
COMS E6998-9: Algorithms for Massive Data (Spring’19) Jan 31, 2019

Lecture 4: Heavy Hitters, CountMin, Linearity

Instructor: Alex Andoni Scribes: Jia Wan and Weston Jackson

1 Heavy Hitters

Theorem 1. Any algorithm for 2-approximation for F∞ (randomized) requires Ω(n) space.

Definition 2. For φ ∈ (0, 1), i ∈ [n] is a φ heavy-hitter (HH) if fi > φ
∑

j fj = φ‖f‖1.

Our goal is to show that we can find all φ−heavy hitters using space O(lognφ).

Idea: Use a hash function H : [n] → [w], where w = O(1
φ) and hash table H[w] ∈ Rw. Then for

each element i that goes to bucket k, we sum up the frequencies for each of the w buckets, denote:

H[k] =
∑

i:h(i)=k

fi,∀k ∈ [w]

In the form of algorithm:

• Update i: H[h(i)]++

• Estimator: ∀i ∈ [n], f̂i = H[h(i)].

Note that f̂i is a biased estimator, but we can show the bias is small.

Fix a heavy hitter i, then we have fi > φ‖f‖i and:

f̂i = fi +
∑

j 6=i:h(j)=h(i)

fj (extra)

where:

Eh[extra] = E[
∑
j 6=i

fjχ[h(j) = h(i)]]

=
∑
j 6=i

fjE[χ[h(j) = h(i)]]

≤ ‖f‖1
w

Suppose w = 100
φ , then E[extra] ≤ φ

100‖f‖1. By Markov Inequality:

Pr[extra >
φ

10
‖f‖1] ≤ 0.1

This means that with probability 90%, f̂i ∈ [fi, fi + φ
10‖f‖1], therefore:

1

• If i is heavy hitter, f̂i > φ‖f‖1

• If i is not φ
2 -heavy hitter, f̂i < φ‖f‖1

However, there are issues with this estimator. Any j colliding with heavy hitter i will be indistin-

guishable. Fix: use the median trick, with L = O(log n) hash tables.

1.1 CountMin

CountMin: L = O(log n), h1, h2, . . . , hL : [n]→ [w], H1, H2, . . . ,HL ∈ Rw

Algorithm:

• ∀k ∈ [n], ∀j ∈ [L], Hj [k] =
∑

i:hj(i)=k
fi

• f̂i = medj∈[L]Hj [hj(i)]

Claim 3. For w = O(1
εφ), with probability 1− 1

n , ∀i ∈ [n], fi ≤ f̂i ≤ fi + εφ‖f‖1.

Proof. By median trick w/δ = 1
n2 :

Pr[f̂i ≤ fi + εφ‖f‖1] ≥ 1− 1

n2

union bound over all i ∈ [n]:

Pr[f̂i ≤ fi + εφ‖f‖1] ≥ 1− 1

n

Observation 4. We can take minimum instead of median since each estimator can only overestimate,

so f̂i ≤ fi + εφ‖f‖1 still holds and everything follows.

Theorem 5. CountMin algorithm uses space O(1
εφ log n) words of O(log n) bits, and outputs a set S such

that with probability ≥ 1− 1
n :

• if i is φ(1 + ε)−HH then i ∈ S

• if i is not φ(1− ε)−HH, then i 6∈ S

Proof. Let S be the set of all items where f̂i > φ‖f‖1

• If i is φ−HH, then f̂i > fi > φ‖f‖1, therefore i ∈ S.

• If i is not φ(1− ε)−HH, then f̂i ≤ fi + εφ‖f‖1 < (φ(1− ε) + εφ)‖f‖1 ≤ φ‖f‖1, therefore i 6∈ S

Problem: to compute S, need f̂i for all i ∈ [n], which takes Θ(n log n) time. We can improve the time

complexity at the cost of increasing space.

2

1.2 Faster Runtime?

Theorem 6. CM can achieve O(1
φ log2 n) time with O(1

φε log2 n) space.

Proof. Use dyadic intervals:

1 ... n

1 ... n/2

...

1 ...

...

... i

n/2 + 1 ... n

...

... ...

...

... n

Construction:

• Leaves of the tree are the elements in the frequency vector.

• Each node in the tree calculates the total frequency from elements in its subtree.

• It follows the total number of levels is log n.∑n
i=1 fi

∑n
2
i=1 fi

...

f1 ...

...

... fi

∑n
i=n

2
+1 fi

...

... ...

...

... fn

We create a stream for each level of the tree:

• Stream1 is a stream with single frequency:
∑
fi

• Stream2 is a stream with frequencies:
∑n/2

i=1 fi,
∑n

i=n/2+1 fi

• ...

• Streamlogn is a stream with frequencies: f1, f2, ...fn

Keep a CM-sketch for each of these streams.

Observation 7. If i is a φ-HH then all ancestors of i in the tree are also φ-HH.

This holds because each ancestor I s.t. {i} ⊂ I has fI ≥ fi ≥ φ||f ||1. Thus, our HH algorithm is

simply to do a binary search for the heavy hitters on the tree!

Runtime analysis:

3

• Number of active nodes per-level is ≤ 1
φ

• Total number of nodes of the tree to check is ≤ O(1
φ log n)

• Total runtime is O(1
φ log2 n)

2 Linearity

Assume we have two traffic streams f and f ′, and we want to take of sketch of the entire traffic. The

entire traffic is:

f + f ′ ∈ Nn

We can assume some random seed for CM(f) such that:

CM(f) = A · f

where A is an (Lw)× n matrix and f ∈ Nn. Thus we have:

CM(f + f ′) = A(f + f ′) = Af +Af ′ = CM(f) + CM(f ′)

3 General Turnstyle Streaming

We want to calculate ||f − f ′||p (for example, the number of packets that got lost/generated in a cyber

network).

Definition 8. G.T.S.M: Sequence of updates (x, δx) s.t. fx := fx + δx where x ∈ [n] and δx ∈ R.

• So far in CM-sketch, δx = 1

• CM is not good enough to solve GTSM for p = 1. Consider p = 1, ||f − f ′|| = 2m if f and f ′ are

disjoint items.

• Neither is FM for p = 0 good enough

• p = 2, ToW works in GTSM model:

ToW (f)− ToW (f ′) = ToW (f − f ′) ≈ ||f − f ′||2

4

