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Lecture 14: Distribution Testing

Instructor: Alex Andoni Scribes: Tianyang Yang

1 Introduction

Sublinear Time Algorithm: Only Look at a subset of the input:
e take a subset of data and return an approximate output, or

e test a hypothesis under some probability (property tesing).

We will look at the problem of Distribution Testing.

Distribution Testing: We have access to m samples, x1, x2, ..., T, ~ D, and want to do some hypoth-
esis test on distribution D with the samples. The goal is to minimize the sample size m.

2  Uniformity Testing

One kind of distribution testing is to test the Uniformity of distribution, i.e., to test whther D is uniform
over domain [n]. Distribution D is uniform distribution if

1
D, =—, Vie [TL]
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It will require large runtime to exactly distinguish the uniformity, so we turn to use sublinear algorithm
for appromate testing. The Approximate Problem is to distinguish between

e D is uniform;
e D is "far” from uniform.

Definition 1. Distributions D and Q) are e-far if

ID=Qll1 = e
This is equivalent to compute the Total Variance Distance between D and @ (see Claim 3).
Definition 2. Total Variance Distance between D and Q is define as

TV(D,Q) = :rprg:f] |Pry~plz € T] — Pryglz € T

Claim 3. TV (D, Q) = ||D — Q||x.



Here is some intuition behind TV Distance. For example, we have only 1 sample to distinguish whether
sample z is from distribution D or Q). Let t(z) be the result distribution of our testing, and T be
the set where we accept * ~ D. Take some intuition from machine learning: we want to accept D
as the output distribution when the probability of that x ~ D is larger than that of . Without
knowledge of prior probability, we should compare the probability Prp(z) and Prg(z), and accept D
when Prp(xz) > Prg(xz). Thus, we have

T ={x: Prp(x) > Prg(z)}
and this is actually equivalent to
T e arg max (P’PD[ZU e T] - Prglr € T])
Since the sum of probability over [n] is 1 for both D and @, we have
[n\T € arg max (PTQ[x €T — Prplz € T’])

and

max (Prp[a: € T]— Prglx € T])

= max (P’I”Q[.Z‘ €T’ — Prplz € T’])

T
:mjgx|PrD[:B € T] - Prglx € T

Since (maxTPrD[x €T)— Prglx € T}) + (maxT/ Prglz € T') — Prplx € T’]) = [|D — Ql1, we get

1
mj@X|PTD[$ €T)—Prglz eT|| = §HD - Q|1

that is,
1
TV(D,Q) = 5D~ Ql.

2.1 Attempt 1

We define Empirical Distribution of D on sample {x;}"; as

Then we test the uiformity hypothesis by
e if |[U — D|| << ¢, accept that D is uniform;
e otherwise, D is not uiform.

Claim 4. We can test uniformity with m >> Q.(nlogn).



Proof. A sketch of proof is as below
|D; — Dy| < = , with high prob.
n

. . € s
=||D — Dl = EZ[] |D; — D;| < 3 with high prob.
1< (n

=|D-U||=|D-U|+ % , with high prob..

Claim 5. m = O.(n) samples are enough as well for testing uniformity.
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2.2 Attempt 2
Let C :=#{i < j: 21 =z}, C is the collision count. We test the uniformity by

o if % < % for some constant a = «(e), then D is uniform;
2

e otherwise, D is e-far from uniform.

Analysis: We analyze the [-2 distance:

e if D=U, we have |D —Ul||; =0 and |D — Ul|2 = 0;

. D-U 2
o if |[D = Ul > &, we have ||D — U, > 1272l then |D — U3 > .

> <,
Claim 6. |D - U3 = D[} - L.
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Now our problem becomes to distinguish between

e |[D||3 = 1, then uniform;

o |[D|3 > % + £, then e-far from uniform.

The following claims will show the correctness to use % for testing.
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Claim 7. E(%) = [|D]3.
Proof.
E(C) =) Prlz; = ;)
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That is, we have E(@) = || D3



