## Lecture 8: Fast dimension reduction, $\ell_{1}$ regression

## 1 Review

Recall from last class the Fast Johnson-Lindenstrauss Lemma, which tells us that there exists a linear $\operatorname{map} \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}, \phi(x)=S x$ where $S=P \cdot H \cdot D$. Here, $P$ is a sparse projection matrix, $H$ is a Hadamard matrix, and $D$ is a diagonal matrix with entries as random $\pm 1$ 's. The total time complexity for computing $S$ is as follows: $O(n)$ for $(D x), O(n \log n)$ for $(H \cdot(D x)), O(k)$ for $(P \cdot(H D x))$. In total, this means the time for dimensionality reduction is $O(n \log n+k)$. Recall the following lemma.

Lemma 1. For vector $y \in \mathbb{R}^{n}$, if $k=\Omega\left(\frac{\log \frac{1}{\delta}}{\epsilon^{2}} \cdot \frac{n \cdot\|y\|_{\alpha^{\infty}}^{2}}{\|y\|_{2}^{2}}\right)$, then with probability $\geq 1-\delta,\|P y\|_{2} \in(1 \pm \epsilon)\|y\|_{2}$

## 2 Fast JL (cont.)

We want to show that if $y=H \cdot D \cdot x$, then $\|y\|_{\infty}$ cannot be too large. More formally:
Claim 2. Let $y=H \cdot D \cdot x, \operatorname{Pr}\left[\|y\|_{\infty} \leq c \cdot \sqrt{\frac{\log (n / \delta)}{n}} \cdot\|x\|_{2}\right] \geq 1-\delta$
We just need to prove that $\forall y_{i},\left|y_{i}\right| \leq c \cdot \sqrt{\frac{\log (n / \delta)}{n}} \cdot\|x\|_{2}$ with high probability.
Proof. Here $A_{j}^{i}$ means ith row and jth column. We have that $r_{j} \in\left\{\frac{1}{\sqrt{n}},-\frac{1}{\sqrt{n}}\right\}$

$$
\begin{aligned}
y_{i}=\left\langle H^{i}, D_{i} x\right\rangle & =\sum_{j} r_{j} x_{j} \\
& =\frac{1}{\sqrt{n}} \cdot\left( \pm x_{1} \pm x_{2} \pm \cdots \pm x_{n}\right)
\end{aligned}
$$

We will use the following theorem now.
Theorem 3. Let $a_{1}, \cdots, a_{n} \in \mathbb{R}, r_{1}, \cdots, r_{n} \in\{ \pm 1\}, S_{n}=\left|\sum_{j} r_{j} a_{j}\right|$, then $\operatorname{Pr}\left[S_{n} \geq t \cdot \sqrt{\sum_{j} a_{j}^{2}}\right] \leq$ $e^{-t^{2} / 2}$. (Proof: [1] equation 1.2)

Thus, we have

$$
\operatorname{Pr}\left[\left|y_{i}\right| \geq \sqrt{\frac{2 \log (n / \delta)}{n}} \cdot\|x\|_{2}\right] \leq \frac{\delta}{n}
$$

By taking union bound:

$$
\operatorname{Pr}\left[\forall i \in[n],\left|y_{i}\right| \leq \sqrt{\frac{2 \log (n / \delta)}{n}} \cdot\|x\|_{2}\right] \geq 1-\delta
$$

## Subspace embedding

Recall the setup from last lecture: we are given $\left\{y \in \mathbb{R}^{n} \mid y=U x\right\}, x \in \mathbb{R}^{n \times d}$, and we have that $d<n$. If $S \in \mathbb{R}^{k \times d}$, and for all $x \in \mathbb{R}^{d}$ and $y=U x,\|S y\|_{2} \in(1 \pm \epsilon)\|y\|_{2}$, then S is a subspace embedding of U . From last time, we know the following claim:

Claim 4. If $S$ is defined as in the JL Lemma, i.e., $S_{i, j} \sim N\left(0, \frac{1}{k}\right), k=\Omega\left(d / \epsilon^{2}\right)$, then $S$ is a subspace embedding of $U$.

