
COMS E6998-9: Algorithms for Massive Data (Spring’19) Jan 24, 2019

Lecture 2: Concentration, counting distinct elements

Instructor: Alex Andoni Scribe: Victor Lecomte

1 Review

Morris algorithm

• Initially: X = 0

• At increment: X := X + 1 with probability 1/2X

• Estimator: E = 2X − 1

Morris+

• Run k independent instances of Morris: X1, . . . , Xk

• Estimator: E = average estimator = 1
k

∑k
i=1

(
2Xi − 1

)
Claim 3. E[E] = n

Claim 4. Var[E] = 3/2 ·n2

k for n ≥ 10

2 Improving concentration

From a Chebyshev bound, we obtain

Pr[E /∈ (n± λ)] ≤ Var[E]

λ2
=

3/2 · n2/k
λ2

, (1)

so we can set λ = εn⇒ k = 3/2 · 10 · 1/ε2 to obtain 0.1 failure probability.

What if in general we want to get a success probability of ≥ 1− δ, for some (small) parameter δ? We

need (1) to be ≤ δ, so we should set

k = 3/2 · 10 · 1/ε2 · 1/δ = Θ(1/ε2 · 1/δ).

Can we get a better dependence on 1/δ? Yes, using the median trick.
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Median trick Goal: amplify the probability to be in the correct range, using the original algorithm as

a black box.

Algorithm A→ outA ∈ R
Pr[outA ∈ correct range] ≥ 0.9

Algorithm A∗ → outA∗ ∈ R
Pr[outA∗ ∈ correct range] ≥ 1− δ

median trick

How it works:

• Run k independent copies of A: A1, . . . , Ak

• Output outA∗ = median value of A1, . . . , Ak

We show that in this case, k = O(log 1/δ) is enough.

Chernoff/Hoeffding bound Let X1, . . . , Xk be independent random variables ∈ [0, 1], and let µ =

E
[∑k

i=1Xi

]
. For any ε ∈ [0, 1/2], we have

Pr

[∣∣∣∣∣
k∑
i=1

Xi − µ

∣∣∣∣∣ > εµ

]
≤ 2e−ε

2µ/3.

Proof of median trick. Let Xi = χ[Ai is correct].1 Clearly, E[Xi] = Pr[Xi = 1] ≥ 0.9, so µ ≥ 0.9 · k.

When is A∗ correct? Well, at any rate it is correct whenever > 50 % of the A’s are correct, that is,

when
∑k

i=1Xi > 0.5 · k.

Now, using a Chernoff bound with ε = 0.4, we obtain

Pr

[∣∣∣∣∣
k∑
i=1

Xi − 0.9 · k

∣∣∣∣∣ > 0.4 · 0.9 · k

]
≤ 2e−0.42 · 0.9 · k/3.

If the condition in Pr[] doesn’t hold, then we have
∑k

i=1Xi ≥ 0.9 · k− 0.4 · 0.9 · k > 0.5 · k, as desired. So

we just have to make sure the RHS is ≤ δ, which we can achieve by setting

k =
3

0.42 · 0.9
ln(2/δ) = Θ(log 1/δ).

This means that if we apply the median trick to Morris+ (which uses O(1/ε2) instances to get a

(1 + ε)-approximation with probability 0.9), then O(1/ε2 log 1/δ) total instances are enough.

1By χ[] we will denote the characteristic of a condition: the random variable that is 1 if the condition is true, and 0 if
the condition is false.
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3 Counting distinct elements

Consider a stream X1, . . . , Xm ∈ [n] of IPs going through a router (think of m and n as very large and

comparable in size).

Router
X1, . . . , Xm

Problem. Count the number of distinct Xi’s = |{X1, . . . , Xm}| using little space.

Basic solutions

• Bit array of length n: for each value in [n], has it been seen yet?

• Set structure, stored with O(m log n) bits.

Can we do better?

Flajolet-Martin [Flajolet-Martin’85]

Uses a hash function oracle h : [n] → [0, 1], where each h(i) is an independently chosen random real

number in [0, 1].

