
COMS E6998-9: Algorithms for Massive Data (Spring’19) March 12, 2019

Lecture Lecture 15: Distribution testing: uniformity, identity

Instructor: Alex Andoni Scribes: Collin Burns, Garrison Grogan

1 Review

Recall that last time we considered the problem of uniformity testing : Given a distribution D over [n],

we want to distinguish between D being uniform and D being ε-far from uniform. In particular, we saw

that ‖D‖22 = 1
n when D is uniform and ‖D‖22 > 1

n + ε2

n if D is ε-far from uniform. Given m samples from

D, we hope to be able to do distinguish between these cases using a number of samples that is sublinear

in n.

We saw before that the algorithm for uniformity testing works as follows: first compute C := #colli-

sions. If C
M < 1

n + ε2

2n output “uniform”; otherwise, output “ε-far from uniform”.

Throughout this lecture, we let d = ‖D‖22 for simplicity of notation. We saw last time that E[CM] = d,

where M :=
(
m
2

)
.

2 Uniformity Testing Continued

We want to argue that C
m concentrates around its mean by bounding its variance and applying Chebyshev.

Claim 1. V ar(CM) ≤ O(d
3/2

m).

Proof. First, note that while C is a sum of indicator random variables, those random variables are not

independent, so we must compute the variance explicitly. We have:

E

[(
C

M

)2
]

=
1

M2
E

∑
i<j

χ [xi & xj collide]

2
Using the notation χi,j = χ [xi & xj collide] and expanding the quadratic yields:

=
1

M2

∑
i<j,k<l

{i,j}∩{k,l}=∅

E[χi,jχk,l] +
1

M2

∑
i<j,k<l

{i,j}∩{k,l}6=∅

E[χi,jχk,l]

≤ 1

M2
M2d2 +

O(1)

M2

∑
i<jk

E [χ [xi & xj & xk collide]] = d2 +O

(
1

M2

)∑
i<jk

Pr [xi & xj & xk collide]

But we have that if i, j, and k are distinct:

Pr [xi & xj & xk collide] =
∑
z∈[n]

D3
z = ‖D‖33

1

Moreover, there are O(m3) such choices over i, j, and k, so we have

E

[(
C

M

)2
]
≤ d2 +O

(
m3

M2

)
‖D‖33 ≤ d2 +O

(
1

m

)
‖D‖32 = d2 +O

(
1

m

)
d3/2

where we used that M = θ(m2). Combining this with E[CM] = d implies that:

V ar

(
C

M

)
= E

[(
C

m

)2
]
− d2 = O

(
d3/2

m

)

as desired.

Now we will analyze the algorithm. The first case is when D is indeed uniform. Then as we saw, d = 1
n .

By Chebyshev, this implies that with probability 0.9, C
M ≤ d+

√
10 · V ar(C/m) ≤ 1

n +O

(√
d3/2

M

)
. We

want O

(√
d3/2

M

)
≤ ε2

2n . Since M = θ(m2) and d = 1
n , this is equivalent to 1

n3/2m
≤ O(ε

2

2n)2, for which it

suffices that M = O
(√

n
ε4

)
.

The second case is when D is ε-far from uniform. We have that with probability 0.9,

C

M
≥ d−

√
10 · V ar(C/M) ≥ d−O

(√
d3/2

m

)
≥ d

(
1−O

(
1

d1/4m1/2

))

Recall that if D is ε-far fro m uniform, d ≥ 1
n + ε2

n . Moreover, note that if O
(

1
d1/4m1/2

)
≤ ε2

10 , then we

have:
C

M
≥ 1

n

(
1 + ε2

)(
1− ε2

10

)
≥ 1

n
+

9

10

ε2

n
− ε4

10n
≥ 1

n
+
ε2

2n

where the final inequality holds as long as ε < 1
4 . Moreover, if this holds, then our algorithm correctly

outputs “ε-far from uniform”. To have O
(

1
d1/4m1/2

)
≤ ε2

10 , it suffices that m = O(1
ε4

1√
d
). Since d ≥ 1

n , it

thus suffices to have m = O
(√
nε4
)
. As a final remark, this

√
n factor is tight, but there are algorithms

that improve on the 1
ε4

factor.

3 Identity Testing/Closeness to a fixed distribution

Say we fix Q to some distribution on a known [n],

the problem is now given x1, ..., xm ∼ D, we want to distinguish between D = Q and ||D −Q||1 ≥ ε

i.e D is ε-far from Q.

Consider the following idea: We will reduce testing D vs Q to testing D′ vs Q′︸ ︷︷ ︸
on new domain S

,

where Q′ is ≈ uniform and ||D′ −Q′||1 ≈ ||D −Q||1
How will we do this? Q may not be uniform so we must change space Q is on. We do this by relabeling

Q’s values into a new space, such that repeated values on Q′ become unique on this new space thus the

new distribution is uniform. We do the same scheme for D to get D′ on the same space.