The following claim also holds, but we do not prove it.
Claim 5. If $S$ is defined as in fast JL, i.e., $S=P H D, k=\Omega\left(\frac{d+\log n}{\epsilon^{2}} \log (d)\right)$, then $S$ is a subspace embedding of $U$.

## 3 Least absolute deviation regression

We first introduce the least absolute deviation regression problem, also known as the $\ell_{1}$ regression problem.
Definition 6. The least absolute deviation regression is as follows: Given $A \in \mathbb{R}^{n \times d}, b \in \mathbb{R}^{d}$, we wish to find $\min _{x \in \mathbb{R}^{d}}\|A x-b\|_{1}$. Here $\|y\|_{1}=\sum_{i}\left|y_{i}\right|$ for a vector $y$ (i.e. the $\ell_{1}$ norm).
This can be reformulated into a linear program, where our objective is to minimize $\sum_{i}^{n} t_{i}$, subject to the following linear constraints: $\forall i \in[n],-t_{i} \leq\left\langle A^{i}, x\right\rangle \leq t_{i}$ where $t_{i} \geq 0, x_{i} \geq 0$.

Observation 7. There are $n+d$ variables and $2 n$ constraints. Thus, using linear programming techniques to solve it directly takes $\operatorname{Poly}(n \cdot d)$ time, which is too slow for large $n$ and $d$.

Suppose there is a linear mapping $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, i.e., $\phi(y)=S \cdot y, S \in \mathbb{R}^{k \times n}$, such that $\forall y \in \operatorname{span}(U)$, $\|\phi(y)\|_{1} \in(1 \pm \epsilon) \cdot\|y\|_{1}$, where $U \in \mathbb{R}^{n \times(d+1)}$ is a basis of the subspace spanned by $\left(A_{1}, \ldots, A_{d}, b\right)$.

Then to solve the original $\ell_{1}$ regression,

1. Solve $\min _{x}\|\phi(A x-b)\|_{1}$. Let x' be the solution to this reduced $\ell_{1}$ case.
2. Show x ' is also a solution to the original problem.

Proof. We'll show that $\mathrm{x}^{\prime}$ is an $1+2 \epsilon$ approximation to the original problem. Let $x^{*}$ be the optimal solution of the original $\min _{x}\|A x-b\|_{1}$ problem.

$$
\begin{align*}
\left\|A x^{\prime}-b\right\|_{1} & \leq \frac{1}{1-\epsilon} \cdot\left\|S A x^{\prime}-S b\right\|_{1}  \tag{1}\\
& \leq \frac{1}{1-\epsilon} \cdot\left\|S A x^{*}-S b\right\|_{1}  \tag{2}\\
& \leq \frac{1+\epsilon}{1-\epsilon} \cdot\left\|A x^{*}-b\right\|_{1}  \tag{3}\\
& \leq(1+2 \epsilon)\left\|A x^{*}-b\right\|_{1} \tag{4}
\end{align*}
$$

Details:
1: $\forall y \in \operatorname{span}(U),\|S y\|_{1} \geq(1-\epsilon) \cdot\|y\|_{1}$
2: x' minimizes $\|S A x-S b\|_{1}$
3: let $y=A x^{*}-b,\|S y\|_{1} \leq(1+\epsilon)\|y\|_{1}$
4: $\varepsilon \in(0,1 / 2)$
Thus the total running time will be reduced to $\mathrm{O}(D R)+\operatorname{Poly}(k d)$, where $D R$ is the time to perform dimensionality reduction. We now see how efficient performing this dimensionality reduction actually is.

