COMS E6998-9: Algorithms for Massive Data (Spring’19) Feb 14, 2019

Lecture 8: Fast dimension reduction, ¢; regression

Instructor: Alex Andoni Scribes: Darshan Thaker, Yuchen Mo

1 Review

Recall from last class the Fast Johnson-Lindenstrauss Lemma, which tells us that there exists a linear
map ¢ : R” — R¥, ¢(x) = Sz where S = P- H - D. Here, P is a sparse projection matrix, H is a
Hadamard matrix, and D is a diagonal matrix with entries as random +1’s. The total time complexity
for computing S is as follows: O(n) for (Dzx), O(nlogn) for (H - (Dx)), O(k) for (P - (HDz)). In total,
this means the time for dimensionality reduction is O(nlogn + k). Recall the following lemma.
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Lemma 1. For vectory € R", if k = (105’25 . n'|||5”“||§°), then with probability > 1—9, || Pyl|2 € (1£¢€)||y]|2
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2 Fast JL (cont.)
We want to show that if y = H - D - x, then ||y||~ cannot be too large. More formally:
Claim 2. Lety=H-D-x, Pr [Hy”oo <ec- % . HxHQ] >1-96

We just need to prove that Vy;, lyi| < c- W - ||z||2 with high probability.

Proof. Here Aj- means ith row and jth column. We have that r; € {ﬁ, —ﬁ}
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We will use the following theorem now.

Theorem 3. Let ai,---,a, € R, r1,---, 1y € {1}, S, = ]erjaj], then Pr [Sn >t/ j(ﬁ <
e~ /2. (Proof: [1] equation 1.2)



Thus, we have
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By taking union bound:
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Subspace embedding

Recall the setup from last lecture: we are given {y € R"|y = Uz}, x € R"¢ and we have that d < n. If
S € RF*4 and for all z € RY and y = Uz, ||Sy||2 € (1 £ €)||y||2, then S is a subspace embedding of U.
From last time, we know the following claim:

Claim 4. If S is defined as in the JL Lemma, i.e., S;; ~ N (O, %), k=Q (d/eg), then S is a subspace
embedding of U.
The following claim also holds, but we do not prove it.

Claim 5. If S is defined as in fast JL, i.e., S = PHD, k = Q (dﬂ#log(d)), then S is a subspace
embedding of U.

3 Least absolute deviation regression

We first introduce the least absolute deviation regression problem, also known as the ¢; regression problem.
Definition 6. The least absolute deviation regression is as follows: Given A € R™*4, b€ R?, we wish to
find mingcpa ||Ax — bl|1. Here ||y||1 = Y, lyi| for a vector y (i.e. the {1 norm).

This can be reformulated into a linear program, where our objective is to minimize ). t;, subject to the
following linear constraints: Vi € [n], —t; < (A% z) < t; where t; > 0, z; > 0.

Observation 7. There are n+d variables and 2n constraints. Thus, using linear programming techniques
to solve it directly takes Poly(n - d) time, which is too slow for large n and d.

Suppose there is a linear mapping ¢ : R® — RF, ie., ¢(y) = S -y, S € R¥*" such that Vy € span(U),
llé(w)||1 € (1 £€) - ||yl|1, where U € R™*(@+1) is a basis of the subspace spanned by (A1, ..., Ag,b).

Then to solve the original ¢; regression,

1. Solve ming ||¢ (Az — b) ||1. Let x” be the solution to this reduced ¢; case.



2. Show x’ is also a solution to the original problem.

Proof. We’ll show that x’ is an 1 + 2¢ approximation to the original problem. Let z* be the optimal
solution of the original min, ||Az — b||; problem.
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Details:

1: Vy € span(U), [[Sylli = (1 =€) - [lylh

2: x’ minimizes ||SAz — Sb||1

3: let y = Ax™ — b, ||Sy|l1 < (1+ ¢)|lyll

4 e € (0,1/2) -

Thus the total running time will be reduced to O(DR) + Poly(kd), where DR is the time to perform
dimensionality reduction. We now see how efficient performing this dimensionality reduction actually is.

