
COMS E6998-9: Algorithms for Massive Data (Spring’19) Feb 12, 2019

Lecture 7: Numerical Linear Algebra: Least Square Regression,
Fast Dimension Reduction

Instructor: Alex Andoni Scribes: Yue Luo

1 Review

• Distributional Johnson-Lindenstrauss (DJL):

For any ε ∈ (0, 12), and given δ > 0, k = O(
lg 1
δ

ε2
), there ∃ a random linear mapping ϕ : Rn → Rk,

s.t.

∀x ∈ Rn, P rϕ(||ϕ(x)||2 ∈ (1± ε)||x||2) ≥ 1− δ

For any case, the mapping function ϕ(x) = Sx, and S is randomized.

• Corollary(JL):

∀x1, ..., xN ∈ Rn, P r(∀xi, xj , ||ϕ(xi)− ϕ(xj)||2 ∈ (1± ε)||xi − xj ||2) ≥ 1− 1

N
,when k = O(

lgN

ε2
).

The idea behind this is that, all points xi are in Rn which is a high dimension. If we only care

about the computation related to distances between the points, we can reduce their dimension by

such mapping, which still preserves the distances with high probability.

Today we are going to see its applications in Numerical Linear Algebra.

2 Least Square Regression (LSR)

Definition 1. Given A: n× d matrix, b ∈ Rn, LSR is to solve

x∗ = arg min
x∈Rd

||Ax− b||2

Direct Solution: ∇x||Ax− b||22 = 0⇔ AT (Ax∗ − b) = 0⇔ x∗ = (ATA)−1AT b

Time: Compute the optimal solution is at least the time for computing (ATA)−1. Assume invertible,

the time is O(nd2) by direct computation, and can be further reduced to O(ndw−1) by faster matrix

multiplication where w=2.36. How can we go faster?

Observation 2. Reduce time by allowing approximation: Find x
′
s.t.

||Ax′ − b||2 ≤ (1 + ε)||Ax∗ − b||2.

1

Main Approach:

Suppose we are computing minx∈Rd ||Ax−b||2 approximately. We go faster by reducing the dimension

and computing minx∈Rd ||ϕ(Ax−b)||2, where ϕ(y) = Sy and ϕ : Rn → Rk. Applying such transformation,

it is to approximately compute

min
x∈Rd

||S(Ax− b)||2 = min
x∈Rd

||SAx− Sb||2 = min
x∈Rd

||A′
x− b′ ||2

where A
′

is a k × d matrix and b
′ ∈ Rk.

Then we got a LSR problem where A
′

has dimension k × d.

Time: (Dim Reduction Time) + O(kd2). We will prove that the first term is not too large.

Proof. For original x∗,

||S(Ax∗ − b)||2 ≤ (1 + ε)||Ax∗ − b||2

So x∗ is still a possible solution.

For x 6= x∗,

||S(Ax− b)||2 ≥ (1− ε)||Ax− b||2 ≥ (1− ε)||Ax∗ − b||2

Each of these statements happen for ∀x with Prob ≥ 99%. (δ = 0.01). But this is not enough since

the probability is for any fixed x and it is about the random S. It means that we may still encounter

some x s.t. ||S(Ax− b)||2 is extremely small.

What we still need is

Pr(∀x ∈ Rd, ||S(Ax− b)||2 ∈ (1± ε)||Ax− b||2) ≥ 1− δ

Theorem 3. Obilivious Subspace Embedding (OSE)

If ϕ(y) = Sy satisfies DJL, then for ∀ d-dim subspace U ⊂ Rn,

Prϕ(∀y ∈ U, ||ϕ(y)||2 ∈ (1± ε)||y||2) ≥ 1− δ, for k = O(
d

ε2
· lg 1

δ
)

Proof. Omitted here. You will need to prove it in the homework.

Fact 4. Pr(∀x ∈ Rd, ||S(Ax− b)||2 ∈ (1± ε)||Ax− b||2) ≥ 1− δ as we mentioned above follows from OSE

for δ = 0.01.

U = span{columns of A, b} = {Ax− b;x ∈ Rd}, is a (d+1)-dim subspace.

Then by OSE, we have

k = O(
d+ 1

ε2
lg

1

0.01
) = O(

d

ε2
)

2

Analysis of Runtime Again:

(Dim Reduction T ime) +O(kd2)

= Time(SA) +O(kd2)

= O(knd) +O(kd2)

= O(
nd2

ε2
) +O(

d3

ε2
)

But this approximation method is even slower than LSR of original setting which takes O(nd2). We hope

to further reduce the time of dimension reduction to a time proportional to A, say O(nd). If A is sparse,

we’d better get to O(nnz(A)), where nnz stands for number of non-zero elements.