### 3.1 Sampling-based Method

Our goal then becomes the following: given $U \in \mathbb{R}^{n \times d}$, a basis of the subspace spanned by the columns of $A$ and $b$, find the L1 subspace embedding. Note that here, $d$ includes the columns of $A$ as well as $b$, but is simply renamed to $d$ for convenience. Recall that a L1 subspace embedding is a matrix $S$ such that for all $x \in \mathbb{R}^{d},\|S U x\|_{1} \in(1 \pm \epsilon)\|U x\|_{1}$. Let $y=U x$.
We introduce a sampling-based method to find $S$. Specifically, let $S$ be a diagonal matrix, where each entry on the diagonal is:

$$
S_{i i}= \begin{cases}\frac{1}{p_{i}} & \text { with probability } p_{i}  \tag{5}\\ 0 & \text { else }\end{cases}
$$

We calculate the expected value of $\|S y\|_{1}$, which is $\mathbb{E}\left[\|S y\|_{1}\right]=\sum_{i=1}^{n} p_{i} \cdot \frac{1}{p_{i}} \cdot\left|y_{i}\right|+0=\|y\|_{1}$. This looks promising, however, there are still certain edge cases that can reduce the effectiveness of $\|S y\|_{1}$ as an approximation to $\|y\|_{1}$. Specifically, consider the case when $y$ is very sparse, say with only one non-zero entry. To accurately estimate the norm, we must find the non-zero entry and with high probability, the norm of $S y$ will be zero. However, intuitively, we should sample each coordinate proportional to the value of $y_{i}$. We don't exactly know each value of $y_{i}$, but the subspace constrains $y_{i}$ in a certain way, so we can
pick $p_{i}$ in a more careful way.
Definition 8. For all $x \in \mathbb{R}^{d},\|x\|_{2} \leq\|U x\|_{1} \leq \kappa \cdot\|x\|_{2}$, then the condition number of $U$ is $\kappa$.
Define $p_{i}=\min \left(1, c \cdot\left[\log \left(\frac{1}{\delta}\right) / \epsilon^{2}\right] \cdot\left\|U^{i}\right\|_{2}\right)$, where $U^{i}$ represents the $i$ th row of $U$. We want to show that with probability at least $1-\delta,\|S y\|_{1} \in(1 \pm \epsilon)\|y\|_{1}$. Before proceeding with this proof, we state a generalization of the Chernoff bound, known as Bernstein's inequality.

Theorem 9 (Bernstein's inequality). Suppose $X_{1}, \ldots, X_{n}$ are $n$ independent random variables (not necessarily identically distributed). For all $i \in[n]$, we have that $\left|X_{i}\right| \leq M$, then for any $t>0$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]\right|>t\right] \leq 2 \cdot \exp \left\{-\frac{0.5 t^{2}}{\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+1 / 3 \cdot M t}\right\}
$$

This allows us to prove the following claim.
Claim 10. If $S$ is sampled as described in Equation 5 with $p_{i}=\min \left(1, c \cdot\left[\log \left(\frac{1}{\delta}\right) / \epsilon^{2}\right] \cdot\left\|U^{i}\right\|_{2}\right)$ for sufficiently large constant $c$, then with probability at least $1-\delta,\|S y\|_{1} \in(1 \pm \epsilon)\|y\|_{1}$

Proof. Observe that by definition of L1 norm, we know that $\|S y\|_{1}=\sum_{i=1}^{n}\left|S_{i i} y_{i}\right|$. Define $X_{i}=\left|S_{i i} y_{i}\right|$, so $\|S y\|_{1}=\sum_{i=1}^{n} X_{i}$. Recall that $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\|y\|_{1}$. Without loss of generality, assume that $\|y\|_{1}=1$ - we can simply rescale $y$ if not.

To apply Bernstein's inequality, we first try bound to the sum of variances of $X_{i}$ as follows:

$$
\begin{aligned}
\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right] & \leq \sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right] \\
& =\sum_{i=1}^{n} p_{i} \cdot\left(\frac{y_{i}}{p_{i}}\right)^{2} \\
& =\sum_{i=1}^{n}\left|\frac{y_{i}}{p_{i}}\right| \cdot\left|y_{i}\right| \\
& \leq \max _{i}\left|\frac{y_{i}}{p_{i}}\right| \cdot\|y\|_{1} \\
& =\max _{i}\left|\frac{y_{i}}{p_{i}}\right| \\
& \leq \frac{\epsilon^{2}}{c \log \left(\frac{1}{\delta}\right)} \cdot \frac{\left|\left\langle U^{i}, x\right\rangle\right|}{\left\|U^{i}\right\|_{2}} \\
& \leq \frac{\epsilon^{2}}{c \log \left(\frac{1}{\delta}\right)} \cdot \frac{\left\|U^{i}\right\|_{2}\|x\|_{2}}{\left\|U^{i}\right\|_{2}} \\
& \leq \frac{\epsilon^{2}}{c \log \left(\frac{1}{\delta}\right)} \cdot\|x\|_{2}
\end{aligned}
$$

