COMS E6998-9: Algorithms for Massive Data (Spring'19)

Feb 7, 2019

Lecture 6: Dimension Reduction

Instructor: Alex Andoni

Scribes: Minghao Chen, Bicheng Gao

1 Linearity

Definition 1. $S_R : \mathbb{R}^n \to \mathbb{R}^k$ is linear sketch $\iff S_R$ is linear function, where R is random seed we choose.

We could think a linear function is a special sketch.

Example 2. Assume that we have $1, 2, \dots, l$ routers, and each of them has its own data steaming. Then we could compute their frequency vectors f_i separately.Now, if we'd like to get information about the entire data traffic. We don't have to compute the sum of f_i and then sketch it. We could compute their sketch separately and sum of them to get the same result. In formula, Assume that $f_1, f_2 \cdots f_l$ is a sequence of frequency vectors, $S(f_1 + f_2 + \cdots + f_l) = \sum_{i=1}^l S(f_i)$.

Example 3. For G.S.M(General Turnstile Streaming), we have a sequence updates $(i, \delta_i), \delta_i \in \mathbb{R}, i \in [n], f' = f + \delta_i e_i$. Then $S(f') = S(f + \delta_i e_i) = S(f) + S(\delta_i e_i)$.

We want to estimate the information contain in f using sketch S. Without the linearity, every time we see a new i, we have to update f and get f'. With the linear sketch, we don't have to update the f', we just update the sketch by adding $S(\delta_i e_i)$ to the old one. Therefore, we just need to store the sketch of f.

Example 4. For a linear sketch, we have $f_1, f_2 \in \mathbb{R}^n$, $S(f_1 - f_2) = S(f_1) - S(f_2)$. To be specific, for l_2 norm, we use sketch T.o.W. to estimate it. It is a linear sketch and $E_{T.o.W.}(S(f_1 - f_2)) \approx ||f_1 - f_2||_2^2$.

We could consider sketch as approximately functional compression. $S(f_1), S(f_2)$ are used to estimate the information containing in f_1, f_2 .

According to lecture 3, we are able to get a $(1 + \epsilon)$ -approximation using $O(1/\epsilon^2)$ counters. In words, $E_{T.o.W.+}(S(f_1) - S(f_2)) \in (1 \pm \epsilon) ||f_1 - f_2||_2^2$ with Probability 90%.

Observation 5. Now, what if we expect the Probability to be $1 - \delta$, where δ is relatively small. Can we use Median Trick here?

Yes, but Media Trick is not dimension reduction, since it takes the median instead of l_2 norm.

2 Johnson-Lindenstrauss '84

Theorem 6. $\forall \epsilon > 0, \forall k \in \mathbb{N}, \exists linear \ sketch \ \phi : \mathbb{R}^n \to \mathbb{R}^k, s.t. \forall x, y \in \mathbb{R}^n, \Pr[||\phi(x) - \phi(y)||_2 \in (1 \pm \epsilon)||x - y||_2] \geq 1 - e^{-\frac{\epsilon^2 k}{9}}.$ This is equivalent to $1 - \delta$ probability, when $k = O(\frac{\log \frac{1}{\delta}}{\epsilon^2})$

Original theorem (old version of JL): ϕ is random linear subspace.

Proof. Because ϕ is linear sketch, we have $||\phi(x) - \phi(y)||_2 = ||\phi(x - y)||_2$. Our goal is to prove $||\phi(x) - \phi(y)||_2 = ||\phi(x - y)||_2 \approx ||x - y||_2$. If we are able to show $||\phi(x)||_2 \approx ||x||_2$. Then, we can easily get the former one.

Now we take $\phi = \frac{1}{\sqrt{k}}Gx$, where G_{ij} is Gaussian random variable.¹² First, consider k = 1, $\phi(x) = \sum_{i=1}^{n} G_{1j}x_j$

Fact 7. Stability of Gaussian r.v.: $\sum_{i=1}^{n} g_i x_i \sim g||x||^2$, where $g_1, g_2, \cdots, g_n \sim standard G.r.v.$

Proof. 1. (g_1, g_2, \dots, g_n) is a distribution, and it is spherical symmetric.

2.
$$p.d.f.(g_1, g_2, \cdots, g_n) = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{g_1^2}{2}} e^{-\frac{g_2^2}{2}} \cdots e^{-\frac{g_n^2}{2}} = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{\sum_{i=1}^n g_i^2}{2}} = \left(\frac{1}{2\pi}\right)^{\frac{n}{2}} e^{-\frac{||g||_2^2}{2}}$$

Therefore, $\sum_{i=1}^{n} G_{1j} x_j = g_1 \circ ||x||$, where $g_1 \sim N(0, 1)$

Now, consider k > 1:

$$\phi(x) = \frac{1}{\sqrt{k}} Gx \sim \frac{1}{\sqrt{k}} (g_1 \circ ||x||_2, g_2 \circ ||x||_2, \cdots, g_k \circ ||x||_2) \sim \frac{||x||_2}{k} (g_1, g_2, \cdots, g_k)$$
$$||\phi(x)||_2^2 = ||x||_2^2 \cdot \frac{1}{k} \cdot (g_1^2 + g_2^2 + \cdots + g_k^2)$$

Therefore, We only have to prove that $\frac{1}{k} \cdot (g_1^2 + g_2^2 + \dots + g_k^2) \approx 1$ Notice that $\frac{1}{k} \cdot (g_1^2 + g_2^2 + \dots + g_k^2) \sim \chi_k^2$ with k freedom degree.

