1 Linearity

Definition 1. \(S_R : \mathbb{R}^n \rightarrow \mathbb{R}^k \) is linear sketch \(\iff \) \(S_R \) is linear function, where \(R \) is random seed we choose.

We could think a linear function is a special sketch.

Example 2. Assume that we have \(1, 2, \cdots, l \) routers, and each of them has its own data streaming. Then we could compute their frequency vectors \(f_i \) separately. Now, if we’d like to get information about the entire data traffic. We don’t have to compute the sum of \(f_i \) and then sketch it. We could compute their sketch separately and sum of them to get the same result. In formula, Assume that \(f_1, f_2 \cdots f_l \) is a sequence of frequency vectors, \(S(f_1 + f_2 + \cdots + f_l) = \sum_{i=1}^l S(f_i) \).

Example 3. For G.S.M(General Turnstile Streaming), we have a sequence updates \((i, \delta_i)\), \(\delta_i \in \mathbb{R}, i \in [n] \), \(f' = f + \delta_i e_i \). Then \(S(f') = S(f + \delta_i e_i) = S(f) + S(\delta_i e_i) \).

We want to estimate the information contain in \(f \) using sketch \(S \). Without the linearity, every time we see a new \(i \), we have to update \(f \) and get \(f' \). With the linear sketch, we don’t have to update the \(f' \), we just update the sketch by adding \(S(\delta_i e_i) \) to the old one. Therefore, we just need to store the sketch of \(f \).

Example 4. For a linear sketch, we have \(f_1, f_2 \in \mathbb{R}^n \), \(S(f_1 - f_2) = S(f_1) - S(f_2) \). To be specific, for \(l_2 \) norm, we use sketch T.o.W. to estimate it. It is a linear sketch and \(E_{T.o.W.}(S(f_1 - f_2)) \approx \| f_1 - f_2 \|_2^2 \).

We could consider sketch as approximately functional compression. \(S(f_1), S(f_2) \) are used to estimate the information containing in \(f_1, f_2 \).

According to lecture 3, we are able to get a \((1 + \epsilon)\)-approximation using \(O(1/\epsilon^2) \) counters. In words, \(E_{T.o.W.}(S(f_1) - S(f_2)) \in (1 \pm \epsilon)\| f_1 - f_2 \|_2^2 \) with Probability 90%.

Observation 5. Now, what if we expect the Probability to be \(1 - \delta \), where \(\delta \) is relatively small. Can we use Median Trick here?

Yes, but Media Trick is not dimension reduction, since it takes the median instead of \(l_2 \) norm.

2 Johnson-Lindenstrauss ’84

Theorem 6. \(\forall \epsilon > 0, \forall k \in \mathbb{N}, \exists \) linear sketch \(\phi : \mathbb{R}^n \rightarrow \mathbb{R}^k, \) s.t. \(\forall x, y \in \mathbb{R}^n, Pr[||\phi(x) - \phi(y)||_2 \in (1 \pm \epsilon)||x - y||_2] \geq 1 - \epsilon^{-k} \). This is equivalent to \(1 - \delta \) probability, when \(k = O\left(\frac{\log \frac{1}{\delta}}{\epsilon^2} \right) \).
Original theorem (old version of JL): \(\phi \) is random linear subspace.

Proof. Because \(\phi \) is linear sketch, we have \(\|\phi(x) - \phi(y)\|_2 = \|\phi(x - y)\|_2 \). Our goal is to prove \(\|\phi(x) - \phi(y)\|_2 = \|\phi(x - y)\|_2 \approx \|x - y\|_2 \). If we are able to show \(\|\phi(x)\|_2 \approx \|x\|_2 \), Then, we can easily get the former one.

Now we take \(\phi = \frac{1}{\sqrt{k}} Gx \), where \(G_{ij} \) is Gaussian random variable.\(^1\)

First, consider \(k = 1 \), \(\phi(x) = \sum_{i=1}^{n} G_{1j} x_j \)

Fact 7. Stability of Gaussian r.v.: \(\sum_{i=1}^{n} g_i x_i \sim g \|x\|^2 \), where \(g_1, g_2, \ldots, g_n \sim \text{standard G.r.v.} \)

Proof. 1. \((g_1, g_2, \ldots, g_n) \) is a distribution, and it is spherical symmetric.

2. p.d.f. \((g_1, g_2, \ldots, g_n) = (\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{g_1^2}{2} - \frac{g_2^2}{2} - \ldots - \frac{g_n^2}{2}} = (\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^{n} g_i^2}{2}} = (\frac{1}{2\pi})^{\frac{n}{2}} e^{-\frac{\|g\|^2}{2}} \)

Therefore, \(\sum_{i=1}^{n} G_{1j} x_j = g_1 \circ \|x\| \), where \(g_1 \sim N(0, 1) \)

Now, consider \(k > 1 \):

\[
\phi(x) = \frac{1}{\sqrt{k}} Gx \sim \frac{1}{\sqrt{k}} (g_1 \circ \|x\|_2, g_2 \circ \|x\|_2, \ldots, g_k \circ \|x\|_2) \sim \frac{\|x\|_2}{k} (g_1, g_2, \ldots, g_k)
\]

\[
\|\phi(x)\|^2 = \|x\|^2 \cdot \frac{1}{k} (g_1^2 + g_2^2 + \cdots + g_k^2)
\]

Therefore, We only have to prove that \(\frac{1}{k} \cdot (g_1^2 + g_2^2 + \cdots + g_k^2) \approx 1 \)

Notice that \(\frac{1}{k} \cdot (g_1^2 + g_2^2 + \cdots + g_k^2) \sim \chi_k^2 \) with \(k \) freedom degree.

