) · |〈U i, x〉|
‖U i‖2

(Expand out pi)

≤ ε2

c log
(
1
δ

) · ‖U i‖2‖x‖2
‖U i‖2

(Cauchy-Schwarz)

≤ ε2

c log
(
1
δ

) · ‖x‖2
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≤ ε2

c log
(
1
δ

) · ‖y‖1 =
ε2

c log
(
1
δ

) (‖x‖2 ≤ ‖Ux‖1 ≤ κ‖x‖2)

Next, we find a bound on each |Xi|, which is less than
∣∣∣yipi ∣∣∣. Applying the same inequalities as above, we

conclude that |Xi| ≤ ε2

c log( 1
δ )

. Now, can apply Bernstein’s inequality with t = ε, which gives

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]∣∣∣∣∣ > ε

]
≤ 2 · exp

{
− 0.5ε2

ε2

c log(1/δ) + ε3

3c log(1/δ)

}

For constant c large enough, we can make this probability at most δ. Thus, with probability at least

1− δ, ‖Sy‖2 ∈ (1± ε)‖y‖1.

To prove that we can obtain a subspace embedding across the entire subspace, we can discretize the L1

norm ball and show the following result: For any fixed vector y = Ux such that ‖Sy‖1 ∈ (1± ε)‖y‖1 with

probability at least 1−
(
10n
ε

)−d
, then we can show that PrS [∀y = Ux, ‖Sy‖1 ∈ (1± ε)‖y‖1] ≥ 0.9. We do

not prove this.

Finally, we claim that the expected number of non-zero elements in S is not too large. Let δ =
(
10n
ε

)−d
,

and let κ be the condition number of U .

E[# of non-zero elements in S] =
n∑
i=1

pi

≤
n∑
i=1

log(1/δ)

ε2
· ‖U i‖2

≤ O
(
d

ε2
· log

(n
ε

))
·
n∑
i=1

n∑
i=1

‖U i‖2

≤ O
(
d

ε2
· log

(n
ε

))
·
∑
i,j

|Uij |

≤ O
(
d

ε2
· log

(n
ε

))
· d · κ

≤ O
(
d2

ε2
· log

(n
ε

))
· κ

The second to last step above follows from the fact that ‖x‖2 ≤ ‖Ux‖1 ≤ κ‖x‖2 for all x. Thus, we can

choose x to be the vector of all-zeros and a single 1, and the statement follows.

We state the following fact without the proof. For any d dimensional subspace, there is always a basis U

whose condition number κ is at most poly(d).
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