COMS E6998-9: Algorithms for Massive Data (Spring'19)

April 2, 2019

Lecture 19: Linearity Testing

Instructor: Alex Andoni

Scribes: Samrat Phatale

1 Linearity Testing

A function $f: \{\pm 1\}^n \to \pm 1$, is linear *iff*

$$f(x.y) = f(x).f(y) \implies T_{xy}$$

Where $x.y = \sum_{i=1}^{n} x_i y_i$

Linearity Test

Pick x, y at random and check T_{xy} .

Observation: If f is ϵ far from linear if T_{xy} fails in at least $\Omega(\frac{1}{\epsilon})$ tests.

Claim 1. if f is ϵ far from linear then

$$Pr_{x,y}[T_{xy} \text{ fails}] \ge \epsilon$$

Let's look at a tool that will help us do this efficiently

Tool: Fourier Analysis over hyper-cube $\{\pm 1\}^n$

Let $\mathcal{F} = \text{set of all functions } f : \{\pm 1\}^n \to \pm 1$ \mathcal{F} represents a vector space of 2^n dimensions, in which every function f is a vector of length 2^n . Now let's try and find a basis of \mathcal{F} . Basis of $\mathcal{F} = \{f_i\}_{i=1}^n$ (11)

Basis of $\mathcal{F} = \{f_z\}_{z \in \{\pm 1\}^n}$

$$f_z(x) = \begin{cases} 1 & \text{if } x=z \\ 0 & \text{otherwise} \end{cases}$$

We can see that this is a minimal basis because we can't write any of the f_z 's as a linear combination of other f_z 's.

Now $\forall f \in \mathcal{F}, \exists \text{ coefficients } \{\alpha_z\}_{z \in \{\pm 1\}^n}$, such that

$$f = \sum_{z} \alpha_{z} f_{z}$$

where $\alpha_z = f_z(x) \forall x \in \{\pm 1\}^n$. So we have

$$f(x) = \sum_{z} f_z(x) f_z$$

Now let's take a look at another basis for \mathcal{F} , the Fourier basis,

$$\chi_S \in \mathcal{F}$$
 where $S \subseteq [n]$
 $\chi_S(x) = \prod_{i \in S} x_i$
 $\chi_{\phi}(x) = 1$

Claim 2. All χ_S 's are linear.

Proof.

$$\chi_S(x.y) = \prod_{i \in S} x_i y_i$$
$$\chi_S(x.y) = \prod_{i \in S} x_i \prod_{i \in S} y_i$$
$$\chi_S(x.y) = \chi_S(x) \cdot \chi_S(y)$$

Now let's define inner product in this space.

$$\langle f,g\rangle = \mathbb{E}_{x \in \{\pm 1\}^n} f(x).g(x)$$

Points to note

1. All basis elements have 'norm' = 1.

$$\langle \chi_S, \chi_S \rangle = \mathbb{E}_x[chi_S(x)chi_S(x)] = \mathbb{E}_x[\prod_{i \in S} x_i \prod_{i \in S} x_i] = \mathbb{E}_x[1] = 1$$

2. All basis elements are normal to each other, i.e. $\forall S \neq T, <\chi_S, \chi_T >= 0$

$$\langle \chi_S, \chi_T \rangle = \mathbb{E}_x[chi_S(x)chi_T(x)] = \mathbb{E}_x[\prod_{i \in S} x_i \prod_{i \in T} x_i]$$

For *i* that belong to both S and T, $\mathbb{E}x_i = 1$, since they will be same so,

$$= \mathbb{E}_x[\prod_{i \in S \triangle T} x_i]$$

Since all x_i are independent of each other,

$$=\prod_{i\in S\bigtriangleup T}\mathbb{E}_x[x_i]=0$$

So, χ_S 's form an ortho-normal basis.

Fourier Decomposition

Since we have a orthonormal basis, we can decompose any given function as a linear combination of all possible linear functions χ_S .

$$\forall f: \{\pm 1\}^n \to \pm 1 \quad \exists \quad \{\hat{f}_S\}_{S \subseteq [n]}$$

such that

$$f = \sum_{S \subseteq [n]} \hat{f}_S \, \chi_S$$

Theorem 3. Plancherel's equality:

$$\langle f,g \rangle = \sum_{S \subseteq [n]} \hat{f}_S \cdot \hat{g}_S$$

This follows intuitively from the fact that \hat{f}_S and \hat{g}_S are coefficients of the underlying basis vectors.

Theorem 4. Parseval's equality:

$$\langle f, f \rangle = \sum_{S \subseteq [n]} \hat{f}_S \cdot \hat{f}_S = 1$$

Example 5. Examples of Fourier Decomposition:

1.
$$f(x) = 1$$

 $\hat{f}_{\phi} = 1, \forall S \neq \phi \hat{f}_{S} = 0$
2. $f(x) = x_{i}$
 $\hat{f}_{\{x_{i}\}} = 1, \hat{f}_{else} = 0$
3. $f(x) = \chi_{S}(x)$
 $\hat{f}_{S} = 1, \forall T \neq S, \quad \hat{f}_{T} = 0$
4. $f(x) = AND(x_{1}, x_{2}) = \begin{cases} -1 & ifx_{1} = x_{2} = -1 \\ 1 & otherwise \end{cases}$
 $f(x) = \frac{1}{2} + \frac{1}{2}\chi_{\{1\}} + \frac{1}{2}\chi_{\{2\}} - \frac{1}{2}\chi_{\{1,2\}}$

Observation 6. How to compute \hat{f}_S from f

 \hat{f}_S is just a projection of f along the basis vector χ_S

$$\hat{f}_S = \langle f, \chi_S \rangle = \mathbb{E}_x[f(x).\chi_S(x)]$$

2 Back to Testing Linearity

Fact 7. $\{\chi_S\}_{S\subseteq[n]}$ are all possible linear functions.

