COMS E6998-9: Algorithms for Massive Data (Spring’19) Jan 24, 2019
Lecture 2: Concentration, counting distinct elements

Instructor: Alex Andoni Scribe: Victor Lecomte

1 Review

Morris algorithm

e Initially: X =0
e At increment: X = X + 1 with probability 1/2%
e Estimator: £ =2% —1

Morris+

e Run £ independent instances of Morris: Xy, ..., Xi

e Estimator: F/ = average estimator = %Zle (2Xi - 1)
Claim 3. E[E]=n

Claim 4. Var[E] = % forn > 10
2 Improving concentration
From a Chebyshev bound, we obtain

Var[E] 3/2-n2/k
XN

Pr[E ¢ (n+\)] < (1)

so we can set A\ = en = k = 3/2-10 - 1/€? to obtain 0.1 failure probability.

What if in general we want to get a success probability of > 1 — §, for some (small) parameter 67 We
need (1) to be < 4, so we should set

k=3/2-10-1/%-1/6 = O(1/€* - 1/9).

Can we get a better dependence on 1/67 Yes, using the median trick.



Median trick Goal: amplify the probability to be in the correct range, using the original algorithm as
a black box.

Algorithm A — outy € R median trick Algorithm A* — outy- € R
Prout4 € correct range] > 0.9 Priout 4~ € correct range] > 1 —4¢

How it works:

e Run £ independent copies of A: Aq,..., Ag
e Output out 4+ = median value of Ay, ..., Ay

We show that in this case, k = O(log1/4) is enough.

Chernoff/Hoeffding bound Let Xi,..., X} be independent random variables € [0, 1], and let u =
E [Zle Xl}- For any € € [0,1/2], we have

Pr[ )

k
ZXi —
=1

> e,u] < 2 €K/,

Proof of median trick. Let X; = x[A; is correct].! Clearly, E[X;] = Pr[X; = 1] > 0.9, s0 u > 0.9 - k.

When is A* correct? Well, at any rate it is correct whenever > 50 % of the A’s are correct, that is,
when 3% X, > 0.5 - k.

Now, using a Chernoff bound with € = 0.4, we obtain

k
Pr[ZXi—OQ-k

i=1
If the condition in Pr[] doesn’t hold, then we have > | X; > 0.9-k—0.4-0.9-k > 0.5 k, as desired. So
we just have to make sure the RHS is < §, which we can achieve by setting

>04-09-k| < 9 04%-0.9-k/3

3
k= mln@/é) = O(log1/9).

O

This means that if we apply the median trick to Morris+ (which uses O(1/€2?) instances to get a
(1 + €)-approximation with probability 0.9), then O(1/e?1log1/J) total instances are enough.

By x[] we will denote the characteristic of a condition: the random variable that is 1 if the condition is true, and 0 if
the condition is false.



3 Counting distinct elements

Consider a stream Xi,..., X,, € [n] of IPs going through a router (think of m and n as very large and
comparable in size).

X1,..., Xm
Router

Problem. Count the number of distinct X;’s = |[{X7,..., X, }| using little space.

Basic solutions

e Bit array of length n: for each value in [n], has it been seen yet?

e Set structure, stored with O(mlogn) bits.

Can we do better?

Flajolet-Martin [Flajolet-Martin’85]
Uses a hash function oracle h : [n] — [0,1], where each h(¢) is an independently chosen random real
number in [0, 1].

o Initially: Z7 =1

e On seeing X =i: Z :=min(Z, h(i))

e Lstimator: E = % -1

Example. For stream 1,3, 1,7 and values of h below, the algorithm will choose Z = h(3).

Analysis of Flajolet-Martin

Let d be the number of distinct elements in the stream.

Claim 1. E[Z] = ;1

Observation. Repeats don’t affect Z, so we can consider that the stream is actually composed of d distinct
elements. Therefore Z is the minimum of d random variables distributed independently and uniformly
in [0, 1].

Proof of claim 1. Pick a fresh variable A € [0, 1] at random. Consider the probability Pr[A < Z].

e On the one hand, we clearly have Pr[A < Z] = E[Z].

e On the other hand, note that A, X1,..., X4 are d 4+ 1 iid variables, and A < Z is true iff A is the

smallest of them all. Since the probability of a tie is 0, by symmetry we have Pr[A < Z] = d—}rl.



The claim follows from combining both equalities. O

Claim 2. Var[Z] < 2/d?
Proof. Skipped. 0

Even with those guarantees, there is a big issue: E[1/Z] # 1/E[Z] in general, and they can wildly
differ. So how do we get a (1 + €)-approximation anyway? Two options.

Option 1 (Flajolet-Martin+).

e Run £ iid FM instances Z1,..., Z;
e Estimator: - — 1, where Z = } LSk 7

We claim that k = O(1/€?) is enough.

Proof. Skipped. u
Option 2 (Bottom-k algorithm). [BJKS’02]
Assumes that d is sufficiently large (> k). Uses only one hash function h (instead of k for option 1).

L] Initially: Zl == Zk =1
e Maintain 77 < Zy < --- < Zj: the k smallest hash function values seen so far

e Estimator: d = Z%

Analysis of bottom-k algorithm

Lemma 3. Pr[d > d(1 + ¢)] < 0.05 and Pr[d < d/(1+¢€)] < 0.05.

Proof of first part. Without loss of generality, we can assume the stream is just 1,2,...,d. Let X; ==

X [h(z) < (1f€)d} We assume that 755 < 1.

1+e)
Observation. d > d(1 + €) < Z), < m e X >k

e E [Z?:lXi] =d-E[Xi] = d(1+e)d - 1L+e
o Var [Zlex,} = d-Var[X)] < d-E[X?) = drty; = 15, <k
By a Chebyshev bound,

Pr [ZX T > V20k| <0.05,

where the inequality inside Pr[] is equivalent to

d

k
ZXZ- > —— +V20k.
P 1+e



The RHS is at most
k(1 —e+e*) +V20k <k

%, =0(1/e?), s0 Pr |20 | X; > k| < 0.05. O

€—

as long as € < 1/2 and k >

Therefore, we have the following:

Theorem 4. For any € < %, for d = Q(1/€?), the bottom-k algorithm has a space complexity of O(1/€?)
counters.

Relaxing requirements for the hash function

We make two observations.

e We only care about order, (the absence of) collisions, and approximate values. So it’s fine to use

1 2 M—-1
: —— ..., — 1
O

instead of reals in [0, 1]. If M > n3, then there are no collisions with probability > 1 —1/n. In this
regime, the counters only take up O(log M) = O(logn) bits.

something like

e 2-wise independence for the hash function is enough: no need for n-wise independence. Indeed, all
we used was
— computations like E[X;] = Pr[h(i) < -] =+ -;
— the fact that terms like E[X;X;] (i # j) disappear in Var [2?21 XZ}.



