Lecture 4: Heavy Hitters, CountMin, Linearity

Instructor: Alex Andoni
Scribes: Jia Wan and Weston Jackson

1 Heavy Hitters

Theorem 1. Any algorithm for 2-approximation for F_{∞} (randomized) requires $\Omega(n)$ space.
Definition 2. For $\phi \in(0,1), i \in[n]$ is a ϕ heavy-hitter (HH) if $f_{i}>\phi \sum_{j} f_{j}=\phi\|f\|_{1}$.
Our goal is to show that we can find all ϕ-heavy hitters using space $O\left(\frac{\log n}{\phi}\right)$.
Idea: Use a hash function $\mathcal{H}:[n] \rightarrow[w]$, where $w=O\left(\frac{1}{\phi}\right)$ and hash table $H[w] \in \mathbb{R}^{w}$. Then for each element i that goes to bucket k, we sum up the frequencies for each of the w buckets, denote:

$$
H[k]=\sum_{i: h(i)=k} f_{i}, \forall k \in[w]
$$

In the form of algorithm:

- Update i: $\mathrm{H}[\mathrm{h}(\mathrm{i})]++$
- Estimator: $\forall i \in[n], \hat{f}_{i}=H[h(i)]$.

Note that \hat{f}_{i} is a biased estimator, but we can show the bias is small. Fix a heavy hitter i, then we have $f_{i}>\phi\|f\|_{i}$ and:

$$
\hat{f}_{i}=f_{i}+\sum_{j \neq i: h(j)=h(i)} f_{j} \text { (extra) }
$$

where:

$$
\begin{aligned}
\mathbb{E}_{h}[\text { extra }] & =\mathbb{E}\left[\sum_{j \neq i} f_{j} \chi[h(j)=h(i)]\right] \\
& =\sum_{j \neq i} f_{j} \mathbb{E}[\chi[h(j)=h(i)]] \\
& \leq \frac{\|f\|_{1}}{w}
\end{aligned}
$$

Suppose $w=\frac{100}{\phi}$, then $\mathbb{E}[$ extra $] \leq \frac{\phi}{100}\|f\|_{1}$. By Markov Inequality:

$$
\operatorname{Pr}\left[\operatorname{extra}>\frac{\phi}{10}\|f\|_{1}\right] \leq 0.1
$$

This means that with probability $90 \%, \hat{f}_{i} \in\left[f_{i}, f_{i}+\frac{\phi}{10}\|f\|_{1}\right]$, therefore:

- If i is heavy hitter, $\hat{f}_{i}>\phi\|f\|_{1}$
- If i is not $\frac{\phi}{2}$-heavy hitter, $\hat{f}_{i}<\phi\|f\|_{1}$

However, there are issues with this estimator. Any j colliding with heavy hitter i will be indistinguishable. Fix: use the median trick, with $L=O(\log n)$ hash tables.

1.1 CountMin

CountMin: $L=O(\log n), h_{1}, h_{2}, \ldots, h_{L}:[n] \rightarrow[w], H_{1}, H_{2}, \ldots, H_{L} \in \mathbb{R}^{w}$
Algorithm:

- $\forall k \in[n], \forall j \in[L], H_{j}[k]=\sum_{i: h_{j}(i)=k} f_{i}$
- $\hat{f}_{i}=\operatorname{med}_{j \in[L]} H_{j}\left[h_{j}(i)\right]$

Claim 3. For $w=O\left(\frac{1}{\epsilon \phi}\right)$, with probability $1-\frac{1}{n}, \forall i \in[n], f_{i} \leq \hat{f}_{i} \leq f_{i}+\epsilon \phi\|f\|_{1}$.
Proof. By median trick w/ $\delta=\frac{1}{n^{2}}$:

$$
\operatorname{Pr}\left[\hat{f}_{i} \leq f_{i}+\epsilon \phi\|f\|_{1}\right] \geq 1-\frac{1}{n^{2}}
$$

union bound over all $i \in[n]$:

$$
\operatorname{Pr}\left[\hat{f}_{i} \leq f_{i}+\epsilon \phi\|f\|_{1}\right] \geq 1-\frac{1}{n}
$$

Observation 4. We can take minimum instead of median since each estimator can only overestimate, so $\hat{f}_{i} \leq f_{i}+\epsilon \phi\|f\|_{1}$ still holds and everything follows.

