Lecture 3: Impossibility, Frequency moments

Scribes: Daniel Mitropolsky

1 Administrivia

- Problem Set 1 due on Febuary 14
- See website for policy on concise proofs and collaboration (with up to 2 collaborators, independent write-ups!)

Office hours:

- Prof. Andoni: Mondays 3:30-5:30
- Peilin: Tuesdays 10:00-12:00
- Marshall: Wednesdays 3:00-5:00

2 Review

Distinct element (DE) counting

- Given a stream $x_{1}, \ldots, x_{n} \in[n]$ count the number of distinct elements.
- Theorem: there exists an algorithm that outputs with 90% probability a $(1+\epsilon)$-approximation with space $O\left(\frac{1}{\epsilon^{2}}\right)$ words.
- Also need space for the storing hashing functions: if we discretize them, we need $\log n$ bits / word (with more work we can discretize better and only use $\log \log n$ bits, giving rise to the popular "hyperloglog" algorithm)
- For the hash functions we don't need full randomness. Pairwise independent functions are enough.

3 Impossibility results

Today we will argue that we need the relaxations of approximation and randomness to get $O(\log n)$ bits, instead of n bits for an exact algorithm. We will show the relaxations are necessary (some today, others will be in homework).

Theorem 1. Any algorithm for $D E$ that is deterministic and exact must use n bits.
This is a lower bound, not an analysis of an algorithm. It is similar to showing the lower bound for the number of comparisons in sorting to be $O(n \log n)$.

Proof. Proof by contradiction. Fix an algorithm A that manages to compute the number of distinct elements, and is deterministic and exact.

Consider a binary vector $y \in\{0,1\}^{n}$. Let S_{y} be the stream such that $x=i$ is in the stream iff $y_{i}=1$.
Example 2. If $y=(0,1,1)$ then $S_{y}=(2,3)$.
Now run A on S_{y}. A is a finite algorithm receiving inputs one-by-one, jumping between its states. If A is a deterministic finite automaton, then at any time its state is equivalent to what is stored in its memory.

Let $\sigma_{A, y}$ be the memory contents of A after running on S_{y}. The length $\left|\sigma_{A, y}\right| \leq s$, which we define to be the size of the memory of A.

Define a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{s}$ as $f(y)=\sigma_{A, y}$.
Claim 3. f is injective.
Proof. Given $\sigma_{A, y}$, we can recover the vector y from it, proving f is injective.
Fix A after seeing S_{y}. It is in state $\sigma_{A, y}$. Feed A another stream element $x=i$. The estimate of the number of distinct elements increases $\Longleftrightarrow y_{i}=0$.

Hence we can recover y_{i} from $\sigma_{A, y}$, because after S_{y} the only state that is stored is the memory contents of A.

This implies we can recover the entire vector $y \in\{0,1\}^{n}$. Since $\sigma_{A, y} \Longrightarrow y$, we can invert f so it is injective.

This claim implies the domain of $f:\{0,1\} \rightarrow\{0,1\}^{s}$ is a lower bound for the range.
$\Longrightarrow 2^{n} \leq 2^{s}$
$\Longrightarrow n \leq s$
This concludes the proof of Theorem 1.
The subtlety of this proof was in the construction of a function f that takes y, feeds the stream to the algorithm, and outputs the state σ of the algorithm after the stream. Then from this state σ we recover y, proving f is injective.

Theorem 4. If A is deterministic and a 1.1-approximation, it still needs $\Omega(n)$ space.
Proof. We will again try to define a function and prove it is injective.
Let the set $T \subset\{0,1\}^{n}$ represent a code with the following conditions:

- $\forall x \neq y \in T,|y \backslash x| \geq n / 6$ (where \backslash is set subtraction of the vectors viewed as sets).
- $\forall x \in T,\|x\|_{1}=n / 2$ (balanced)
- $|T|=2^{\Omega(n)}$ (set T is very large).

A theorem of Shannon guarantees that a random set T if size $2^{\Omega(n)}$ satisfies these conditions; we do not construct this set but we assume it exists.

Build $f: T \rightarrow\{0,1\}^{s}$ where again $s=$ the space of A. Define $f(y)=\sigma_{A, y}$ be the space contents of A after running on S_{y} (for $y \in T$). Exactly as we did before, this yields an encoding of the stream y to binary vectors of length s.

We will prove in the next claim that f is injective. Then, $|T| \leq 2^{s} \Longrightarrow s \geq \Omega(\log T)=\Omega(n)$.

Claim 5. f is injective.
Proof. We can think of f as an encoding taking a vector in T to a string of length s. We want to decode $y \in T$ from the memory space $\sigma_{A, y}$.

Let $d=$ the number of distinct elements estimated by A with memory $\sigma_{A, y}$.
For each $x \in T$ (representing a guess for the vector y), now stream through S_{x}.
Let d^{\prime} be the estimate of distinct elements after also streaming S_{x}.
We claim that $d^{\prime}<\left(\frac{n}{2}+\frac{n}{6}\right) / 1.1$, then $y=x$. There are two cases to check:

1. If $x=y$, then

- \# distinct elements in S_{y}, S_{x} is $\frac{n}{2}$
- $\Longrightarrow d^{\prime}<\frac{n}{2} \cdot 1.1<\left(\frac{n}{2}+\frac{n}{6}\right) / 1.1$

2. if $x \neq y$, then

- \# distinct e;ements in S_{y}, S_{x} is $\geq \frac{n}{2}+\frac{n}{6}$
- $\Longrightarrow d^{\prime} \geq\left(\frac{n}{2}+\frac{n}{6}\right) / 1.1$

Hence, if $d^{\prime}<\left(\frac{n}{2}+\frac{n}{6}\right) / 1.1$ we can output that $y=x$ and halt our search for the value of y. This proves that f is injective.

With this claim ends the proof of the theorem.
Why would this argument fail for a randomized algorithm? We assumed d^{\prime} is correct up to approximation. If A is random, that is now always true and we may return $y=x$ that is wrong because the procedure failed.

Observe that the proof would hold for any fixed $(1+\epsilon)$-approximation.

4 Frequency moments

Let $x_{1} \ldots, x_{n} \in[n]$ be a stream. Define $f \in \mathbb{N}^{n}$ where $f_{i}=\#$ times i appears in the stream.
Definition 6. For $p \in \mathbb{N} \cup\{\infty\}$, the p-th moment F_{p} is

$$
F_{p}=\sum_{i=1}^{n} f_{i}^{p}=\|f\|_{p}^{p}
$$

Example 7. $F_{1}=$ sum of frequencies $=m$ (length of the stream)
Example 8. $F_{0}=\#$ non-zero items, which is the \# distinct elements
In general, frequency moments characterize the stream, giving statistics about the whole stream.
We define F_{∞} as $\|f\|_{\infty}=\lim _{p \rightarrow \infty}\left(\sum f_{i}^{p}\right)^{1 / p}$. We will talk about F_{∞} later in the course.
The second moment F_{2} is related of the variance of the stream, a proxy for how imbalanced the frequencies are. It is useful and we will see that it is related to dimensionality reduction.

4.1 "Tug-of-wars" algorithm for F_{2} [Alon-Matias-Szegedy '96]

The idea is to use random variablies (or hash function) $r:[n] \rightarrow\{ \pm 1\}$ called Rademacher random variables from functional analysis.

Algorithm:

- Mathematical description: store $z=\sum_{i=1}^{n} r_{i} f_{i}$.
- Operational description: on update $x=i$, set $z=z+r_{i}$.
- Estimate: return z^{2}

Observation 9. $\mathbb{E}_{r}[z]=\mathbb{E}_{r}\left[\sum r_{i} f_{i}\right]=\sum_{i} f_{i} \mathbb{E}_{r}\left[r_{i}\right]=0$, so z is a 0 -centered random variable.
This is some intuition for why we use z^{2} as the estimator and not z. Now we analyze,

$$
\begin{aligned}
\mathbb{E}_{r}\left[z^{2}\right] & =\mathbb{E}_{r}\left[\left(\sum_{i} r_{i} f_{i}\right)^{2}\right] \\
& =\mathbb{E}_{r}\left[\sum_{i, j} r_{i} r_{j} f_{i} f_{j}\right] \\
& =\sum_{i, j} f_{i} f_{j} \mathbb{E}\left[r_{i}\right]\left[r_{j}\right] \\
& =\sum_{i} f_{i} f_{i} \\
& =F_{2}
\end{aligned}
$$

Where we used that $\mathbb{E}\left[r_{i} r_{j}\right]=1$ iff $i=j$ and 0 otherwise because r_{i} and r_{j} are independent (so $\left.\mathbb{E}\left[r_{i} r_{j}\right]=\mathbb{E}\left[r_{i}\right] \mathbb{E}\left[r_{j}\right]=0\right)$.

This method won't for for moments beyond 2 ; even for $p=2.1$ we need space that is poly (n). L_{2}, Euclidean space, has a powerful structure no other p has.

Now we want to compute the Var.

$$
\begin{aligned}
\operatorname{Var}\left[z^{2}\right] & \leq \mathbb{E}_{r}\left[z^{4}\right] \\
& =\mathbb{E}_{r}\left[\left(r_{1} f_{1}+r_{2} f_{2}+\cdots+r_{n} f_{n}\right) \times\left(r_{1} f_{1}+r_{2} f_{2}+\cdots+r_{n} f_{n}\right) \times(\cdots) \times(\cdots)\right]
\end{aligned}
$$

Consider expanding the product; you get n^{4} monomials of four terms. Those that don't vanish are those where the terms are all of the same sort, or 2 of 2 sorts. Note that $\mathbb{E}\left[r_{i}^{4}\right]=1$ and $\mathbb{E}\left[r_{i}^{2} r_{j}^{2}\right]=1$. Hence we have,

$$
\begin{aligned}
\operatorname{Var}\left[z^{2}\right] & =\sum_{i} f_{i}^{4} \mathbb{E}\left[r_{i}^{4}\right]+3 \sum_{i \neq j} f_{i}^{2} f_{j}^{2} \mathbb{E}\left[r_{i}^{2} r_{j}^{2}\right] \\
& \leq \sum_{i} f_{i}^{4}+3\left(\sum_{i} f_{i}^{2}\right)^{2} \\
& \leq 4\left(\sum_{i} f_{i}^{2}\right)^{2} \\
& =4 F_{2}^{2}
\end{aligned}
$$

By Chebyshev bound, we have that $z^{2} \in F_{2} \pm \sqrt{10 F_{2}^{2}}$ with 90% probability (i.e., $z^{2} \in F_{2} \pm \sqrt{10} F_{2}$). Keep $k=\frac{1}{\epsilon^{2}}$ ToW counters z_{1}, \ldots, z_{k}. Our estimator will now be

$$
E=\frac{1}{k} \sum_{i=1}^{k} z_{i}^{2}
$$

Using the same proposition we proved in the first lecture,
Claim 10. $\mathbb{E}[E]=F_{2}$ and $\operatorname{Var}[E] \leq \frac{4}{k} F_{2}^{2}$.
By Chebyhsev, we have $E \in F_{2} \pm \sqrt{10 / k} F_{2}$ with 90% probability. The multiplicative bound is ϵ when $k=40 / \epsilon^{2}$.

We are able to get a $(1+\epsilon)$-approximation using $O\left(1 / \epsilon^{2}\right)$ counters. Each is a sum of the $r_{i} f_{i}$, so $\log n$ bits is enough for each!

What about r ? It would seem to take up $O(n)$ space, defeating the purpose. From the analysis, it is clear that a 4 -wise independent hashing function is enough.

