COMS E6998-9: Algorithms for Massive Data (Spring’19) April 2, 2019
Lecture 19: Linearity Testing

Instructor: Alex Andoni Scribes: Samrat Phatale

1 Linearity Testing
A function f: {£1}"™ — =£1, is linear iff

f(zy) = f(z).f(y) = Ty

Where z.y = > 1 | iy

Linearity Test

Pick z,y at random and check T},.

Observation: If f is € far from linear if 77, fails in at least Q(%) tests.

Claim 1. if f is € far from linear then
Pry [ Tyy fails] > €

Let’s look at a tool that will help us do this efficiently

Tool: Fourier Analysis over hyper-cube {+1}"

Let F = set of all functions f: {+1}" — +1
F represents a vector space of 2" dimensions, in which every function f is a vector of length 2".
Now let’s try and find a basis of F.

Basis of F = {f.}.eqs1)n
1 if x=z
z\T) =
f-(@) {0 otherwise

We can see that this is a minimal basis because we can’t write any of the f.’s as a linear combination of
other f.’s.
Now Vf € F, 3 coefficients {a,},c(+1)n, such that

[ = Zazfz



where «, = f,(x)Va € {+1}".
So we have

Now let’s take a look at another basis for F, the Fourier basis,

xs € F where S Cn]

Xs(x) = H i
i€s
Xo(x) =1

Claim 2. All xs’s are linear.

Proof.
xs(@.y) = [ [z
i€s
xs(zy) =Tz [
i€S  ieS

xs(z.y) = xs(x).xs(y)

Now let’s define inner product in this space.

< [,9>=Epeqz1ynf(2).9(2)
Points to note

1. All basis elements have 'norm’ = 1.

< X8, X5 >= Eglchig(x)chis(x)] = Bo[[ [ i [ [ 2] = Eul1] = 1
€S ieS

2. All basis elements are normal to each other, i.e. VS £ T, < xg,x7 >=0

< xs, xr >= Ey[chig(z)chir(z)] = Ex[H T H ]
ieS Q€T
For ¢ that belong to both S and T', Ex; = 1, since they will be same so,
=E.[ [[ =i
1€SAT
Since all z; are independent of each other,

= [] Eaulzi]=0

1ESAT



So, xs’s form an ortho-normal basis.

Fourier Decomposition

Since we have a orthonormal basis, we can decompose any given function as a linear combination of all
possible linear functions yg.

V{21 = £1 3 {fstscm

such that

f=> fsxs

SC[n]

Theorem 3. Plancherel’s equality:

<fg>= > fs.ds
SCln]

This follows intuitively from the fact that fs and gg are coefficients of the underlyting basis vectors.

Theorem 4. Parseval’s equality:

<fhI>=) fsfs=1

SCln]

Example 5. Examples of Fourier Decomposition:

1. f(z) =1 A
2. flz) =i

f{xl} = 17felse =0

3. ]i(x):XS(a:) )
f5:17 VT#Sa fTIO

4. f(z) = AND(x1,22) = {1 ifr1 = x9 = —1

1 otherwise

f@) =5+ 3x0) + 9xq2) — 3X(12)
Observation 6. How to compute fg from f

fs is just a projection of f along the basis vector yg

fs =< fixs >=Eu[f(z).xs(z)]



2 Back to Testing Linearity

Fact 7. {xs}scin are all possible linear functions.

Let f be € far from linearity.
If fis linear = , 35 C [n] such that f = xgs.
If f is € far from linearity, then
Vxs Prif(z) = xs(@)] <1—e

Claim 8. Vf : {+1}" — +1, that are € far from linearity, VS C [n], fs <1 — 2e.

Proof. R
fs =< f,xs >=Eu[f(2).xs5(x)]

= Pr(f(z) = xs(@)](+1) + Pr(f(z) # xs(x)](=1)
<l—e—e=1-—2¢

Hence proved.

Observation 9. By Parseval’s Equality, we have ) g fg = E.f(x)? =1
Theorem 10. Pry [T, fails] > €

Proof.

Observation 11.
Ty succeeds <= f(z.y) = f(x).f(y)

= @) =1
Let, 6 = Pr[T}, succeeds]
0 = Proy[f(zy)f(z)f(y) =1]
Boy[f () f(2)f(y)] = 0(+1) + (1 = 0)(=1)
=25—1
So,

1 1

0= 5+ 5Euylf(@y) f(2)f(y)]

=3 Ezy ZfSXS r.y) ZfTXT ZfUXU

Since xg is linear, we have xg(z.y) = xs(x).xs(y)-

:%JF%EM[Z fsfrfoxs(@)xs@)xr(@)xv(y)]

S,T.U

+ = Z Exylfsfrfoxs(@)xs()xr(@)xu ()]

_ 1
2 STU

)l



b5 FsfrfuBalxs(@xr @B, s )]
S, .U

| =

fS=T=U,
]. 1 /\3
:§+§Zf5
S
1 1= i
<2+2§S:fs(1—26)

1 1
:§+§(1—26):1—6

Now we have Pr[Ty, succeeds] < 1 — e and Pr[Ty, fails] > e.

Linearity Testing Algorithm:
1. Draw z,y iid and test Ty, for O(2) times.

2. If one test fails, f is not linear. If all pass, f is at least epsilon close to linear.

3 Locally Decodable Code

Encoding,
C:{0,1}" = {0,1}™ m>n
Decoding,
D:{0,1}™ — {0,1}"
1. VX €{0,1}", Y € {0,1}™, such that [|y||1 < em

D(C(X)+Y)=X

2. For any i 3 a procedure (randomized), that queries ¢ positions of C(X) + Y and outputs x; with
> 90%
if ¢ =1, impossible
if ¢ =2, m = 29 possible
ifg=2,m= gn® possible

if ¢ = (log n)%, m = O(n'+t00) possible.
There is a trade off between number of queries required and the blowup required to reconstruct the
message.



