
COMS E6998-9: Algorithms for Massive Data (Spring’19) Jan 29, 2019

Lecture 3: Impossibility, Frequency moments

Instructor: Alex Andoni Scribes: Daniel Mitropolsky

1 Administrivia

• Problem Set 1 due on Febuary 14

• See website for policy on concise proofs and collaboration (with up to 2 collaborators, independent

write-ups!)

Office hours:

• Prof. Andoni: Mondays 3:30-5:30

• Peilin: Tuesdays 10:00-12:00

• Marshall: Wednesdays 3:00-5:00

2 Review

Distinct element (DE) counting

• Given a stream x1, . . . , xn ∈ [n] count the number of distinct elements.

• Theorem: there exists an algorithm that outputs with 90% probability a (1 + ε)-approximation with

space O(1
ε2

) words.

• Also need space for the storing hashing functions: if we discretize them, we need log n bits / word (with

more work we can discretize better and only use log log n bits, giving rise to the popular ”hyperloglog”

algorithm)

• For the hash functions we don’t need full randomness. Pairwise independent functions are enough.

3 Impossibility results

Today we will argue that we need the relaxations of approximation and randomness to get O(log n) bits,

instead of n bits for an exact algorithm. We will show the relaxations are necessary (some today, others

will be in homework).

Theorem 1. Any algorithm for DE that is deterministic and exact must use n bits.

This is a lower bound, not an analysis of an algorithm. It is similar to showing the lower bound for

the number of comparisons in sorting to be O(n log n).

1

Proof. Proof by contradiction. Fix an algorithm A that manages to compute the number of distinct

elements, and is deterministic and exact.

Consider a binary vector y ∈ {0, 1}n. Let Sy be the stream such that x = i is in the stream iff yi = 1.

Example 2. If y = (0, 1, 1) then Sy = (2, 3).

Now run A on Sy. A is a finite algorithm receiving inputs one-by-one, jumping between its states.

If A is a deterministic finite automaton, then at any time its state is equivalent to what is stored in its

memory.

Let σA,y be the memory contents of A after running on Sy. The length |σA,y| ≤ s, which we define to

be the size of the memory of A.

Define a function f : {0, 1}n → {0, 1}s as f(y) = σA,y.

Claim 3. f is injective.

Proof. Given σA,y, we can recover the vector y from it, proving f is injective.

Fix A after seeing Sy. It is in state σA,y. Feed A another stream element x = i. The estimate of the

number of distinct elements increases ⇐⇒ yi = 0.

Hence we can recover yi from σA,y, because after Sy the only state that is stored is the memory

contents of A.

This implies we can recover the entire vector y ∈ {0, 1}n. Since σA,y =⇒ y, we can invert f so it is

injective.

This claim implies the domain of f : {0, 1} → {0, 1}s is a lower bound for the range.

=⇒ 2n ≤ 2s

=⇒ n ≤ s
This concludes the proof of Theorem 1.

The subtlety of this proof was in the construction of a function f that takes y, feeds the stream to the

algorithm, and outputs the state σ of the algorithm after the stream. Then from this state σ we recover

y, proving f is injective.

Theorem 4. If A is deterministic and a 1.1-approximation, it still needs Ω(n) space.

Proof. We will again try to define a function and prove it is injective.

Let the set T ⊂ {0, 1}n represent a code with the following conditions:

• ∀x 6= y ∈ T , |y\x| ≥ n/6 (where \ is set subtraction of the vectors viewed as sets).

• ∀x ∈ T , ‖x‖1 = n/2 (balanced)

• |T | = 2Ω(n) (set T is very large).

A theorem of Shannon guarantees that a random set T if size 2Ω(n) satisfies these conditions; we do

not construct this set but we assume it exists.

Build f : T → {0, 1}s where again s = the space of A. Define f(y) = σA,y be the space contents of

A after running on Sy (for y ∈ T). Exactly as we did before, this yields an encoding of the stream y to

binary vectors of length s.

We will prove in the next claim that f is injective. Then, |T | ≤ 2s =⇒ s ≥ Ω(log T) = Ω(n).

2

Claim 5. f is injective.

Proof. We can think of f as an encoding taking a vector in T to a string of length s. We want to decode

y ∈ T from the memory space σA,y.

Let d = the number of distinct elements estimated by A with memory σA,y.

For each x ∈ T (representing a guess for the vector y), now stream through Sx.

Let d′ be the estimate of distinct elements after also streaming Sx.

