Lecture 2: Concentration, counting distinct elements
Instructor: Alex Andoni
Scribe: Victor Lecomte

1 Review

Morris algorithm

- Initially: $X=0$
- At increment: $X:=X+1$ with probability $1 / 2^{X}$
- Estimator: $E=2^{X}-1$

Morris+

- Run k independent instances of Morris: X_{1}, \ldots, X_{k}
- Estimator: $E=$ average estimator $=\frac{1}{k} \sum_{i=1}^{k}\left(2^{X_{i}}-1\right)$

Claim 3. $\mathbb{E}[E]=n$
Claim 4. $\operatorname{Var}[E]=\frac{3 / 2 \cdot n^{2}}{k}$ for $n \geq 10$

2 Improving concentration

From a Chebyshev bound, we obtain

$$
\begin{equation*}
\operatorname{Pr}[E \notin(n \pm \lambda)] \leq \frac{\operatorname{Var}[E]}{\lambda^{2}}=\frac{3 / 2 \cdot n^{2} / k}{\lambda^{2}}, \tag{1}
\end{equation*}
$$

so we can set $\lambda=\epsilon n \Rightarrow k=3 / 2 \cdot 10 \cdot 1 / \epsilon^{2}$ to obtain 0.1 failure probability.
What if in general we want to get a success probability of $\geq 1-\delta$, for some (small) parameter δ ? We need (1) to be $\leq \delta$, so we should set

$$
k=3 / 2 \cdot 10 \cdot 1 / \epsilon^{2} \cdot 1 / \delta=\Theta\left(1 / \epsilon^{2} \cdot 1 / \delta\right) .
$$

Can we get a better dependence on $1 / \delta$? Yes, using the median trick.

Median trick Goal: amplify the probability to be in the correct range, using the original algorithm as a black box.

Algorithm $A \rightarrow$ out $_{A} \in \mathbb{R}$	
$\operatorname{Pr}\left[\right.$ out $_{A} \in$ correct range $] \geq 0.9$	median trick

\operatorname{Pr}\left[out A^{*}\right.\end{array} \in correct range\right] \geq 1-} \delta]{ }\)

How it works:

- Run k independent copies of $A: A_{1}, \ldots, A_{k}$
- Output out $A^{*}=$ median value of A_{1}, \ldots, A_{k}

We show that in this case, $k=O(\log 1 / \delta)$ is enough.

Chernoff/Hoeffding bound Let X_{1}, \ldots, X_{k} be independent random variables $\in[0,1]$, and let $\mu=$ $\mathbb{E}\left[\sum_{i=1}^{k} X_{i}\right]$. For any $\epsilon \in[0,1 / 2]$, we have

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{k} X_{i}-\mu\right|>\epsilon \mu\right] \leq 2 e^{-\epsilon^{2} \mu / 3}
$$

Proof of median trick. Let $X_{i}=\chi\left[A_{i}\right.$ is correct $] .{ }^{1}$ Clearly, $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right] \geq 0.9$, so $\mu \geq 0.9 \cdot k$.
When is A^{*} correct? Well, at any rate it is correct whenever $>50 \%$ of the A 's are correct, that is, when $\sum_{i=1}^{k} X_{i}>0.5 \cdot k$.

Now, using a Chernoff bound with $\epsilon=0.4$, we obtain

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{k} X_{i}-0.9 \cdot k\right|>0.4 \cdot 0.9 \cdot k\right] \leq 2 e^{-0.4^{2} \cdot 0.9 \cdot k / 3}
$$

If the condition in $\operatorname{Pr}[]$ doesn't hold, then we have $\sum_{i=1}^{k} X_{i} \geq 0.9 \cdot k-0.4 \cdot 0.9 \cdot k>0.5 \cdot k$, as desired. So we just have to make sure the RHS is $\leq \delta$, which we can achieve by setting

$$
k=\frac{3}{0.4^{2} \cdot 0.9} \ln (2 / \delta)=\Theta(\log 1 / \delta) .
$$

This means that if we apply the median trick to Morris+ (which uses $O\left(1 / \epsilon^{2}\right)$ instances to get a $(1+\epsilon)$-approximation with probability 0.9$)$, then $O\left(1 / \epsilon^{2} \log 1 / \delta\right)$ total instances are enough.

[^0]
3 Counting distinct elements

Consider a stream $X_{1}, \ldots, X_{m} \in[n]$ of IPs going through a router (think of m and n as very large and comparable in size).

Problem. Count the number of distinct X_{i} 's $=\left|\left\{X_{1}, \ldots, X_{m}\right\}\right|$ using little space.

Basic solutions

- Bit array of length n : for each value in $[n]$, has it been seen yet?
- Set structure, stored with $O(m \log n)$ bits.

Can we do better?

Flajolet-Martin [Flajolet-Martin'85]
Uses a hash function oracle $h:[n] \rightarrow[0,1]$, where each $h(i)$ is an independently chosen random real number in $[0,1]$.

- Initially: $Z=1$
- On seeing $X=i: Z:=\min (Z, h(i))$
- Estimator: $E=\frac{1}{Z}-1$

Example. For stream $1,3,1,7$ and values of h below, the algorithm will choose $Z=h(3)$.

Analysis of Flajolet-Martin

Let d be the number of distinct elements in the stream.
Claim 1. $\mathbb{E}[Z]=\frac{1}{d+1}$
Observation. Repeats don't affect Z, so we can consider that the stream is actually composed of d distinct elements. Therefore Z is the minimum of d random variables distributed independently and uniformly in $[0,1]$.

