Lecture 19: Linearity Testing

1 Linearity Testing

A function $f:\{ \pm 1\}^{n} \rightarrow \pm 1$, is linear iff

$$
\begin{gathered}
f(x . y)=f(x) \cdot f(y) \quad \Longrightarrow T_{x y} \\
\text { Where } x \cdot y=\sum_{i=1}^{n} x_{i} y_{i}
\end{gathered}
$$

Linearity Test

Pick x, y at random and check $T_{x y}$.
Observation: If f is ϵ far from linear if $T_{x y}$ fails in at least $\Omega\left(\frac{1}{\epsilon}\right)$ tests.
Claim 1. if f is ϵ far from linear then

$$
P r_{x, y}\left[T_{x y} f a i l s\right] \geq \epsilon
$$

Let's look at a tool that will help us do this efficiently

Tool: Fourier Analysis over hyper-cube $\{ \pm 1\}^{n}$

Let $\mathcal{F}=$ set of all functions $f:\{ \pm 1\}^{n} \rightarrow \pm 1$
\mathcal{F} represents a vector space of 2^{n} dimensions, in which every function f is a vector of length 2^{n}.
Now let's try and find a basis of \mathcal{F}.
Basis of $\mathcal{F}=\left\{f_{z}\right\}_{z \in\{ \pm 1\}^{n}}$

$$
f_{z}(x)= \begin{cases}1 & \text { if } \mathrm{x}=\mathrm{z} \\ 0 & \text { otherwise }\end{cases}
$$

We can see that this is a minimal basis because we can't write any of the f_{z} 's as a linear combination of other f_{z} 's.
Now $\forall f \in \mathcal{F}, \exists$ coefficients $\left\{\alpha_{z}\right\}_{z \in\{ \pm 1\}^{n}}$, such that

$$
f=\sum_{z} \alpha_{z} f_{z}
$$

where $\alpha_{z}=f_{z}(x) \forall x \in\{ \pm 1\}^{n}$.
So we have

$$
f(x)=\sum_{z} f_{z}(x) f_{z}
$$

Now let's take a look at another basis for \mathcal{F}, the Fourier basis,

$$
\begin{gathered}
\chi_{S} \in \mathcal{F} \quad \text { where } \quad S \subseteq[n] \\
\chi_{S}(x)=\prod_{i \in S} x_{i} \\
\chi_{\phi}(x)=1
\end{gathered}
$$

Claim 2. All χ_{S} 's are linear.
Proof.

$$
\begin{gathered}
\chi_{S}(x . y)=\prod_{i \in S} x_{i} y_{i} \\
\chi_{S}(x . y)=\prod_{i \in S} x_{i} \prod_{i \in S} y_{i} \\
\chi_{S}(x . y)=\chi_{S}(x) \cdot \chi_{S}(y)
\end{gathered}
$$

Now let's define inner product in this space.

$$
<f, g>=\mathbb{E}_{x \in\{ \pm 1\}^{n}} f(x) \cdot g(x)
$$

Points to note

1. All basis elements have 'norm' $=1$.

$$
<\chi_{S}, \chi_{S}>=\mathbb{E}_{x}\left[\operatorname{chi_{S}}(x) \operatorname{ch} i_{S}(x)\right]=\mathbb{E}_{x}\left[\prod_{i \in S} x_{i} \prod_{i \in S} x_{i}\right]=\mathbb{E}_{x}[1]=1
$$

2. All basis elements are normal to each other, i.e. $\forall S \neq T,<\chi_{S}, \chi_{T}>=0$

$$
<\chi_{S}, \chi_{T}>=\mathbb{E}_{x}\left[\operatorname{ch} i_{S}(x) \operatorname{ch} i_{T}(x)\right]=\mathbb{E}_{x}\left[\prod_{i \in S} x_{i} \prod_{i \in T} x_{i}\right]
$$

For i that belong to both S and $T, \mathbb{E} x_{i}=1$, since they will be same so,

$$
=\mathbb{E}_{x}\left[\prod_{i \in S \triangle T} x_{i}\right]
$$

Since all x_{i} are independent of each other,

$$
=\prod_{i \in S \triangle T} \mathbb{E}_{x}\left[x_{i}\right]=0
$$

So, χ_{S} 's form an ortho-normal basis.