Fact 8. \(Pr[\chi_k^2 \notin (1 \pm \epsilon)] \leq 2 \cdot e^{\frac{\epsilon^2}{2}} \)

As long as we choose \(\epsilon < \frac{1}{3} \), we get J.L. Theorem.\(\square \)

Corollary 9. Fix \(N \in \mathbb{N} \), consider \(x_1, x_2, \ldots, x_n \in \mathbb{R}^n \). Then \(\exists \phi: \mathbb{R}^n \rightarrow \mathbb{R}^k \), \(k = O(\frac{\log N}{\epsilon^2}) \), s.t. \(\forall i, j \in [N], \|\phi(x_i) - \phi(x_j)\| \in (1 \pm \epsilon) ||x_i - x_j||_2 \).

(In fact, a random \(\phi \) (from JL theorem) works with probability greater than \(1 - \frac{1}{N} \).)

Proof. Set \(\delta = \frac{1}{N^2} \) in JL theorem \(\Rightarrow Pr[\forall i, j, ||\phi(x_i) - \phi(x_j)|| \in (1 \pm \epsilon) ||x_i - x_j||] = 1 - \frac{1}{N^2} \).

By the union bound over all pairs of \(i, j \in [N] \), we can get \(Pr[\forall i, j \in [N] ||\phi(x_i) - \phi(x_j)|| \in (1 \pm \epsilon) ||x_i - x_j||_2] = 1 - \frac{N^2}{N^2} = 1 - \frac{1}{N} \).\(\square \)

Fact 10. Can not be the case that \(\exists \phi \) that works for all sets of \(N \) points (unless \(k = n \)).

Why?

\[
\phi: \mathbb{R}^n \rightarrow \mathbb{R}^k, k < n
\]

\[
\Rightarrow \exists x, y \in \mathbb{R}^n, x \neq y, \text{s.t.} \phi(x) = \phi(y)
\]

\[
\Rightarrow \phi \text{ does not preserve dist } ||x - y||_2 \text{ up to any approximation}
\]

Observation 11. Time to compute \(\phi(x) \) is \(O(nk) \). Since in JL, \(\phi(x) = \frac{1}{\sqrt{k}} \cdot G \cdot x \)

\(^1\text{p.d.f. } = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}\)

\(^2\text{side notes: We could write T.o.W. as the same form, } \phi(x) = \frac{1}{\sqrt{k}} RX, \text{ where } R_{ij} \in \{\pm 1\} \)
Observation 12. Are there dimension reduction in other norms, where $k = O(\frac{\log \frac{1}{\epsilon}}{\epsilon^2})$ is the target dimension, for $(1 \pm \epsilon)$ with $1 - \delta$ probability?

The general answer is No, but we there could be some sketch instead dimension reduction could do this.

Theorem 13. \exists linear sketch $S : \mathbb{R}^n \to \mathbb{R}^k$ and estimator E s.t, $Pr[E(S(x)) \in (1 \pm \epsilon) \cdot ||x||_1] >= 90\%$ and $k = O(\frac{1}{\epsilon^2})$.

Proof. From observation 14 to Fact 17.

Observation 14. In JL, we have $\phi(x) = \frac{1}{\sqrt{k}} \cdot G \cdot x$. And we can say $\phi_1(x) = \frac{1}{\sqrt{k}} (G_1 \cdot x)$ where $G = \begin{bmatrix} G_1 \\ \vdots \\ G_k \end{bmatrix}$.

Then we know $\phi_1(x) \sim \frac{1}{\sqrt{k}} \cdot g_1 \cdot ||x||_2$, where $g_1 \in N(0, 1)$.

Fact 15. $\sum_{i=1}^{n} c_i x_i = c \cdot ||x||_1$, where $c, c_1, c_2, \ldots, c_n \sim$ random variable in Cauchy distribution3

Definition 16.

$$\phi(x) = \frac{1}{k} \cdot C \cdot x \sim \frac{1}{k} \cdot (c_1 \cdot ||x||_1, c_2 \cdot ||x||_1, \ldots, c_k \cdot ||x||_1) = \frac{||x||_1}{k} \cdot (c_1, c_2, \ldots, c_k).$$ (2)

where $c_i \sim$ Cauchy random variable

Set estimator

$$E[\phi(x)] = k \cdot \text{median}[\phi_i(x)] = \text{median}[||x||_1 \cdot |c_j|]$$ (3)

$$= ||x||_1 \cdot \text{median}_{j=1..k} |c_j|$$

We want the median part $\in (1 \pm \epsilon)$ with probability $>= 90\%$. And we know the fact that

Fact 17. $Pr[\text{median}_{j=1..k} |c_j| \in (1 + \epsilon) >= 90\%]$ as long as $k = \Omega(\frac{1}{\epsilon^2})$.

\[\square\]

3the p.d.f of standard Cauchy distribution is $p(x) = \frac{1}{\pi(x^2 + 1)}$