Proof of claim 1. Pick a fresh variable $A \in[0,1]$ at random. Consider the probability $\operatorname{Pr}[A<Z]$.

- On the one hand, we clearly have $\operatorname{Pr}[A<Z]=\mathbb{E}[Z]$.
- On the other hand, note that A, X_{1}, \ldots, X_{d} are $d+1$ iid variables, and $A<Z$ is true iff A is the smallest of them all. Since the probability of a tie is 0 , by symmetry we have $\operatorname{Pr}[A<Z]=\frac{1}{d+1}$.

The claim follows from combining both equalities.
Claim 2. $\operatorname{Var}[Z] \leq 2 / d^{2}$

Proof. Skipped.

Even with those guarantees, there is a big issue: $\mathbb{E}[1 / Z] \neq 1 / \mathbb{E}[Z]$ in general, and they can wildly differ. So how do we get a $(1+\epsilon)$-approximation anyway? Two options.

Option 1 (Flajolet-Martin+).

- Run k iid FM instances Z_{1}, \ldots, Z_{k}
- Estimator: $\frac{1}{Z}-1$, where $Z=\frac{1}{k} \sum_{i=1}^{k} Z_{i}$

We claim that $k=O\left(1 / \epsilon^{2}\right)$ is enough.

Proof. Skipped.
Option 2 (Bottom- k algorithm). [BJKS'02]
Assumes that d is sufficiently large $(>k)$. Uses only one hash function h (instead of k for option 1).

- Initially: $Z_{1}=\cdots=Z_{k}=1$
- Maintain $Z_{1}<Z_{2}<\cdots<Z_{k}$: the k smallest hash function values seen so far
- Estimator: $\hat{d}=\frac{k}{Z_{k}}$

Analysis of bottom- k algorithm

Lemma 3. $\operatorname{Pr}[\hat{d}>d(1+\epsilon)] \leq 0.05$ and $\operatorname{Pr}[\hat{d}<d /(1+\epsilon)] \leq 0.05$.

Proof of first part. Without loss of generality, we can assume the stream is just $1,2, \ldots, d$. Let $X_{i}:=$ $\chi\left[h(i)<\frac{k}{(1+\epsilon) d}\right]$. We assume that $\frac{k}{(1+\epsilon) d} \leq 1$.
Observation. $\hat{d}>d(1+\epsilon) \Leftrightarrow Z_{k}<\frac{k}{(1+\epsilon) d} \Leftrightarrow \sum_{i=1}^{d} X_{i} \geq k$.

- $\mathbb{E}\left[\sum_{i=1}^{d} X_{i}\right]=d \cdot \mathbb{E}\left[X_{i}\right]=d \frac{k}{(1+\epsilon) d}=\frac{k}{1+\epsilon}$
- Var $\left[\sum_{i=1}^{d} X_{i}\right]=d \cdot \operatorname{Var}\left[X_{i}\right] \leq d \cdot \mathbb{E}\left[X_{i}^{2}\right]=d \frac{k}{(1+\epsilon) d}=\frac{k}{1+\epsilon} \leq k$

By a Chebyshev bound,

$$
\operatorname{Pr}\left[\sum_{i=1}^{d} X_{i}-\frac{k}{1+\epsilon}>\sqrt{20 k}\right] \leq 0.05
$$

where the inequality inside $\operatorname{Pr}[]$ is equivalent to

$$
\sum_{i=1}^{d} X_{i}>\frac{k}{1+\epsilon}+\sqrt{20 k}
$$

The RHS is at most

$$
k\left(1-\epsilon+\epsilon^{2}\right)+\sqrt{20 k} \leq k
$$

as long as $\epsilon<1 / 2$ and $k>\frac{25}{\epsilon-\epsilon^{2}}=\Theta\left(1 / \epsilon^{2}\right)$, so $\operatorname{Pr}\left[\sum_{i=1}^{d} X_{i} \geq k\right] \leq 0.05$.
Therefore, we have the following:
Theorem 4. For any $\epsilon<\frac{1}{2}$, for $d=\Omega\left(1 / \epsilon^{2}\right)$, the bottom-k algorithm has a space complexity of $O\left(1 / \epsilon^{2}\right)$ counters.

Relaxing requirements for the hash function

We make two observations.

- We only care about order, (the absence of) collisions, and approximate values. So it's fine to use something like

$$
h:[n] \rightarrow\left\{0, \frac{1}{M}, \frac{2}{M}, \ldots, \frac{M-1}{M}, 1\right\}
$$

instead of reals in $[0,1]$. If $M \gg n^{3}$, then there are no collisions with probability $\geq 1-1 / n$. In this regime, the counters only take up $O(\log M)=O(\log n)$ bits.

- 2 -wise independence for the hash function is enough: no need for n-wise independence. Indeed, all we used was
- computations like $\mathbb{E}\left[X_{i}\right]=\operatorname{Pr}[h(i)<\cdots]=\cdots$;
- the fact that terms like $\mathbb{E}\left[X_{i} X_{j}\right](i \neq j)$ disappear in $\operatorname{Var}\left[\sum_{i=1}^{d} X_{i}\right]$.

[^0]: ${ }^{1}$ By $\chi[]$ we will denote the characteristic of a condition: the random variable that is 1 if the condition is true, and 0 if the condition is false.