3 Fast Dimension Reduction

Theorem 5. The Fast Johnson-Lindenstrauss Transformation (FJLT) [Ailon-Chazelle ’06]

Given ϕ(x) = Sx, ϕ : Rn → Rs, s = O(
lg 1
δ

ε2
· lg n

δ
)

We have

for x ∈ Rn, P rϕ(||Sx||2 ∈ (1± ε)||x||2) ≥ 1− δ

The time for this is O(n lg n) +O(s).

Corollary 6. For SA, we need to do this dimension reduction on every column of A, which takes time

d(O(n · lg n) +O(s)) = O(nd · lg n) +O(sd)

Proof. In DJL, we are computing the multiplication of a dense Gaussian matrix S with x ∈ Rn. The time

will be proportional to the size of the matrix S. The idea here is to let Sx be the subsample of coordinates

of x. Let’s say we subsample s coordinates from x ∈ Rn.

Pick j1, j2, ..., js ∈ [n]. Then (Sx)i is defined as xji , i = 1, 2, ..., s..

Now we look at ||Sx||22.

E[||Sx||22] = E[

s∑
i=1

(Sx)2i] = sE[(Sx)21] = s ·
∑n

i=1 x
2
i

n
=
s

n
||x||22

V ar[||Sx||22] = s · V ar[(Sx)21] ≤ s · E[(Sx)41] = s ·
∑n

i=1 x
4
i

n
=
s

n
||x||44

In order for ||Sx||22 to be a good estimator of ||x||22, we want

3

√
V ar[||Sx||22]� εE[||Sx||22]

⇒
√
s

n
||x||24 � ε

s

n
||x||22

⇒s� n

ε2
· ||x||

4
4

||x||42

Suppose x = (1, 0, 0,, 0), we need to have s � n
ε2

. This is not dimension reduction. If the mass is

concentrated in some place of vector x, it is very unlikely those elements will be picked by subsampling.

Suppose x = (1, 1, 1, ..., 1), we need to have s� n
ε2
· n
n2 = 1

ε2
. And this can be a good sampling.

More precisely, notice that ‖x‖44 =
∑

i x
4
i ≤ (maxj xj)

2
∑

i x
2
i = ‖x‖2∞‖x‖22. Thus, if s � n/ε2 ·

‖x‖2∞/‖x‖22, then s � n/ε2 · ‖x‖44/‖x‖42. So we reach the conclusion that if x is spread around, the

subsampling works.

Lemma 7. Let P be a s× n matrix, s.t. (Px)i = Xji , ji ∈ [n] randomly. Then

∀y ∈ Rn, P r(
n

s
||Py||22 ∈ (1± ε)||y||22) ≥ 1− δ, for s = O(

lg 1
δ

ε2
· n · ||y||

2
∞

||y||22
)

Here, n·||y||
2
∞

||y||22
is the quantization of spreadness. If y = (1, 0, 0,, 0), this term will be n, meaning that

we need to sample by a factor of n more. And if y = (1, 1, 1, ..., 1), this term is 1, which does not have

this factor.

Proof. From Chernoff.

We want to first spread out x to be y first, and the subsampling on y could be faster. The idea behind

that is to do a structured random rotation.

Define y = H ·D · x, and ϕ(x) = P ·H ·D · x. Here,

• P: sparse projection with dim s× n.

• D: diagonal matrix with ±1 on its diagonal.

• H: Hadamard Matrix (Fourier Transform Matrix) with dim n× n.

Fact 8. H: H0 = (1); H1 = 1√
2

(
1 1

1 −1

)
; Ht = 1√

2

(
Ht−1 Ht−1
Ht−1 −Ht−1

)
of dim 2t × 2t.

Properties:

- It is a rotation: ||Hx||2 = ||x||2.
- Can compute Hx in O(n · lg n) time.

- If x is not spread around, then Hx is. He1 has l∞ norm = O(1√
n

). (Uncertainty Principle)

But there exists some vector that after processed by the Hadamard Matrix, the result becomes sparse.

Try to avoid such cases, we include the diagonal matrix D.

Lemma 9. y = H ·D · x, assume ||x||2 = 1, then

||y||∞ ≤ O(

√
lg n

n
) with Prob ≥ 1− 1

n

4

