COMS E6998-9: Algorithms for Massive Data (Spring'19)

Jan 24, 2019

Lecture 2: Concentration, counting distinct elements

Instructor: Alex Andoni

Scribe: Victor Lecomte

1 Review

Morris algorithm

- Initially: X = 0
- At increment: $X \coloneqq X + 1$ with probability $1/2^X$
- Estimator: $E = 2^X 1$

Morris+

- Run k independent instances of Morris: X_1, \ldots, X_k
- Estimator: $E = \text{average estimator} = \frac{1}{k} \sum_{i=1}^{k} (2^{X_i} 1)$

Claim 3. $\mathbb{E}[E] = n$

Claim 4. $\operatorname{Var}[E] = \frac{3/2 \cdot n^2}{k}$ for $n \ge 10$

2 Improving concentration

From a Chebyshev bound, we obtain

$$\Pr[E \notin (n \pm \lambda)] \le \frac{\operatorname{Var}[E]}{\lambda^2} = \frac{3/2 \cdot n^2/k}{\lambda^2},\tag{1}$$

so we can set $\lambda = \epsilon n \Rightarrow k = 3/2 \cdot 10 \cdot 1/\epsilon^2$ to obtain 0.1 failure probability.

What if in general we want to get a success probability of $\geq 1 - \delta$, for some (small) parameter δ ? We need (1) to be $\leq \delta$, so we should set

$$k = 3/2 \cdot 10 \cdot 1/\epsilon^2 \cdot 1/\delta = \Theta(1/\epsilon^2 \cdot 1/\delta).$$

Can we get a better dependence on $1/\delta$? Yes, using the median trick.

Median trick Goal: amplify the probability to be in the correct range, using the original algorithm as a black box.

 $\begin{array}{c|c} \text{Algorithm } A \to \text{out}_A \in \mathbb{R} \\ \text{Pr}[\text{out}_A \in \text{correct range}] \geq 0.9 \end{array} \xrightarrow{\text{median trick}} \begin{array}{c} \text{Mlgorithm } A^* \to \text{out}_{A^*} \in \mathbb{R} \\ \text{Pr}[\text{out}_{A^*} \in \text{correct range}] \geq 1 - \delta \end{array}$

How it works:

- Run k independent copies of A: A_1, \ldots, A_k
- Output out_{A^*} = median value of A_1, \ldots, A_k

We show that in this case, $k = O(\log 1/\delta)$ is enough.

Chernoff/Hoeffding bound Let X_1, \ldots, X_k be independent random variables $\in [0, 1]$, and let $\mu = \mathbb{E}\left[\sum_{i=1}^k X_i\right]$. For any $\epsilon \in [0, 1/2]$, we have

$$\Pr\left[\left|\sum_{i=1}^{k} X_{i} - \mu\right| > \epsilon \mu\right] \le 2e^{-\epsilon^{2}\mu/3}.$$

Proof of median trick. Let $X_i = \chi[A_i \text{ is correct}]^1$ Clearly, $\mathbb{E}[X_i] = \Pr[X_i = 1] \ge 0.9$, so $\mu \ge 0.9 \cdot k$.

When is A^* correct? Well, at any rate it is correct whenever > 50 % of the A's are correct, that is, when $\sum_{i=1}^{k} X_i > 0.5 \cdot k$.

Now, using a Chernoff bound with $\epsilon = 0.4$, we obtain

$$\Pr\left[\left|\sum_{i=1}^{k} X_i - 0.9 \cdot k\right| > 0.4 \cdot 0.9 \cdot k\right] \le 2e^{-0.4^2 \cdot 0.9 \cdot k/3}.$$

If the condition in Pr[] doesn't hold, then we have $\sum_{i=1}^{k} X_i \ge 0.9 \cdot k - 0.4 \cdot 0.9 \cdot k > 0.5 \cdot k$, as desired. So we just have to make sure the RHS is $\le \delta$, which we can achieve by setting

$$k = \frac{3}{0.4^2 \cdot 0.9} \ln(2/\delta) = \Theta(\log 1/\delta).$$

This means that if we apply the median trick to Morris+ (which uses $O(1/\epsilon^2)$ instances to get a $(1 + \epsilon)$ -approximation with probability 0.9), then $O(1/\epsilon^2 \log 1/\delta)$ total instances are enough.

¹By χ [] we will denote the *characteristic* of a condition: the random variable that is 1 if the condition is true, and 0 if the condition is false.

3 Counting distinct elements

Consider a stream $X_1, \ldots, X_m \in [n]$ of IPs going through a router (think of m and n as very large and comparable in size).

Problem. Count the number of distinct X_i 's = $|\{X_1, \ldots, X_m\}|$ using little space.

Basic solutions

- Bit array of length n: for each value in [n], has it been seen yet?
- Set structure, stored with $O(m \log n)$ bits.

Can we do better?

Flajolet-Martin [Flajolet-Martin'85]

Uses a hash function oracle $h : [n] \to [0, 1]$, where each h(i) is an independently chosen random real number in [0, 1].

- Initially: Z = 1
- On seeing X = i: $Z \coloneqq \min(Z, h(i))$
- Estimator: $E = \frac{1}{Z} 1$

Example. For stream 1, 3, 1, 7 and values of h below, the algorithm will choose Z = h(3).