$$
\leq \frac{\epsilon^{2}}{c \log \left(\frac{1}{\delta}\right)} \cdot\|y\|_{1}=\frac{\epsilon^{2}}{c \log \left(\frac{1}{\delta}\right)}
$$

$$
\left(\|x\|_{2} \leq\|U x\|_{1} \leq \kappa\|x\|_{2}\right)
$$

Next, we find a bound on each $\left|X_{i}\right|$, which is less than $\left|\frac{y_{i}}{p_{i}}\right|$. Applying the same inequalities as above, we conclude that $\left|X_{i}\right| \leq \frac{\epsilon^{2}}{c \log \left(\frac{1}{\delta}\right)}$. Now, can apply Bernstein's inequality with $t=\epsilon$, which gives

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]\right|>\epsilon\right] \leq 2 \cdot \exp \left\{-\frac{0.5 \epsilon^{2}}{\frac{\epsilon^{2}}{c \log (1 / \delta)}+\frac{\epsilon^{3}}{3 c \log (1 / \delta)}}\right\}
$$

For constant $c$ large enough, we can make this probability at most $\delta$. Thus, with probability at least $1-\delta,\|S y\|_{2} \in(1 \pm \epsilon)\|y\|_{1}$.

To prove that we can obtain a subspace embedding across the entire subspace, we can discretize the L1 norm ball and show the following result: For any fixed vector $y=U x$ such that $\|S y\|_{1} \in(1 \pm \epsilon)\|y\|_{1}$ with probability at least $1-\left(\frac{10 n}{\epsilon}\right)^{-d}$, then we can show that $\operatorname{Pr}_{S}\left[\forall y=U x,\|S y\|_{1} \in(1 \pm \epsilon)\|y\|_{1}\right] \geq 0.9$. We do not prove this.
Finally, we claim that the expected number of non-zero elements in $S$ is not too large. Let $\delta=\left(\frac{10 n}{\epsilon}\right)^{-d}$, and let $\kappa$ be the condition number of $U$.

$$
\begin{aligned}
\mathbb{E}[\# \text { of non-zero elements in } S] & =\sum_{i=1}^{n} p_{i} \\
& \leq \sum_{i=1}^{n} \frac{\log (1 / \delta)}{\epsilon^{2}} \cdot\left\|U^{i}\right\|_{2} \\
& \leq O\left(\frac{d}{\epsilon^{2}} \cdot \log \left(\frac{n}{\epsilon}\right)\right) \cdot \sum_{i=1}^{n} \sum_{i=1}^{n}\left\|U^{i}\right\|_{2} \\
& \leq O\left(\frac{d}{\epsilon^{2}} \cdot \log \left(\frac{n}{\epsilon}\right)\right) \cdot \sum_{i, j}\left|U_{i j}\right| \\
& \leq O\left(\frac{d}{\epsilon^{2}} \cdot \log \left(\frac{n}{\epsilon}\right)\right) \cdot d \cdot \kappa \\
& \leq O\left(\frac{d^{2}}{\epsilon^{2}} \cdot \log \left(\frac{n}{\epsilon}\right)\right) \cdot \kappa
\end{aligned}
$$

The second to last step above follows from the fact that $\|x\|_{2} \leq\|U x\|_{1} \leq \kappa\|x\|_{2}$ for all $x$. Thus, we can choose $x$ to be the vector of all-zeros and a single 1 , and the statement follows.

We state the following fact without the proof. For any $d$ dimensional subspace, there is always a basis $U$ whose condition number $\kappa$ is at most poly $(d)$.

## References

[1] Pinelis, Iosif. "An asymptotically Gaussian bound on the Rademacher tails." Electronic Journal of Probability 17 (2012).