• Initially: Z = 1

• On seeing X = i: Z := min(Z, h(i))

• Estimator: E = 1
Z − 1

Example. For stream 1, 3, 1, 7 and values of h below, the algorithm will choose Z = h(3).

0 h(3) h(1) h(7) 1

Analysis of Flajolet-Martin

Let d be the number of distinct elements in the stream.

Claim 1. E[Z] = 1
d+1

Observation. Repeats don’t affect Z, so we can consider that the stream is actually composed of d distinct

elements. Therefore Z is the minimum of d random variables distributed independently and uniformly

in [0, 1].

Proof of claim 1. Pick a fresh variable A ∈ [0, 1] at random. Consider the probability Pr[A < Z].

• On the one hand, we clearly have Pr[A < Z] = E[Z].

• On the other hand, note that A,X1, . . . , Xd are d + 1 iid variables, and A < Z is true iff A is the

smallest of them all. Since the probability of a tie is 0, by symmetry we have Pr[A < Z] = 1
d+1 .
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The claim follows from combining both equalities.

Claim 2. Var[Z] ≤ 2/d2

Proof. Skipped.

Even with those guarantees, there is a big issue: E[1/Z] 6= 1/E[Z] in general, and they can wildly

differ. So how do we get a (1 + ε)-approximation anyway? Two options.

Option 1 (Flajolet-Martin+).

• Run k iid FM instances Z1, . . . , Zk

• Estimator: 1
Z − 1, where Z = 1

k

∑k
i=1 Zi

We claim that k = O(1/ε2) is enough.

Proof. Skipped.

Option 2 (Bottom-k algorithm). [BJKS’02]

Assumes that d is sufficiently large (> k). Uses only one hash function h (instead of k for option 1).

• Initially: Z1 = · · · = Zk = 1

• Maintain Z1 < Z2 < · · · < Zk: the k smallest hash function values seen so far

• Estimator: d̂ = k
Zk

Analysis of bottom-k algorithm

Lemma 3. Pr[d̂ > d(1 + ε)] ≤ 0.05 and Pr[d̂ < d/(1 + ε)] ≤ 0.05.

Proof of first part. Without loss of generality, we can assume the stream is just 1, 2, . . . , d. Let Xi :=

χ
[
h(i) < k

(1+ε)d

]
. We assume that k

(1+ε)d ≤ 1.

Observation. d̂ > d(1 + ε)⇔ Zk <
k

(1+ε)d ⇔
∑d

i=1Xi ≥ k.

• E
[∑d

i=1Xi

]
= d · E[Xi] = d k

(1+ε)d = k
1+ε

• Var
[∑d

i=1Xi

]
= d ·Var[Xi] ≤ d · E[X2

i ] = d k
(1+ε)d = k

1+ε ≤ k

By a Chebyshev bound,

Pr

[
d∑
i=1

Xi −
k

1 + ε
>
√

20k

]
≤ 0.05,

where the inequality inside Pr[] is equivalent to

d∑
i=1

Xi >
k

1 + ε
+
√

20k.
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The RHS is at most

k(1− ε+ ε2) +
√

20k ≤ k

as long as ε < 1/2 and k > 25
ε−ε2 = Θ(1/ε2), so Pr

[∑d
i=1Xi ≥ k

]
≤ 0.05.

Therefore, we have the following:

Theorem 4. For any ε < 1
2 , for d = Ω(1/ε2), the bottom-k algorithm has a space complexity of O(1/ε2)

counters.

Relaxing requirements for the hash function

We make two observations.

• We only care about order, (the absence of) collisions, and approximate values. So it’s fine to use

something like

h : [n]→
{

0,
1

M
,

2

M
, . . . ,

M − 1

M
, 1

}
instead of reals in [0, 1]. If M � n3, then there are no collisions with probability ≥ 1− 1/n. In this

regime, the counters only take up O(logM) = O(log n) bits.

• 2-wise independence for the hash function is enough: no need for n-wise independence. Indeed, all

we used was

– computations like E[Xi] = Pr[h(i) < · · · ] = · · · ;
– the fact that terms like E[XiXj ] (i 6= j) disappear in Var

[∑d
i=1Xi

]
.
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