We claim that d′ <
(
n
2 + n

6

)
/1.1, then y = x. There are two cases to check:

1. If x = y, then

• # distinct elements in Sy, Sx is n
2

• =⇒ d′ < n
2 · 1.1 <

(
n
2 + n

6

)
/1.1

2. if x 6= y,. then

• # distinct e;ements in Sy, Sx is ≥ n
2 + n

6

• =⇒ d′ ≥
(
n
2 + n

6

)
/1.1

Hence, if d′ <
(
n
2 + n

6

)
/1.1 we can output that y = x and halt our search for the value of y. This

proves that f is injective.

With this claim ends the proof of the theorem.

Why would this argument fail for a randomized algorithm? We assumed d′ is correct up to approx-

imation. If A is random, that is now always true and we may return y = x that is wrong because the

procedure failed.

Observe that the proof would hold for any fixed (1 + ε)-approximation.

4 Frequency moments

Let x1 . . . , xn ∈ [n] be a stream. Define f ∈ Nn where fi = # times i appears in the stream.

Definition 6. For p ∈ N ∪ {∞}, the p-th moment Fp is

Fp =
n∑
i=1

fpi = ‖f‖pp

Example 7. F1 = sum of frequencies = m (length of the stream)

Example 8. F0 = # non-zero items, which is the # distinct elements

In general, frequency moments characterize the stream, giving statistics about the whole stream.

We define F∞ as ‖f‖∞ = limp→∞
(∑

fpi
)1/p

. We will talk about F∞ later in the course.

The second moment F2 is related of the variance of the stream, a proxy for how imbalanced the

frequencies are. It is useful and we will see that it is related to dimensionality reduction.

3

4.1 ”Tug-of-wars” algorithm for F2 [Alon-Matias-Szegedy ’96]

The idea is to use random variablies (or hash function) r : [n] → {±1} called Rademacher random

variables from functional analysis.

Algorithm:

• Mathematical description: store z =
∑n

i=1 rifi.

• Operational description: on update x = i, set z = z + ri.

• Estimate: return z2

Observation 9. Er[z] = Er
[∑

rifi
]

=
∑

i fiEr[ri] = 0, so z is a 0−centered random variable.

This is some intuition for why we use z2 as the estimator and not z. Now we analyze,

Er[z2] = Er
[(∑

i

rifi
)2]

= Er
[∑
i,j

rirjfifj
]

=
∑
i,j

fifjE[ri][rj]

=
∑
i

fifi

= F2

Where we used that E[rirj] = 1 iff i = j and 0 otherwise because ri and rj are independent (so

E[rirj] = E[ri]E[rj] = 0).

This method won’t for for moments beyond 2; even for p = 2.1 we need space that is poly(n). L2,

Euclidean space, has a powerful structure no other p has.

Now we want to compute the Var.

Var [z2] ≤ Er[z4]

= Er
[
(r1f1 + r2f2 + · · ·+ rnfn)× (r1f1 + r2f2 + · · ·+ rnfn)× (· · ·)× (· · ·)

]
Consider expanding the product; you get n4 monomials of four terms. Those that don’t vanish are

those where the terms are all of the same sort, or 2 of 2 sorts. Note that E[r4
i] = 1 and E[r2

i r
2
j] = 1.

Hence we have,

Var [z2] =
∑
i

f4
i E[r4

i] + 3
∑
i 6=j

f2
i f

2
j E[r2

i r
2
j]

≤
∑
i

f4
i + 3

(∑
i

f2
i

)2
≤ 4
(∑

i

f2
i

)2
= 4F 2

2

4

By Chebyshev bound, we have that z2 ∈ F2 ±
√

10F 2
2 with 90% probability (i.e., z2 ∈ F2 ±

√
10F2).

Keep k = 1
ε2

ToW counters z1, . . . , zk. Our estimator will now be

E =
1

k

k∑
i=1

z2
i

Using the same proposition we proved in the first lecture,

Claim 10. E[E] = F2 and Var [E] ≤ 4
kF

2
2 .

By Chebyhsev, we have E ∈ F2±
√

10/kF2 with 90% probability. The multiplicative bound is ε when

k = 40/ε2.

We are able to get a (1 + ε)-approximation using O(1/ε2) counters. Each is a sum of the rifi, so log n

bits is enough for each!

What about r? It would seem to take up O(n) space, defeating the purpose. From the analysis, it is

clear that a 4-wise independent hashing function is enough.

5