Fourier Decomposition

Since we have a orthonormal basis, we can decompose any given function as a linear combination of all possible linear functions χ_{S}.

$$
\begin{aligned}
& \forall f:\{ \pm 1\}^{n} \rightarrow \pm 1 \quad \exists \quad\left\{\hat{f}_{S}\right\}_{S \subseteq[n]} \\
& \text { such that } \\
& f= \sum_{S \subseteq[n]} \hat{f}_{S} \chi_{S}
\end{aligned}
$$

Theorem 3. Plancherel's equality:

$$
<f, g>=\sum_{S \subseteq[n]} \hat{f}_{S} \cdot \hat{g}_{S}
$$

This follows intuitively from the fact that \hat{f}_{S} and \hat{g}_{S} are coefficients of the underlyting basis vectors.
Theorem 4. Parseval's equality:

$$
<f, f>=\sum_{S \subseteq[n]} \hat{f}_{S} \cdot \hat{f}_{S}=1
$$

Example 5. Examples of Fourier Decomposition:

1. $f(x)=1$
$\hat{f}_{\phi}=1, \forall S \neq \phi \hat{f}_{S}=0$
2. $f(x)=x_{i}$
$\hat{f}_{\left\{x_{i}\right\}}=1, \hat{f}_{\text {else }}=0$
3. $f(x)=\chi_{S}(x)$
$\hat{f}_{S}=1, \forall T \neq S, \quad \hat{f}_{T}=0$
4. $f(x)=\operatorname{AND}\left(x_{1}, x_{2}\right)= \begin{cases}-1 & \text { if } x_{1}=x_{2}=-1 \\ 1 & \text { otherwise }\end{cases}$
$f(x)=\frac{1}{2}+\frac{1}{2} \chi_{\{1\}}+\frac{1}{2} \chi_{\{2\}}-\frac{1}{2} \chi_{\{1,2\}}$
Observation 6. How to compute \hat{f}_{S} from f
\hat{f}_{S} is just a projection of f along the basis vector χ_{S}

$$
\hat{f}_{S}=<f, \chi_{S}>=\mathbb{E}_{x}\left[f(x) \cdot \chi_{S}(x)\right]
$$

2 Back to Testing Linearity

Fact 7. $\left\{\chi_{S}\right\}_{S \subseteq[n]}$ are all possible linear functions.
Let f be ϵ far from linearity.
If f is linear $\Longrightarrow, \exists S \subseteq[n]$ such that $f=\chi_{S}$.
If f is ϵ far from linearity, then

$$
\forall \chi_{S} \operatorname{Pr}\left[f(x)=\chi_{S}(x)\right] \leq 1-\epsilon
$$

Claim 8. $\forall f:\{ \pm 1\}^{n} \rightarrow \pm 1$, that are ϵ far from linearity, $\forall S \subseteq[n], \hat{f}_{S} \leq 1-2 \epsilon$.
Proof.

$$
\begin{gathered}
\hat{f}_{S}=<f, \chi_{S}>=\mathbb{E}_{x}\left[f(x) \cdot \chi_{S}(x)\right] \\
=\operatorname{Pr}\left[f(x)=\chi_{S}(x)\right](+1)+\operatorname{Pr}\left[f(x) \neq \chi_{S}(x)\right](-1) \\
\leq 1-\epsilon-\epsilon=1-2 \epsilon
\end{gathered}
$$

Hence proved.

Observation 9. By Parseval's Equality, we have $\sum_{S} \hat{f}_{S}=\mathbb{E}_{x} f(x)^{2}=1$
Theorem 10. $\operatorname{Pr}_{x, y}\left[T_{x y}\right.$ fails $] \geq \epsilon$
Proof.

