COMS E6998-9: Algorithms for Massive Data (Spring’19) Jan 31, 2019

Lecture 4: Heavy Hitters, CountMin, Linearity

Instructor: Alex Andoni Scribes: Jia Wan and Weston Jackson

1 Heavy Hitters

Theorem 1. Any algorithm for 2-approzimation for Fy, (randomized) requires Q(n) space.

Definition 2. For ¢ € (0,1), i € [n] is a ¢ heavy-hitter (HH) if f; > ¢>_, f;i = ¢l f|1.

Our goal is to show that we can find all ¢—heavy hitters using space O(log”)

Idea: Use a hash function H : [n] — [w], where w = O(%) and hash table H[w] € R". Then for
each element ¢ that goes to bucket &k, we sum up the frequencies for each of the w buckets, denote:

> fiVk € [u]
i:h(i)=Fk
In the form of algorithm:
e Update i: H[h(i)]++
e Estimator: Vi € [n], f; = H[h(i)].

Note that fz is a biased estimator, but we can show the bias is small.
Fix a heavy hitter ¢, then we have f; > || f|]; and:

fi=fi+ Z fj (extra)
3#ih(§)=h(i)

where:

plextra] = Z fixIh(h(3)]]
J#i

=" {EXIR() = h(i)]
i#i
Il

w

Suppose w = %, then Elextra] < 155 || f|l.. By Markov Inequality:

Prlextra > %Hf”l] <0.1

This means that with probability 90%, f; € [fi, fi + %Hle], therefore:

e If i is heavy hitter, f; > ¢| |1
e If i is not %—heavy hitter, f; < ol fll

However, there are issues with this estimator. Any j colliding with heavy hitter ¢ will be indistin-
guishable. Fix: use the median trick, with L = O(logn) hash tables.

1.1 CountMin

CountMin: L = O(logn), hi,he,...,hy : [n] = [w], H1, Ha,...,H, € RY
Algorithm:

o Vk € [n],Vj € [L], Hj[k] = 3 i, iy i
Claim 3. For w = O(%), with probability 1 — %,Vi €n], fi < fz < fi+ed|fl-

Proof. By median trick w/§ = #:

A 1
Prifi < fi+eolfl1] > 1~ o)
union bound over all i € [n]:
o 1
Prifi< fi+edllfla] 21—~
0

Observation 4. We can take minimum instead of median since each estimator can only overestimate,
so fi < fi+ €| fll1 still holds and everything follows.

Theorem 5. CountMin algorithm uses space O(é logn) words of O(logn) bits, and outputs a set S such
that with probability > 1 — %

e ifiis¢p(l+e)— HH thenie S
e ifiisnot (1 —€)— HH, theni & S
Proof. Let S be the set of all items where f; > ¢||f||1
e Ifiis ¢ — HH, then f; > f; > ¢||f]|1, therefore i € S.
o 1t i is not 6(1— ¢) — HH, then f; < fi + e6|l /1 < (&(1 —€) +)| fll1 < @l fll1, therefore i ¢ S
0

Problem: to compute S, need f; for all i € [n], which takes ©(nlogn) time. We can improve the time
complexity at the cost of increasing space.

1.2 Faster Runtime?
Theorem 6. CM can achieve O(% log?n) time with O(é log?n) space.

Proof. Use dyadic intervals:

1 1 n
Construction:
e Leaves of the tree are the elements in the frequency vector.
e Each node in the tree calculates the total frequency from elements in its subtree.

e [t follows the total number of levels is log n.

2?21 fz
/\

n

E?:l fi Z?:g+1 fi
/\ /\

AN
i o i

We create a stream for each level of the tree:
e Stream; is a stream with single frequency: Y f;
e Streams is a stream with frequencies: Z?ﬁ fis Z?:n/Z—i—l fi
o ...
e Streamiogp is a stream with frequencies: f1, fo,...fn
Keep a CM-sketch for each of these streams.

Observation 7. Ifi is a ¢-HH then all ancestors of i in the tree are also ¢-HH.

This holds because each ancestor I s.t. {i} C I has fr > fi > ¢||f||i. Thus, our HH algorithm is
simply to do a binary search for the heavy hitters on the tree!

Runtime analysis:

1

e Number of active nodes per-level is < s

e Total number of nodes of the tree to check is < O(é logn)

e Total runtime is O(% log® n)

2 Linearity

Assume we have two traffic streams f and f’, and we want to take of sketch of the entire traffic. The
entire traffic is:
f + fl c NTL

We can assume some random seed for CM (f) such that:
CM(f)=A-f
where A is an (Lw) x n matrix and f € N®. Thus we have:

CM(f+f)=A(f+)= Af + Af' = CM(f) + CM(f')

3 General Turnstyle Streaming

We want to calculate ||f — f'||, (for example, the number of packets that got lost/generated in a cyber
network).

Definition 8. G.T.5.M: Sequence of updates (x,0;) s.t. fz := fz + 0 where x € [n] and 0, € R.

e So far in CM-sketch, 6, =1

e CM is not good enough to solve GTSM for p = 1. Consider p =1, ||f — f'|| = 2m if f and f’ are
disjoint items.

Neither is FM for p = 0 good enough

p = 2, ToW works in GTSM model:

ToW (f) — ToW (') = ToW (f — ') = ||f — f'lla

