
COMS E6998-9: Algorithms for Massive Data (Spring’19) Feb 5, 2019

Lecture 5: High freq. moments, precision sampling, dim. reduction

Instructor: Alex Andoni Scribes: Dave Epstein, Jaewan Bahk

1 Improving CountMin

Definition 1. CountMin for detecting heavy hitters.

∀j ∈ [L], k ∈ [w] : Hj [k] =
∑

i:hj(i)=k

fi

where f ∈ Rn is a frequency vector, hj : [n] → [w] is a random hash function. We estimate f̂i =

minj Hj [hj(i)]. To find φ-heavy-hitters (φ-HH), we return any item with f̂i > φ||f ||1.

That is, we pick items that hash to buckets with a value large enough to qualify as HH. However,

we ask ourselves if we can do better than this CountMin in the following setting for finding φ-HH where

most frequencies are far smaller than that of the one φ-HH:

φ = n−0.1; f = (1, 1, . . . , 2φn, 1, . . . , 1)

CountMin uses space O( 1
φε lnn) = O( lnnε n

0.1). So, can we do better in this regime? Consider the following

sketch for a counter:

Definition 2. Alternate counter.

∀j ∈ [l], k ∈ [w] : Hj [k] =
∑

i:hj(i)=k

rjifi

where f ∈ Rn is a frequency vector, hj : [n]→ [w] is a random hash function, and rji =r {±1}.

Intuitively, we want smaller values of fi to cancel each other out, or for additional items that are not

the heavy-hitter but hash to the same bucket as it to have a minimal effect. Indeed, with analysis similar

to that of the length of a random walk, we expect the sum of all low-frequency elements hashing to the

same bucket |
∑

i:hj(i)=k,fi=1 rji| ≈
√
n/w, a significant improvement over the n/k we’d expect without

the introduction of the random sign.

In this counting sketch, we can no longer rely on the naive median or minimum of values in the

hash tables due to the introduction of the possibly negative r.v., so our new estimator becomes f̂i =

medianj rjiHj [hj(i)].

2 Approximating Frequency Moments Fp where p 6∈ {0, 1, 2,∞}

We have devised algorithms for F0 (count distinct, Flajolet-Martin and bottom-k), F1 (count, Morris),

F2 (using Tug-of-War), and now for F∞ using heavy hitters. We observe that the heavy hitters algorithm
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is harder in terms of runtime complexity (Θ(n)) than the zeroth through second frequency moments

(Oε(lnn)). Later on in the class, we will focus on approximating frequency moments for p ∈ [0, 2], which

will be doable also in Oε(lnn) time, but in this lecture we study approximating the moments for some

fixed p > 2.

Theorem 3. For p > 2, there exists a sketch that uses space O(n
1− 2

p lnn) for a constant (O(1)) approx-

imation for Fp. This sketch is even an optimal result for linear sketches with constant approximation.

2.1 Precision sampling

To prove this theorem, we introduce a new tool called precision sampling. To illustrate its usefulness, we

consider a toy example.

Example 4. Given numbers a1, . . . , an ∈ [0, 1] we wish to reason about
∑

i ai. Say that we want to

distingiush between two cases: (1)
∑
ai ≤ 0.1, (2)

∑
ai > 10. Note that 0.1 and 10 are relatively small

compared to the maximal value that the sum can take (which is n).

How many samples ai do we need to be able to distinguish between these two cases1?

Observation 5. Without “precision sampling” (not yet defined), we need roughly n samples to distinguish

between the two cases. An adversary can construct the following two groups of numbers: one where

ai = 0 ∀i and one where ai = 0 ∀i 6∈ S, ai = 1 ∀i ∈ S, where S = i1, . . . , i11. These two groups are

identical except for 11 items, but belong to different cases. Hence, we must sample roughly n numbers to

decisively discern between the cases.

This is obviously an unsatisfying solution - we want to be able to answer this question without having

to basically sample every number in the group. Precision sampling presents an alternative framework for

accessing samples. In this model, we suppose we can access an estimate of ai up to some precision ui > 0.