—				
0	h(3)	h(1)	h(7)	1

Analysis of Flajolet-Martin

Let d be the number of distinct elements in the stream.

Claim 1. $\mathbb{E}[Z] = \frac{1}{d+1}$

Observation. Repeats don't affect Z, so we can consider that the stream is actually composed of d distinct elements. Therefore Z is the minimum of d random variables distributed independently and uniformly in [0, 1].

Proof of claim 1. Pick a fresh variable $A \in [0,1]$ at random. Consider the probability $\Pr[A < Z]$.

- On the one hand, we clearly have $\Pr[A < Z] = \mathbb{E}[Z]$.
- On the other hand, note that A, X_1, \ldots, X_d are d+1 iid variables, and A < Z is true iff A is the smallest of them all. Since the probability of a tie is 0, by symmetry we have $\Pr[A < Z] = \frac{1}{d+1}$.

The claim follows from combining both equalities.

Claim 2. $\operatorname{Var}[Z] \leq 2/d^2$

Proof. Skipped.

Even with those guarantees, there is a big issue: $\mathbb{E}[1/Z] \neq 1/\mathbb{E}[Z]$ in general, and they can wildly differ. So how do we get a $(1 + \epsilon)$ -approximation anyway? Two options.

Option 1 (Flajolet-Martin+).

- Run k iid FM instances Z_1, \ldots, Z_k
- Estimator: $\frac{1}{Z} 1$, where $Z = \frac{1}{k} \sum_{i=1}^{k} Z_i$

We claim that $k = O(1/\epsilon^2)$ is enough.

Proof. Skipped.

Option 2 (Bottom-k algorithm). [BJKS'02]

Assumes that d is sufficiently large (> k). Uses only one hash function h (instead of k for option 1).

- Initially: $Z_1 = \cdots = Z_k = 1$
- Maintain $Z_1 < Z_2 < \cdots < Z_k$: the k smallest hash function values seen so far
- Estimator: $\hat{d} = \frac{k}{Z_k}$

Analysis of bottom-k algorithm

Lemma 3. $\Pr[\hat{d} > d(1 + \epsilon)] \le 0.05$ and $\Pr[\hat{d} < d/(1 + \epsilon)] \le 0.05$.

Proof of first part. Without loss of generality, we can assume the stream is just 1, 2, ..., d. Let $X_i := \chi \left[h(i) < \frac{k}{(1+\epsilon)d}\right]$. We assume that $\frac{k}{(1+\epsilon)d} \leq 1$.

Observation. $\hat{d} > d(1 + \epsilon) \Leftrightarrow Z_k < \frac{k}{(1 + \epsilon)d} \Leftrightarrow \sum_{i=1}^d X_i \ge k.$

•
$$\mathbb{E}\left[\sum_{i=1}^{d} X_i\right] = d \cdot \mathbb{E}[X_i] = d\frac{k}{(1+\epsilon)d} = \frac{k}{1+\epsilon}$$

• $\operatorname{Var}\left[\sum_{i=1}^{d} X_i\right] = d \cdot \operatorname{Var}[X_i] \le d \cdot \mathbb{E}[X_i^2] = d\frac{k}{(1+\epsilon)d} = \frac{k}{1+\epsilon} \le k$

By a Chebyshev bound,

$$\Pr\left[\sum_{i=1}^{d} X_i - \frac{k}{1+\epsilon} > \sqrt{20k}\right] \le 0.05,$$

where the inequality inside Pr[] is equivalent to

$$\sum_{i=1}^{d} X_i > \frac{k}{1+\epsilon} + \sqrt{20k}.$$

The RHS is at most

$$k(1 - \epsilon + \epsilon^2) + \sqrt{20k} \le k$$

as long as $\epsilon < 1/2$ and $k > \frac{25}{\epsilon - \epsilon^2} = \Theta(1/\epsilon^2)$, so $\Pr\left[\sum_{i=1}^d X_i \ge k\right] \le 0.05$.

Therefore, we have the following:

Theorem 4. For any $\epsilon < \frac{1}{2}$, for $d = \Omega(1/\epsilon^2)$, the bottom-k algorithm has a space complexity of $O(1/\epsilon^2)$ counters.

Relaxing requirements for the hash function

We make two observations.

• We only care about order, (the absence of) collisions, and approximate values. So it's fine to use something like

$$h:[n] \to \left\{0, \frac{1}{M}, \frac{2}{M}, \dots, \frac{M-1}{M}, 1\right\}$$

instead of reals in [0, 1]. If $M \gg n^3$, then there are no collisions with probability $\geq 1 - 1/n$. In this regime, the counters only take up $O(\log M) = O(\log n)$ bits.

- 2-wise independence for the hash function is enough: no need for n-wise independence. Indeed, all we used was
 - computations like $\mathbb{E}[X_i] = \Pr[h(i) < \cdots] = \cdots;$
 - the fact that terms like $\mathbb{E}[X_i X_j]$ $(i \neq j)$ disappear in $\operatorname{Var}\left[\sum_{i=1}^d X_i\right]$.