Observation 11.

$$
\begin{gathered}
T_{x, y} \text { succeeds } \Longleftrightarrow f(x \cdot y)=f(x) \cdot f(y) \\
\Longleftrightarrow f(x \cdot y) f(x) f(y)=1
\end{gathered}
$$

Let, $\delta=\operatorname{Pr}\left[T_{x y}\right.$ succeeds $]$

$$
\begin{gathered}
\delta=\operatorname{Pr}_{x, y}[f(x . y) f(x) f(y)=1] \\
\mathbb{E}_{x, y}[f(x . y) f(x) f(y)]=\delta(+1)+(1-\delta)(-1) \\
=2 \delta-1
\end{gathered}
$$

So,

$$
\begin{gathered}
\delta=\frac{1}{2}+\frac{1}{2} \mathbb{E}_{x, y}[f(x . y) f(x) f(y)] \\
\delta=\frac{1}{2}+\frac{1}{2} \mathbb{E}_{x, y}\left[\left(\sum_{S} \hat{f}_{S} \chi_{S}(x . y)\right)\left(\sum_{T} \hat{f}_{T} \chi_{T}(x)\right)\left(\sum_{U} \hat{f}_{U} \chi_{U}(y)\right)\right]
\end{gathered}
$$

Since χ_{S} is linear, we have $\chi_{S}(x \cdot y)=\chi_{S}(x) \cdot \chi_{S}(y)$.

$$
\begin{aligned}
& =\frac{1}{2}+\frac{1}{2} \mathbb{E}_{x, y}\left[\sum_{S, T, U} \hat{f}_{S} \hat{f}_{T} \hat{f}_{U} \chi_{S}(x) \chi_{S}(y) \chi_{T}(x) \chi_{U}(y)\right] \\
& =\frac{1}{2}+\frac{1}{2} \sum_{S, T, U} \mathbb{E}_{x, y}\left[\hat{f}_{S} \hat{f}_{T} \hat{f}_{U} \chi_{S}(x) \chi_{S}(y) \chi_{T}(x) \chi_{U}(y)\right]
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1}{2}+\frac{1}{2} \sum_{S, T, U} \hat{f}_{S} \hat{f}_{T} \hat{f}_{U} \mathbb{E}_{x}\left[\chi_{S}(x) \chi_{T}(x)\right] \mathbb{E}_{y}\left[\chi_{S}(y) \chi_{U}(y)\right] \\
\text { if } S=T=U \\
=\frac{1}{2}+\frac{1}{2} \sum_{S} \hat{f}_{S}^{3} \\
\leq \frac{1}{2}+\frac{1}{2} \sum_{S} \hat{f}_{S}^{2}(1-2 \epsilon) \\
=\frac{1}{2}+\frac{1}{2}(1-2 \epsilon)=1-\epsilon
\end{gathered}
$$

Now we have $\operatorname{Pr}\left[T_{x y}\right.$ succeeds $] \leq 1-\epsilon$ and $\operatorname{Pr}\left[T_{x y}\right.$ fails $] \geq \epsilon$.

Linearity Testing Algorithm:

1. Draw x, y iid and test $T_{x y}$ for $\mathcal{O}\left(\frac{1}{\epsilon}\right)$ times.
2. If one test fails, f is not linear. If all pass, f is at least epsilon close to linear.

3 Locally Decodable Code

$$
\begin{gathered}
\text { Encoding, } \\
C:\{0,1\}^{n} \rightarrow\{0,1\}^{m} \quad m>n
\end{gathered}
$$

Decoding,

$$
D:\{0,1\}^{m} \rightarrow\{0,1\}^{n}
$$

1. $\forall X \in\{0,1\}^{n}, Y \in\{0,1\}^{m}$, such that $\|y\|_{1} \leq \epsilon m$

$$
D(C(X)+Y)=X
$$

2. For any $i \exists$ a procedure (randomized), that queries q positions of $C(X)+Y$ and outputs x_{i} with $\geq 90 \%$
if $q=1$, impossible
if $q=2, m=2^{\mathcal{O}(n)}$ possible
if $q=2, m=2^{n^{\mathcal{O}(1)}}$ possible
\vdots
if $q=(\log n)^{\frac{1}{\epsilon}}, m=\mathcal{O}\left(n^{1+O(\epsilon)}\right)$ possible.
There is a trade off between number of queries required and the blowup required to reconstruct the message.