Then, algorithms interact with the precision sampling framework as such:

1. Nature chooses a1, . . . , an

2. The algorithm sets some uncertainties u1, . . . , un

3. Nature returns âi s.t. |ai − âi| ≤ ui

4. The algorithm uses {(âi, ui)}ni=1 to decide on the problem it is tackling

For example, we might use ui = 1
n ∀i which leads to

∑
âi ∈ [

∑
ai ± 1]. More trivially, we could even set

ui = 0. Obviously we need to constrain ui for the framework to differ in any way from standard sampling.

Ideally, we would like to avoid requiring fine precision, and be able to solve problems like distinguishing

between the two cases of
∑
ai presented above while only coarsely sampling elements.

Guided by this intuition, we quantify a cost cp on u1, . . . , un parametrized by a parameter p > 1:

cp =
1

n

n∑
i=1

(
1

ui
)1/p

1We make no observations about the underlying distribution of the variables ai. In this class, we consider worst-case
runtimes, so in the setting where we would make distribution assumptions, we must assume the existence of an adversary
that intends to fool our algorithm. An example of such an adversarial distribution is presented as part of the argument that
∼ n samples are needed to distinguish between the two cases presented above.
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We now move to formalizing the precision sampling framework.

Lemma 6. Precision Sampling Lemma: we can solve goals like the two-case distinction described in the

above example, with Eui [cp] = O(1).

To guide the proofs that will follow, we note that this lemma requires that the ui must be random

variables, and that the final estimator we use not will “look like”
∑
âi as we might expect.

Proof. Let ui ∼ Exp(λ = 1) be the random uncertainties2. Then, our estimator for
∑
ai is E =

maxi
âi
ui

. To analyze this estimator, we consider the quantity âi
ui

. Trivially, âi
ui
∈ [ai±uiui

] = [ aiui ± 1].

Therefore, E ∈ [max( aiui ±1)] = [max ai
ui

]±1 = 1
min

ui
ai

±1.3 We take a brief detour to analyze the quantity

minui/ai.

Fact 7. min ui
ai

is distributed as u∑
ai

where u ∼ Exp(1) (due to the memoryless property of the exponential

distribution).

Now, we have that E ∼
∑
ai
u ± 1 where u ∼ Exp. Since u ∈ [0.5, 2] w.p. ≥ e−0.5 − e−2, E ∈

[
∑
ai
2 − 1,

∑
ai
2 + 1] with the same probability. Returning to our toy example, such an estimator E

provides enough granularity to distinguish between the two cases, since in case (1) where
∑
ai ≤ 0.1,

Emax = 1.05, and in case (2) where the sum is > 10, Emin = 4. Since there is no overlap between the

values that E can take on in these two cases, we can use it to answer the original question posed.

It remains to prove that cp is indeed small (more specifically, E[cp] = O(1)), which was the motivation

for this more complex framework in the first place.

Proof. E[cp] = E[ 1n
∑

( 1
u)1/p] = E[( 1

u)1/p]. The last equality follows since the ui have identi-

cal expectations, and n such uis are summed up and divided by n. This expectation is equal to∫∞
0 ( 1

u)1/p e−u du =
∫ 1
0 ( 1

u)1/p e−u du
(Integral 1)

+
∫∞
1 ( 1

u)1/p e−u du
(Integral 2)

. We split the integral into two parts since

in the first integral, the fraction dominates, and in the second, the exponential does. We now evaluate

both parts of the integral:

1. For u ∈ [0, 1], e−u ≤ 1. Since ( 1
u)1/p converges for p > 1, the integral evaluates to Op(1) (constant

as a function of p).

2. For u ≥ 1, ( 1
u)1/p ≤ 1. Since

∫∞
0 e−u = 1 (it’s the pdf of a distribution), the entire integral is also

O(1).

Adding both parts together, the original integral is O(1) as well, so E[cp] = O(1).

2.2 Fp sketching

Now, we return to prove the original theorem on the existence of O(n
1− 2

p lnn)-space sketches for O(1)-

approximations to Fp, p > 2. The proof is slightly complicated so some details are elided.