3.1 Sampling-based Method

Our goal then becomes the following: given U € R™*¢, a basis of the subspace spanned by the columns
of A and b, find the L1 subspace embedding. Note that here, d includes the columns of A as well as b,
but is simply renamed to d for convenience. Recall that a L1 subspace embedding is a matrix S such
that for all z € R?, ||SUz||y € (1 £¢€)||Uz|1. Let y = Ux.

We introduce a sampling-based method to find S. Specifically, let S be a diagonal matrix, where each
entry on the diagonal is:

pi

Sii =
0 else

{1 with probability p; (5)

We calculate the expected value of ||Syl|1, which is E[||Sy|1] = > i pi - p%_ “|yil +0 = |ly|l1. This looks
promising, however, there are still certain edge cases that can reduce the effectiveness of ||Syl||; as an
approximation to ||y||1. Specifically, consider the case when y is very sparse, say with only one non-zero
entry. To accurately estimate the norm, we must find the non-zero entry and with high probability, the
norm of Sy will be zero. However, intuitively, we should sample each coordinate proportional to the value
of y;. We don’t exactly know each value of y;, but the subspace constrains y; in a certain way, so we can



pick p; in a more careful way.

Definition 8. For all z € RY, ||z||o < ||[Uz||1 < & - ||z||2, then the condition number of U is k.

Define p; = min (1,¢- [log () /€2] - [|U?]|2), where U’ represents the ith row of U. We want to show
that with probability at least 1 — 4, ||Sy||1 € (1 £ €)|ly||1. Before proceeding with this proof, we state a
generalization of the Chernoff bound, known as Bernstein’s inequality.

Theorem 9 (Bernstein’s inequality). Suppose X1, ..., X,, are n independent random variables (not nec-
essarily identically distributed). For all i € [n], we have that |X;| < M, then for any t > 0,
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This allows us to prove the following claim.

>t <2-e 0.5¢°
cexnd
=2 P TS Var[Xy) + 1/3 - Mt

Claim 10. If S is sampled as described in Equation 5 with p; = min (1,0- [log (%) /62] HU’HQ) for
sufficiently large constant ¢, then with probability at least 1 — 0, ||Sy|l1 € (1 £ ¢€)|ly[1

Proof. Observe that by definition of L1 norm, we know that [|Sy|l1 = > i, [Siyi|. Define X; = |Siyil,
so [|Sylli = >, Xi. Recall that E[> " | X;] = ||ly|li. Without loss of generality, assume that ||y[j; =1
- we can simply rescale y if not.

To apply Bernstein’s inequality, we first try bound to the sum of variances of X; as follows:
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(Izlle < Uz < sll2)

Next, we find a bound on each |X;|, which is less than . Applying the same inequalities as above, we

Yi
pi

conclude that |X;| < ﬁ. Now, can apply Bernstein’s inequality with ¢ = €, which gives
5
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For constant ¢ large enough, we can make this probability at most §. Thus, with probability at least
146, [[Syll2 € (L £ )|yl O

To prove that we can obtain a subspace embedding across the entire subspace, we can discretize the L1
norm ball and show the following result: For any fixed vector y = Ux such that ||Sy|1 € (1£¢€)||y|l1 with

probability at least 1 — (m?”)fd, then we can show that Prg[Vy = Uz, ||Sy|j1 € (1 £€)|y|l1] > 0.9. We do
not prove this.

Finally, we claim that the expected number of non-zero elements in S is not too large. Let ¢ = (H)T”)fd,
and let k be the condition number of U.
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The second to last step above follows from the fact that ||z||2 < ||Uz||i < &||z||2 for all z. Thus, we can
choose z to be the vector of all-zeros and a single 1, and the statement follows.

We state the following fact without the proof. For any d dimensional subspace, there is always a basis U
whose condition number & is at most poly(d).
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