
COMS E6998-9: Algorithms for Massive Data (Spring’19) Mar 26, 2019

Lecture 17: Sublinear Time Algorithms

Instructor: Alex Andoni Scribes: Mark Dijkstra

1 Introduction

We begin this lecture by continuing the discussion of Minimum Spanning Trees (MST) and proving the

validity of the algorithm introduced in the previous lecture. Afterwards we discussed a new problem

of approximating the Vertex Cover problem in sublinear time by introducing Maximal Matchings and

Maximal Independent Sets. We left off by discussing the creation of an oracle that will tell us whether

a vertex, v ∈ G′, belongs to a specific instance of a Maximal Independent Set of the graph. The next

lecture will discuss how one could design this local oracle.

2 MST

2.1 Problem Definition

We are given an MST in graph G, and degree d, ui,j ∈ {1, 2, . . . ,M}

Theorem: We can estimate MST up to 1 + ε factor in
(
dM
ε

)O(1)

1. MST ≥ n− 1 (to connect all vertices, need n - 1 edges)

2. MST = n− 1 +
∑n

i=1CCi − 1

3. CCi = # connected components (denoted CC) in graph Gi with edges such that uedge ≤ i, that is

edges where cost are at most i

Problem: Computing number of connected components in Gi

αv = 1
size of CC of V , note that αv ∈ (0, 1]

Fact:
∑

v αv = #CC

Algorithm:

- sample k = O(1
δ2

) vertices v

- explore the CC of v using (dfs or bfs), until see > 1
δ vertices

- Set dv = max
{

1
size of CC of v , δ

}
- output ĉ = n

k

∑k
i=1 α̂vi

1

2.2 MST Estimator Claims

Claim 1. |E[Ĉ − C]| ≤ δn

Proof.

E[Ĉ] =
n

k
·
k∑
i=1

Eviα̂vi ≥
n

k

k∑
i=1

Evi [αvi] =
∑
v

αv = C ≤ n

k

∑
i = 1kEvi [δvi + δ] = C +

n

k

k∑
i=1

δ = C + δn

Claim 2. var[Ĉ] ≤ n
k · (c+ δ2n) = o

(
δ2n)

)
Proof.

[V ar[Ĉ] =
n2

k2

k∑
i=1

V arvi [α̂vi] ≤
n2

k
E[α̂2

v] ≤
n2

k
(Ev[α2

v] + δ2) ≤ n

k
[n · Ev[αv] + δ2n] =

n

k
[c+ δ2n]

Claim 3. Number of queries is O
(
d
δ3

)
Proof. # queries refers to how many times we look at the graph; so

queries = O(k) · 1δ · d = O
(
d
δ3

)
, note we multiply by d to check all of the neighbors of a vertex.

Thus, we can conclude that the algorithm for MST in which we:

- Estimate ĈCi for d = ε
M

- ˆMST = n− 1 +
∑M

i=1(ĈCi − 1)

Claim 4. ˆMST is a (1 + ε)-factor approx to MST cost w/ 90% probability

Proof.

|E[ˆMST −MST]| ≤
M∑
i=1

|ĈCi − CCi| ≤ k · δn ≤ εn ≤ 2 · ε ·MST

V ar[ˆMST] =

M∑
i=1

V ar[ĈCi] ≤
M∑
i=1

O(δ2n) · (CCi + δ2n)

≤ O(δ2n) · (MST + δ2Mn) = O(δ4Mn+ δ2nMST)

by Chebyshev with probability ≥ 90% we have that ˆMST ∈ E[ˆMST]±
√

10 · var. Furthermore we have

that
√
var ≤ O

(ε4

M4
Mn2 +

ε2

M2
n ·MST

) 1
2 ≤ O(ε2 ·MST 2)

1
2 = O(ε ·MST)

Thus we have that ˆMST ∈MST ±O(ε ·MST) = MST (1±O(ε)).

This gives us time: M ·O(d/δ3) = O(M · d · M3

ε3
) = O(dM

4

ε3
)

Lower bound: linear dependence on M is necessary

2

3 Sublinear Time Estimator for Vertex Cover

3.1 Problem Formulation

Note that this will be a local algorithm

Definition: Vertex cover of a graph is a set of vertices, V , such that each edge of the graph is inci-

dent to at least one vertex of V .

Goal: We want to estimate a minimum vertex cover

3.2 Background

Theorem 5 (Gavril-Yannakakis). Can compute factor 2-approximation in poly-time. Output V s.t.

1. V is a vertex cover (VC)

2. Minimum Vertex Cover, MVC ≤ |V | ≤ 2 ·MVC

Proof. Let M = maximal matching in graph G

A matching is a set of edges of a graph such that no edges share a common vertex; a maximal matching

is a matching such that you cannot add any edges to the set. Note that a maximal matching is not

necessarily maximum in so far that, the number of edges in a maximal matching is strictly ≤ number of

edges in a maximum matching. Furthermore, there can be many maximal matchings for a given graph.

1. We will denote a maximal matching as M

2. V = number of vertices in M

3. |V | = 2 · |M |

1) For ∀ edges, one endpoint is in V otherwise M is not maximal =⇒ V is a vertex cover

2) for each edge ∈ M at least one endpoint is in the MVX =⇒ |M | ≤ |MVC| =⇒ |V | ≤ 2|MVC|

Theorem: Can compute some ˆV C s.t. MVC − εn ≤ ˆV C ≤ 2 ·MVC + εn (2, εn)-approximation in

time O(d · 2d), where d = max degree (can be replaced with d = m
n) [Nguyen-Orak ’08]

3.2.1 Idea:

Estimate maximal matching size in G by sampling

This is logically equivalent to finding a maximal independent set in G′, where G′ = graph vertices =

edges in G. So, an edge (e, e′)→ e& e′ share a vertex in G.

3

3.2.2 Algorithm for MIS

Here we have an algorithm to find a single Maximal Independent Set. It is very contingent on the order

in which vertices of a graph are visited, and it further exemplifies that there are multiple Maximal Inde-

pendent Sets for any given graph (i.e. many MIS and not unique).

- Set I = ∅
- Consider v ∈ V of some G in order:

add v to I ⇐⇒ ∀u ∈ N(v), s.t. u 6∈ I

Above we see the algorithm ran on the graph to produce a MIS of size 4, with I = {1, 4, 6, 9}

4 Local Oracle

We will now begin discussion for the local oracle for MIS and will continue in the subsequent lecture.

A logical question entails: which MIS are we concerned with? The oracle works with respect to a

single MIS. Furthermore, it is noteworthy that ∀v ∈ G that ∃ a MIS s.t. v ∈MIS of G.

4

Guarantee on Oracle: ∃ a set I which is

1. MIS

2. I = I(G′, randomness of O). Not dependent on questions investigated, so that Yes/No answers are

consistent with I, namely, whether our vertex belongs to our I.

Next lecture we design the local oracle.

5

	Introduction
	MST
	Problem Definition
	MST Estimator Claims

	Sublinear Time Estimator for Vertex Cover
	Problem Formulation
	Background
	Idea:

