COMS E6998-9: Algorithms for Massive Data (Spring'19)

Jan 29, 2019

Lecture 3: Impossibility, Frequency moments

Instructor: Alex Andoni

Scribes: Daniel Mitropolsky

1 Administrivia

- Problem Set 1 due on Febuary 14
- See website for policy on concise proofs and collaboration (with up to 2 collaborators, independent write-ups!)

Office hours:

- Prof. Andoni: Mondays 3:30-5:30
- Peilin: Tuesdays 10:00-12:00
- Marshall: Wednesdays 3:00-5:00

2 Review

Distinct element (DE) counting

• Given a stream $x_1, \ldots, x_n \in [n]$ count the number of distinct elements.

• **Theorem:** there exists an algorithm that outputs with 90% probability a $(1 + \epsilon)$ -approximation with space $O(\frac{1}{\epsilon^2})$ words.

• Also need space for the storing hashing functions: if we discretize them, we need $\log n$ bits / word (with more work we can discretize better and only use $\log \log n$ bits, giving rise to the popular "hyperloglog" algorithm)

• For the hash functions we don't need full randomness. Pairwise independent functions are enough.

3 Impossibility results

Today we will argue that we need the relaxations of approximation and randomness to get $O(\log n)$ bits, instead of n bits for an exact algorithm. We will show the relaxations are necessary (some today, others will be in homework).

Theorem 1. Any algorithm for DE that is deterministic and exact must use n bits.

This is a lower bound, not an analysis of an algorithm. It is similar to showing the lower bound for the number of comparisons in sorting to be $O(n \log n)$.

Proof. Proof by contradiction. Fix an algorithm A that manages to compute the number of distinct elements, and is deterministic and exact.

Consider a binary vector $y \in \{0, 1\}^n$. Let S_y be the stream such that x = i is in the stream iff $y_i = 1$. Example 2. If y = (0, 1, 1) then $S_y = (2, 3)$.

Now run A on S_y . A is a finite algorithm receiving inputs one-by-one, jumping between its states. If A is a deterministic finite automaton, then at any time its state is equivalent to what is stored in its memory.

Let $\sigma_{A,y}$ be the memory contents of A after running on S_y . The length $|\sigma_{A,y}| \leq s$, which we define to be the size of the memory of A.

Define a function $f: \{0,1\}^n \to \{0,1\}^s$ as $f(y) = \sigma_{A,y}$.

Claim 3. f is injective.

Proof. Given $\sigma_{A,y}$, we can recover the vector y from it, proving f is injective.

Fix A after seeing S_y . It is in state $\sigma_{A,y}$. Feed A another stream element x = i. The estimate of the number of distinct elements increases $\iff y_i = 0$.

Hence we can recover y_i from $\sigma_{A,y}$, because after S_y the only state that is stored is the memory contents of A.

This implies we can recover the entire vector $y \in \{0,1\}^n$. Since $\sigma_{A,y} \implies y$, we can invert f so it is injective.

This claim implies the domain of $f: \{0,1\} \to \{0,1\}^s$ is a lower bound for the range.

 $\implies 2^n \le 2^s \\ \implies n \le s$

This concludes the proof of Theorem 1.

The subtlety of this proof was in the construction of a function f that takes y, feeds the stream to the algorithm, and outputs the state σ of the algorithm after the stream. Then from this state σ we recover y, proving f is injective.

Theorem 4. If A is deterministic and a 1.1-approximation, it still needs $\Omega(n)$ space.

Proof. We will again try to define a function and prove it is injective.

Let the set $T \subset \{0,1\}^n$ represent a code with the following conditions:

- $\forall x \neq y \in T, |y \setminus x| \ge n/6$ (where \ is set subtraction of the vectors viewed as sets).
- $\forall x \in T, ||x||_1 = n/2$ (balanced)
- $|T| = 2^{\Omega(n)}$ (set T is very large).

A theorem of Shannon guarantees that a random set T if size $2^{\Omega(n)}$ satisfies these conditions; we do not construct this set but we assume it exists.

Build $f: T \to \{0,1\}^s$ where again s = the space of A. Define $f(y) = \sigma_{A,y}$ be the space contents of A after running on S_y (for $y \in T$). Exactly as we did before, this yields an encoding of the stream y to binary vectors of length s.

We will prove in the next claim that f is injective. Then, $|T| \leq 2^s \implies s \geq \Omega(\log T) = \Omega(n)$.

Claim 5. f is injective.

Proof. We can think of f as an encoding taking a vector in T to a string of length s. We want to decode $y \in T$ from the memory space $\sigma_{A,y}$.

Let d = the number of distinct elements estimated by A with memory $\sigma_{A,y}$.

For each $x \in T$ (representing a guess for the vector y), now stream through S_x .

Let d' be the estimate of distinct elements after also streaming S_x .

We claim that $d' < (\frac{n}{2} + \frac{n}{6})/1.1$, then y = x. There are two cases to check:

1. If x = y, then

- # distinct elements in S_y, S_x is $\frac{n}{2}$
- $\implies d' < \frac{n}{2} \cdot 1.1 < (\frac{n}{2} + \frac{n}{6})/1.1$

2. if $x \neq y$, then

- # distinct e; ements in S_y, S_x is $\geq \frac{n}{2} + \frac{n}{6}$
- $\implies d' \ge \left(\frac{n}{2} + \frac{n}{6}\right)/1.1$

Hence, if $d' < (\frac{n}{2} + \frac{n}{6})/1.1$ we can output that y = x and halt our search for the value of y. This proves that f is injective.

With this claim ends the proof of the theorem.

Why would this argument fail for a randomized algorithm? We assumed d' is correct up to approximation. If A is random, that is now always true and we may return y = x that is wrong because the procedure failed.

Observe that the proof would hold for any fixed $(1 + \epsilon)$ -approximation.

4 Frequency moments

Let $x_1 \ldots, x_n \in [n]$ be a stream. Define $f \in \mathbb{N}^n$ where $f_i = \#$ times *i* appears in the stream.

Definition 6. For $p \in \mathbb{N} \cup \{\infty\}$, the *p*-th moment F_p is

$$F_p = \sum_{i=1}^n f_i^p = ||f||_p^p$$

Example 7. $F_1 = sum \text{ of } frequencies = m \ (length \text{ of the stream})$

Example 8. $F_0 = \#$ non-zero items, which is the # distinct elements

In general, frequency moments characterize the stream, giving statistics about the whole stream.

We define F_{∞} as $||f||_{\infty} = \lim_{p \to \infty} \left(\sum f_i^p\right)^{1/p}$. We will talk about F_{∞} later in the course.

The second moment F_2 is related of the variance of the stream, a proxy for how imbalanced the frequencies are. It is useful and we will see that it is related to dimensionality reduction.

4.1 "Tug-of-wars" algorithm for F_2 [Alon-Matias-Szegedy '96]

The idea is to use random variables (or hash function) $r : [n] \to \{\pm 1\}$ called *Rademacher random variables* from functional analysis.

Algorithm:

- Mathematical description: store $z = \sum_{i=1}^{n} r_i f_i$.
- Operational description: on update x = i, set $z = z + r_i$.
- Estimate: return z^2

Observation 9. $\mathbb{E}_r[z] = \mathbb{E}_r\left[\sum r_i f_i\right] = \sum_i f_i \mathbb{E}_r[r_i] = 0$, so z is a 0-centered random variable.

This is some intuition for why we use z^2 as the estimator and not z. Now we analyze,

$$\mathbb{E}_{r}[z^{2}] = \mathbb{E}_{r}\left[\left(\sum_{i} r_{i}f_{i}\right)^{2}\right]$$
$$= \mathbb{E}_{r}\left[\sum_{i,j} r_{i}r_{j}f_{i}f_{j}\right]$$
$$= \sum_{i,j} f_{i}f_{j}\mathbb{E}[r_{i}][r_{j}]$$
$$= \sum_{i} f_{i}f_{i}$$
$$= F_{2}$$

Where we used that $\mathbb{E}[r_i r_j] = 1$ iff i = j and 0 otherwise because r_i and r_j are independent (so $\mathbb{E}[r_i r_j] = \mathbb{E}[r_i]\mathbb{E}[r_j] = 0$).

This method won't for for moments beyond 2; even for p = 2.1 we need space that is poly(n). L_2 , Euclidean space, has a powerful structure no other p has.

Now we want to compute the Var.

$$\operatorname{Var}[z^{2}] \leq \mathbb{E}_{r}[z^{4}] \\ = \mathbb{E}_{r}[(r_{1}f_{1} + r_{2}f_{2} + \dots + r_{n}f_{n}) \times (r_{1}f_{1} + r_{2}f_{2} + \dots + r_{n}f_{n}) \times (\dots) \times (\dots)]$$

Consider expanding the product; you get n^4 monomials of four terms. Those that don't vanish are those where the terms are all of the same sort, or 2 of 2 sorts. Note that $\mathbb{E}[r_i^4] = 1$ and $\mathbb{E}[r_i^2 r_j^2] = 1$. Hence we have,

$$Var[z^{2}] = \sum_{i} f_{i}^{4} \mathbb{E}[r_{i}^{4}] + 3 \sum_{i \neq j} f_{i}^{2} f_{j}^{2} \mathbb{E}[r_{i}^{2} r_{j}^{2}]$$
$$\leq \sum_{i} f_{i}^{4} + 3 \left(\sum_{i} f_{i}^{2}\right)^{2}$$
$$\leq 4 \left(\sum_{i} f_{i}^{2}\right)^{2}$$
$$= 4F_{2}^{2}$$

By Chebyshev bound, we have that $z^2 \in F_2 \pm \sqrt{10F_2^2}$ with 90% probability (i.e., $z^2 \in F_2 \pm \sqrt{10}F_2$). Keep $k = \frac{1}{\epsilon^2}$ ToW counters z_1, \ldots, z_k . Our estimator will now be

$$E = \frac{1}{k} \sum_{i=1}^{k} z_i^2$$

Using the same proposition we proved in the first lecture,

Claim 10. $\mathbb{E}[E] = F_2$ and $\operatorname{Var}[E] \leq \frac{4}{k}F_2^2$.

By Chebyhsev, we have $E \in F_2 \pm \sqrt{10/k}F_2$ with 90% probability. The multiplicative bound is ϵ when $k = 40/\epsilon^2$.

We are able to get a $(1 + \epsilon)$ -approximation using $O(1/\epsilon^2)$ counters. Each is a sum of the $r_i f_i$, so $\log n$ bits is enough for each!

What about r? It would seem to take up O(n) space, defeating the purpose. From the analysis, it is clear that a 4-wise independent hashing function is enough.