Let f be ϵ far from linearity. If f is linear \implies , $\exists S \subseteq [n]$ such that $f = \chi_S$. If f is ϵ far from linearity, then

$$\forall \chi_S \ Pr[f(x) = \chi_S(x)] \le 1 - \epsilon$$

Claim 8. $\forall f : \{\pm 1\}^n \to \pm 1$, that are ϵ far from linearity, $\forall S \subseteq [n], \hat{f}_S \leq 1 - 2\epsilon$.

Proof.

$$\hat{f}_S = \langle f, \chi_S \rangle = \mathbb{E}_x[f(x) \cdot \chi_S(x)]$$
$$= \Pr[f(x) = \chi_S(x)](+1) + \Pr[f(x) \neq \chi_S(x)](-1)$$
$$\leq 1 - \epsilon - \epsilon = 1 - 2\epsilon$$

Hence proved.

Observation 9. By Parseval's Equality, we have $\sum_{S} \hat{f}_{S} = \mathbb{E}_{x} f(x)^{2} = 1$

Theorem 10. $Pr_{x,y}[T_{xy} fails] \geq \epsilon$

Proof.

Observation 11.

$$T_{x,y} \text{ succeeds } \iff f(x.y) = f(x).f(y)$$

 $\iff f(x.y)f(x)f(y) = 1$

Let, $\delta = Pr[T_{xy} \text{ succeeds}]$

$$\delta = Pr_{x,y}[f(x,y)f(x)f(y) = 1]$$
$$\mathbb{E}_{x,y}[f(x,y)f(x)f(y)] = \delta(+1) + (1-\delta)(-1)$$
$$= 2\delta - 1$$

So,

$$\delta = \frac{1}{2} + \frac{1}{2} \mathbb{E}_{x,y}[f(x,y)f(x)f(y)]$$

$$\delta = \frac{1}{2} + \frac{1}{2} \mathbb{E}_{x,y}[(\sum_{S} \hat{f}_{S}\chi_{S}(x,y))(\sum_{T} \hat{f}_{T}\chi_{T}(x))(\sum_{U} \hat{f}_{U}\chi_{U}(y))]$$

Since χ_S is linear, we have $\chi_S(x.y) = \chi_S(x) \cdot \chi_S(y)$.

$$= \frac{1}{2} + \frac{1}{2} \mathbb{E}_{x,y} \left[\sum_{S,T,U} \hat{f}_S \hat{f}_T \hat{f}_U \chi_S(x) \chi_S(y) \chi_T(x) \chi_U(y) \right]$$
$$= \frac{1}{2} + \frac{1}{2} \sum_{S,T,U} \mathbb{E}_{x,y} \left[\hat{f}_S \hat{f}_T \hat{f}_U \chi_S(x) \chi_S(y) \chi_T(x) \chi_U(y) \right]$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{S,T,U} \hat{f}_S \hat{f}_T \hat{f}_U \mathbb{E}_x[\chi_S(x)\chi_T(x)] \mathbb{E}_y[\chi_S(y)\chi_U(y)]$$

if $S = T = U$,
 $= \frac{1}{2} + \frac{1}{2} \sum_S \hat{f}_S^3$
 $\leq \frac{1}{2} + \frac{1}{2} \sum_S \hat{f}_S^2(1 - 2\epsilon)$
 $= \frac{1}{2} + \frac{1}{2}(1 - 2\epsilon) = 1 - \epsilon$

Now we have $Pr[T_{xy} \text{ succeeds}] \leq 1 - \epsilon$ and $Pr[T_{xy} \text{ fails}] \geq \epsilon$.

Linearity Testing Algorithm:

- 1. Draw x, y iid and test T_{xy} for $\mathcal{O}(\frac{1}{\epsilon})$ times.
- 2. If one test fails, f is not linear. If all pass, f is at least *epsilon* close to linear.

3 Locally Decodable Code

Encoding,

 $C: \{0,1\}^n \to \{0,1\}^m \qquad m > n$

Decoding,

$$D: \{0,1\}^m \to \{0,1\}^n$$

1. $\forall X \in \{0,1\}^n, Y \in \{0,1\}^m$, such that $||y||_1 \le \epsilon m$

$$D(C(X) + Y) = X$$

2. For any $i \exists$ a procedure (randomized), that queries q positions of C(X) + Y and outputs x_i with $\geq 90\%$

if q = 1, impossible if q = 2, $m = 2^{\mathcal{O}(n)}$ possible if q = 2, $m = 2^{n^{\mathcal{O}(1)}}$ possible : if $q = (\log n)^{\frac{1}{\epsilon}}$, $m = \mathcal{O}(n^{1+O(\epsilon)})$ possible.

There is a trade off between number of queries required and the blowup required to reconstruct the message.