Theorem 5. CountMin algorithm uses space $O\left(\frac{1}{\epsilon \phi} \log n\right)$ words of $O(\log n)$ bits, and outputs a set S such that with probability $\geq 1-\frac{1}{n}$:

- if i is $\phi(1+\epsilon)-H H$ then $i \in S$
- if i is not $\phi(1-\epsilon)-H H$, then $i \notin S$

Proof. Let S be the set of all items where $\hat{f}_{i}>\phi\|f\|_{1}$

- If i is $\phi-H H$, then $\hat{f}_{i}>f_{i}>\phi\|f\|_{1}$, therefore $i \in S$.
- If i is not $\phi(1-\epsilon)-H H$, then $\hat{f}_{i} \leq f_{i}+\epsilon \phi\|f\|_{1}<(\phi(1-\epsilon)+\epsilon \phi)\|f\|_{1} \leq \phi\|f\|_{1}$, therefore $i \notin S$

Problem: to compute S, need \hat{f}_{i} for all $i \in[n]$, which takes $\Theta(n \log n)$ time. We can improve the time complexity at the cost of increasing space.

1.2 Faster Runtime?

Theorem 6. CM can achieve $O\left(\frac{1}{\phi} \log ^{2} n\right)$ time with $O\left(\frac{1}{\phi \epsilon} \log ^{2} n\right)$ space.
Proof. Use dyadic intervals:

Construction:

- Leaves of the tree are the elements in the frequency vector.
- Each node in the tree calculates the total frequency from elements in its subtree.
- It follows the total number of levels is $\log n$.

We create a stream for each level of the tree:

- $S t r e a m_{1}$ is a stream with single frequency: $\sum f_{i}$
- Stream $_{2}$ is a stream with frequencies: $\sum_{i=1}^{n / 2} f_{i}, \sum_{i=n / 2+1}^{n} f_{i}$
- ...
- Stream $\log _{n}$ is a stream with frequencies: $f_{1}, f_{2}, \ldots f_{n}$

Keep a CM-sketch for each of these streams.
Observation 7. If i is a ϕ-HH then all ancestors of i in the tree are also ϕ-HH.
This holds because each ancestor I s.t. $\{i\} \subset I$ has $f_{I} \geq f_{i} \geq \phi\|f\|_{1}$. Thus, our HH algorithm is simply to do a binary search for the heavy hitters on the tree!

Runtime analysis:

- Number of active nodes per-level is $\leq \frac{1}{\phi}$
- Total number of nodes of the tree to check is $\leq O\left(\frac{1}{\phi} \log n\right)$
- Total runtime is $O\left(\frac{1}{\phi} \log ^{2} n\right)$

2 Linearity

Assume we have two traffic streams f and f^{\prime}, and we want to take of sketch of the entire traffic. The entire traffic is:

$$
f+f^{\prime} \in \mathbb{N}^{n}
$$

We can assume some random seed for $C M(f)$ such that:

$$
C M(f)=A \cdot f
$$

where A is an $(L w) \times n$ matrix and $f \in \mathbb{N}^{n}$. Thus we have:

$$
C M\left(f+f^{\prime}\right)=A\left(f+f^{\prime}\right)=A f+A f^{\prime}=C M(f)+C M\left(f^{\prime}\right)
$$

3 General Turnstyle Streaming

We want to calculate $\left\|f-f^{\prime}\right\|_{p}$ (for example, the number of packets that got lost/generated in a cyber network).

Definition 8. G.T.S.M: Sequence of updates $\left(x, \delta_{x}\right)$ s.t. $f_{x}:=f_{x}+\delta_{x}$ where $x \in[n]$ and $\delta_{x} \in \mathbb{R}$.

- So far in CM-sketch, $\delta_{x}=1$
- CM is not good enough to solve GTSM for $p=1$. Consider $p=1,\left\|f-f^{\prime}\right\|=2 m$ if f and f^{\prime} are disjoint items.
- Neither is FM for $p=0$ good enough
- $p=2$, ToW works in GTSM model:

$$
\operatorname{ToW}(f)-\operatorname{ToW}\left(f^{\prime}\right)=\operatorname{ToW}\left(f-f^{\prime}\right) \approx\left\|f-f^{\prime}\right\|_{2}
$$