Fact 8. $Pr[\chi_k^2 \notin (1 \pm \epsilon)] \le 2 \cdot e^{\frac{k}{4}(\epsilon^2 - \epsilon^2)}$

As long as we choose $\epsilon < \frac{1}{3}$, we get J.L. Theorem.

Corollary 9. Fix $N \in \mathbb{N}$, consider $x_1, x_2, ..., x_n \in \mathbb{R}^n$. Then $\exists \phi : \mathbb{R}^n \to \mathbb{R}^k$, $k = O(\frac{\lg N}{\epsilon^2})$, s.t, $\forall i, j \in [N], ||\phi(x_i) - \phi(x_j)|| \in (1 \pm \epsilon) ||x_i - x_j||_2$.

(In fact, a random ϕ (from JL theorem) works with probability greater than $1 - \frac{1}{N}$.)

 $\begin{array}{l} \textit{Proof. Set } \delta = \frac{1}{N^3} \text{ in JL theorem} \Rightarrow \Pr[\forall x_i, x_j, ||\phi(x_i) - \phi(x_j)|| \in (1 \pm \epsilon) ||x_i - x_j||] > = 1 - \delta = 1 - \frac{1}{N^3}.\\ \text{By the union bound over all pairs of } i, j \in [N], \text{ we can get } \Pr[\forall i, j \in [N] ||\phi(x_i) - \phi(x_j)|| \in (1 \pm \epsilon) ||x_i - x_j||_2] > = 1 - \frac{N^2}{N^3} = 1 - \frac{1}{N}. \end{array}$

Fact 10. Can not be the case that $\exists \phi$ that works for all sets of N points (unless $k \ge n$). Why?

$$\phi : R^{n} \to R^{k}, k < n$$

$$\Rightarrow \exists x, y \in R^{n}, x \neq y, s.t, \phi(x) = \phi(y)$$
(1)

$$\Rightarrow \phi \text{ does not preserve dist } ||x - y||_{2} \text{ up to any approximation}$$

Observation 11. Time to compute $\phi(x)$ is O(nk). Since in JL, $\phi(x) = \frac{1}{\sqrt{k}} \cdot G \cdot x$

 ${}^{1}_{2}p.d.f. = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}$

²side notes: We could write T.o.W. as the same form, $\phi(x) = \frac{1}{\sqrt{k}}RX$, where $R_{ij} \in \{\pm 1\}$

Observation 12. Are there dimension reduction in other norms, where $k = O(\frac{\lg \frac{1}{\delta}}{\epsilon^2})$ is the target dimension, for $(1 \pm \epsilon)$ with $1 - \delta$ probability?

The general answer is No, but we there could be some sketch instead dimension reduction could do this.

Theorem 13. \exists linear sketch $S : \mathbb{R}^n \to \mathbb{R}^k$ and estimator E s.t, $\Pr[E(S(x)) \in (1 \pm \epsilon) \cdot ||x||_1] \ge 90\%$ and $k = O(\frac{1}{\epsilon^2})$.

Proof. From observation 14 to Fact 17.

Observation 14. In JL, we have $\phi(x) = \frac{1}{\sqrt{k}} \cdot G \cdot x$. And we can say $\phi_1(x) = \frac{1}{\sqrt{k}} (G_1 \cdot x)$ where $G = \begin{bmatrix} G_1 \\ \cdots \\ G_k \end{bmatrix}$. Then we know $\phi_1(x) \sim \frac{1}{\sqrt{k}} \cdot g_1 \cdot ||x||_2$, where $g_1 \in N(0, 1)$.

Fact 15. $\sum_{i=1}^{n} c_i x_i = c \cdot ||x||_1$, where $c, c_1, c_2, \cdots, c_n \sim random variable in Cauchy distribution³ Definition 16.$

$$\phi(x) = \frac{1}{k} \cdot C \cdot x$$

$$\sim \frac{1}{k} \cdot (c_1 \cdot ||x||_1, c_2 \cdot ||x||_1, \cdots, c_k \cdot ||x||_1) = \frac{||x||_1}{k} \cdot (c_1, c_2, ..., c_k).$$
(2)

where $c_i \sim Cauchy$ random variable

Set estimator

$$E[\phi(x)] = k \cdot \mathbf{median}[\phi_i(x)]$$

= $\mathbf{median}||x||_1 \cdot |c_j|$
= $||x||_1 \cdot \mathbf{median}_{j=1..k}|c_j|$ (3)

We want the median part $\in (1 \pm \epsilon)$ with probability $\geq 90\%$. And we know the fact that

Fact 17. $Pr[median_{j=1..k}|c_j| \in (1+\epsilon) >= 90\%]$ as long as $k = \Omega(\frac{1}{\epsilon^2})$.

³the p.d.f of standard Cauchy distribution is $p(x) = \frac{1}{\pi(x^2+1)}$