2

For example if there are 5 1s but 2 2s on Q, then we relabel the 1s to (1, 1), (1, 2), ... and the 2s to

(2, 1), (2, 2), thus we get a new uniform distribution in our new domain.

Formally, start by fixing δ = cε for small c > 0.

Now for each i ∈ [n] let Si = dnQi
δ
e i.e how many times we replicate coordinate i. δ acts as a control

parameter.

Note, that if δ = 1, then if Q is already uniform, nothing happens.

Our new domain is then the union of all our coordinate changes,

S =
n⋃
i=1

i× [Si] = {(1, 1), (1, 2), ..., (1,S1), (2, 1), ..., (2,S2), (3, 1), ...} (1)

and our new distributions are given as

Q′ij =
Qi
Si

and D′ij =
Di

Si

note that D′ also depends on Q.

Now we several claims using our new distributions:

Claim 1: For δ = cε and small c > 0, say c < 1/10, ||Q− US ||1 < O(δ) < ε/10

Proof.

Q′i,j = Qi
1

Si
= Qi

δ

nQi
= δ/n and

|S| =
∑
i

Si ≤
∑
i

nQi
δ

+ 1 =
n

δ

n∑
i

Qi + n = n(
1

δ
+ 1) =⇒

||Q′ − US ||1 =
∑
i∈[n]

Si∑
j=1

|Q′ij −
1

n(1/δ + 1)
| ≤

∑
i ∈ [n]

Si∑
j=1

δ

n
|1− 1

δ + 1
|

≤
∑
i∈[n]

Si∑
j=1

δ

n
|1− (1− δ ∗ 2δ2)| ≤

∑
i∈[n]

Si∑
j=1

δ

n
δ(1 + 2δ)

≤ n(
1

δ
+ 1)

δ2(1 + 2δ)

n
= δ(1 + δ)(1 + 2δ) = O(δ)

Claim 2: ||D′ −Q′|| = ||D −Q||1

Proof.

||D′−Q′||1 =
∑∑

|D′ij−Q′ij | =
∑
i∈[n]

Si∑
j=1

|Di

Si
− Qi

Si
| =

∑∑ 1

Si
|Di−Qi| =

∑
i∈[n]

|Di−Qi| = ||D−Q||1

3

Thus testing if D is close to Q ⇐⇒ Testing if D′ is uniform over S, say up to ±ε/10 or whatever cε

is used.

Now we need to also show that we can emulate x′i ∼ D′ using xi ∼ D

Claim 3: We can emulate x′i ∼ D using xi ∼ D

Proof.

take xi ∼ D say j = xi and set

x′i = (j, k), k ∈r {1, 2, ...,Sj} =⇒ Pr[x′i = (j, k)] = Dj
1

Sj
= D′jk

Theorem 2. We can test identity using m = O(1
ε4

√
|S|) = O(1

ε4
|S|
√
n) samples

There are better algorithms for nicer distributions of Q which are not arbitrary, for example when Q

is a point distribution or some other fixed distribution (eg, normal distribution). In the first case, O(1/ε)

samples are enough! So instance optimal algorithms give a better dependence on m if Q is nice. An

example of such tester is the [Valiant - Valiant ’14] algorithm, which has the following test:∑
i
(mD̂i−mQi)

2−mD̂i

D
2/3
i

vs α

where D̂i = #occ of i
m . This can be contrasted to the classic χ2-test [Pearson’ 1900]:∑

i
mD̂i−mQi)

2−mQi

Qi
vs α

which has much worse complexity.

4 Other Distribution Testing Problems

There are many other distribution testing problems.

• Closeness: Testing where D and Q are the same, or ε-far from each other (in `1 or total variation

distance), when both D and Q are unknown. m = θε(n
2/3) is optimal, which is only a little worse.

• Independence: Given (xi, yi) ∼ D, where D = (D1, D2) is over [n1]× [n2], distinguish between when

D1 and D2 are independent (i.e., D = D1 ×D2) and when D is ε-far form any product distribution.

• Robustness: Solving distribution testing problems when a subset of samples are noisy or adversarial.

This is a much more recent subarea, with these sorts of problems mainly starting to be proposed in just

the last few years.

5 Next Time

We are finished with distribution testing in this clas, and will continue with property testing, and sublinear

algorithms more generally. Next time, we’ll see monotonicity testing : given a string of n integers,

determine if that string is monotone (i.e., sorted), or ε-far from monotone. Specifically, we want to

distinguish between these cases using the smallest number of queries to the list as possible. The notion

of distance from monotonicity is the following:

Definition 3. A string x of length n is ε-far from being sorted if it is necessary to delete εn items to get

a sorted list.

4

We will see that O(1/ε · log n) queries suffices.

5

