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Lecture 6: Dimension Reduction

Instructor: Alex Andoni Scribes: Minghao Chen, Bicheng Gao

1 Linearity

Definition 1. SR : Rn → Rk is linear sketch ⇐⇒ SR is linear function, where R is random seed we

choose.

We could think a linear function is a special sketch.

Example 2. Assume that we have 1, 2, · · · , l routers, and each of them has its own data steaming. Then

we could compute their frequency vectors fi separately.Now, if we’d like to get information about the entire

data traffic. We don’t have to compute the sum of fi and then sketch it. We could compute their sketch

separately and sum of them to get the same result. In formula, Assume that f1, f2 · · · fl is a sequence of

frequency vectors, S(f1 + f2 + · · ·+ fl) =
∑l

i=1 S(fi).

Example 3. For G.S.M(General Turnstile Streaming), we have a sequence updates (i, δi), δi ∈ R, i ∈
[n], f ′ = f + δiei.Then S(f ′) = S(f + δiei) = S(f) + S(δiei).

We want to estimate the information contain in f using sketch S. Without the linearity, every time

we see a new i, we have to update f and get f ′. With the linear sketch , we don’t have to update the f ′,

we just update the sketch by adding S(δiei) to the old one. Therefore, we just need to store the sketch

of f .

Example 4. For a linear sketch, we have f1, f2 ∈ Rn, S(f1 − f2) = S(f1)− S(f2). To be specific, for l2
norm, we use sketch T.o.W. to estimate it. It is a linear sketch and ET.o.W.(S(f1 − f2)) ≈ ‖f1 − f2‖22.

We could consider sketch as approximately functional compression. S(f1), S(f2) are used to estimate

the information containing in f1, f2.

According to lecture 3, we are able to get a (1 + ε)-approximation using O(1/ε2) counters. In words,

ET.o.W.+(S(f1)− S(f2)) ∈ (1± ε)||f1 − f2||22 with Probability 90%.

Observation 5. Now, what if we expect the Probability to be 1− δ, where δ is relatively small.

Can we use Median Trick here?

Yes, but Media Trick is not dimension reduction, since it takes the median instead of l2 norm.

2 Johnson-Lindenstrauss ’84

Theorem 6. ∀ε > 0,∀k ∈ N,∃linear sketch φ : Rn → Rk, s.t.∀x, y ∈ Rn, P r[||φ(x)−φ(y)||2 ∈ (1± ε)||x−
y||2] ≥ 1− e−

ε2k
9 .This is equivalent to 1− δ probability, when k = O(

log 1
δ

ε2
)
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Original theorem(old version of JL): φ is random linear subspace.

Proof. Because φ is linear sketch, we have ||φ(x)− φ(y)||2 = ||φ(x− y)||2. Our goal is to prove ||φ(x)−
φ(y)||2 = ||φ(x − y)||2 ≈ ||x − y||2. If we are able to show ||φ(x)||2 ≈ ||x||2. Then, we can easily get the

former one.

Now we take φ = 1√
k
Gx, where Gij is Gaussian random variable.12

First, consider k = 1, φ(x) =
∑n

i=1G1jxj

Fact 7. Stability of Gaussian r.v.:
∑n

i=1 gixi ∼ g||x||2, where g1, g2, · · · , gn ∼ standard G.r.v.

Proof. 1. (g1, g2, · · · , gn) is a distribution, and it is spherical symmetric.

2. p.d.f.(g1, g2, · · · , gn) = ( 1
2π )

n
2 e−

g21
2 e−

g22
2 · · · e−

g2n
2 = ( 1

2π )
n
2 e−

∑n
i=1 g

2
i

2 = ( 1
2π )

n
2 e−

||g||22
2

Therefore,
∑n

i=1G1jxj = g1 ◦ ||x||, where g1 ∼ N(0, 1)

Now, consider k > 1:

φ(x) =
1√
k
Gx ∼ 1√

k
(g1 ◦ ||x||2, g2 ◦ ||x||2, · · · , gk ◦ ||x||2) ∼

||x||2
k

(g1, g2, · · · , gk)

||φ(x)||22 = ||x||22 ·
1

k
· (g21 + g22 + · · ·+ g2k)

Therefore, We only have to prove that 1
k · (g

2
1 + g22 + · · ·+ g2k) ≈ 1

Notice that 1
k · (g

2
1 + g22 + · · ·+ g2k) ∼ χ2

k with k freedom degree.

Fact 8. Pr[χ2
k /∈ (1± ε)] ≤ 2 · e

k
4
(ε2−ε2)

As long as we choose ε < 1
3 , we get J.L. Theorem.

Corollary 9. Fix N ∈ N, consider x1, x2, ..., xn ∈ Rn. Then ∃φ : Rn → Rk, k = O( lgN
ε2

), s.t, ∀i, j ∈
[N ], ||φ(xi)− φ(xj)|| ∈ (1± ε)||xi − xj ||2.

(In fact, a random φ (from JL theorem) works with probability greater than 1− 1
N . )

Proof. Set δ = 1
N3 in JL theorem ⇒ Pr[∀xi, xj , ||φ(xi)− φ(xj)|| ∈ (1± ε)||xi − xj ||] >= 1− δ = 1− 1

N3 .

By the union bound over all pairs of i, j ∈ [N ], we can get Pr[∀i, j ∈ [N ]||φ(xi)− φ(xj)|| ∈ (1± ε)||xi −
xj ||2] >= 1− N2

N3 = 1− 1
N .

Fact 10. Can not be the case that ∃φ that works for all sets of N points (unless k >= n).

Why?
φ : Rn → Rk, k < n

⇒∃x, y ∈ Rn, x 6= y, s.t, φ(x) = φ(y)

⇒φ does not preserve dist ||x− y||2 up to any approximation

(1)

Observation 11. Time to compute φ(x) is O(nk). Since in JL, φ(x) = 1√
k
·G · x

1p.d.f. = 1√
2π
e−

x2

2

2side notes: We could write T.o.W. as the same form, φ(x) = 1√
k
RX, where Rij ∈ {±1}
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Observation 12. Are there dimension reduction in other norms, where k = O(
lg 1
δ

ε2
) is the target dimen-

sion, for (1± ε) with 1− δ probability?

The general answer is No, but we there could be some sketch instead dimension reduction could do

this.

Theorem 13. ∃ linear sketch S : Rn → Rk and estimator E s.t, Pr[E(S(x)) ∈ (1 ± ε) · ||x||1] >= 90%

and k = O( 1
ε2

).

Proof. From observation 14 to Fact 17.

Observation 14. In JL, we have φ(x) = 1√
k
·G ·x. And we can say φ1(x) = 1√

k
(G1 ·x) where G =

G1

· · ·
Gk

.

Then we know φ1(x) ∼ 1√
k
· g1 · ||x||2, where g1 ∈ N(0, 1).

Fact 15.
∑n

i=1 cixi = c · ||x||1, where c, c1, c2, · · · , cn ∼ random variable in Cauchy distribution3

Definition 16.

φ(x) =
1

k
· C · x

∼ 1

k
· (c1 · ||x||1, c2 · ||x||1, · · · , ck · ||x||1) =

||x||1
k
· (c1, c2, ..., ck).

(2)

where ci ∼ Cauchy random variable

Set estimator
E[φ(x)] = k ·median[φi(x)]

= median||x||1 · |cj |
= ||x||1 ·medianj=1..k|cj |

(3)

We want the median part ∈ (1± ε) with probability >= 90%. And we know the fact that

Fact 17. Pr[medianj=1..k|cj | ∈ (1 + ε) >= 90%] as long as k = Ω( 1
ε2

).

3the p.d.f of standard Cauchy distribution is p(x) = 1
π(x2+1)
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