Proof. We hold a hash table H of width w and define:

∀k ∈ [w], H[k] =
∑

i:h(i)=k

rifi

u
1/p
i

2This distribution is on u > 0 where pdf(u) = e−u. For conciseness, we will denote it as Exp in the future.
3maxx = max 1

1/x
= 1

min 1/x
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Where h : [n] → [w], ri =r {±1}, ui ∼ Exp. This combines the randomized sign idea from earlier with

the precision sampling regime. Note that the ui must be independent and that achieving this proof with

limited randomness is nontrivial. Note also that we use one hash table here, not L, and that this sketch

is a linear one (see previous lecture).

Our estimator for Fp is then E = maxk |H[k]|p. The intuition behind the max operator is similar to

that of precision sampling, taking advantage of the properties of the exponential distribution. We will

now prove that E is an O(1) approximation to Fp.

Proof. Let yi = fi

u
1/p
i

and zk = H[k] (y ∈ Rn, z ∈ Rk). We can then visualize this process as taking the

original length n frequency vector f , scaling each value by 1

u
1/p
i

(using precision sampling and yielding y),

perturbing each yi’s sign randomly (the tug-of-war idea), and bucketing them by hash (from CountMin)

resulting in a length k vector, z.

Claim 8.

||y||∞ ∼ (
Fp
u

)1/p

Where u ∼ Exp.

Proof. ||y||∞ = maxi|yi| = (maxi|yi|p)1/p = (maxi
|fi|p
ui

)1/p ∼ (
∑
|fi|p
u )1/p = (

Fp

u )1/p.

Corollary 9.

||y||1/p∞ ∈ [0.5, 2]Fp w.p. ≥ e−0.5 − e−2

We want ||y||1/p∞ to be relatively large w.r.t. the norm of the vector y so that we can extract it using

HH. It turns out that the correct norm to examine here is the 2-norm.

Claim 10.

||y||22 ≤ O(1)||f ||22 w.p. 99%

Proof. E[||y||22] = E[
∑
y2i ] = E[

∑
(
f2i

u
2/p
i

)] =
∑ f2i

E[u2/pi ]
. The denominator of each sum term’s fraction

is O(1) if p > 2, so the whole expectation is ≤ ||f ||22 · O(1). Then, by Markov, ||y||22 ≤ O(1) · ||f ||22 w.p.

99%.

Continuing with our quest to find Fp using HH, we relate ||f ||22 to the p-norm of f .

Corollary 11.

||y||22 ≤ O(F 2/p
p · n1−2/p) w.p. 99%

Proof. This follows from Holder’s inequality. Details omitted.

Now, all that remains is to analyze z (recalling that zk = Hk). We observe that the maximum element

in y will be a HH in z with φ ≈ n1−2/p. We now analyze ||z||∞ (which is E1/p where E is our estimate

for Fp). Fix some k. We are interested in estimating zk, but for convenience will estimate z2k:

E[z2k] = Eri,h[(
∑

i:h(i)=k

riyi)
2] =

by T.o.W.
Eh[

∑
i:h(i)=k

y2i ] =

∑
y2i
w

=
||y||22
w

Combining results, we have that E[z2k] ≤ 1
wO(F

2/p
p ·n1−2/p) w.p. 99%. Setting w >> n1−2/p lnn,4 we have

E[z2k] << F
2/p
p . By Markov, we have that z2k ≤ O(1)F

2/p
p w.p. 99% which implies that |zk| ≤ O(1)F

1/p
p

with the same probability.

4Reasoning behind factor of lnn not discussed in lecture.
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To conclude, we have that in z, zh(argmaxi yi) is relatively large and is ≈ F 1/p
p by Corollary 9. We also

have that the average bucket is ≤ O(1)F
1/p
p from the above analysis. So the bucket where the maximum

element of y is hashed to is relatively large compared to other buckets, and is ≈ F
1/p
p , justifying our

original estimator E = maxk |H[k]|p.

Claim 12. For all k, zk ≤ O(1)F
1/p
p , and ∃k s.t. zk = Ω(F

1/p
p ).

Claim not proved. However, from this claim, it follows directly that we can use our estimator to

predict Fp with a constant-factor approximation!
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