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1 Review

Given x ∈ Rn, think of it as large as a signal of an image, and the main idea to measure it is to

use the ”measurement matrix” A which greatly reduces dimensions. A matches something from n-

dimension to m-dimension where m � n. If we want to recover the information of x using just a few

measurements, we need the structure with k-sparsity. Think of x to be k-sparse, or ’almost’. We can

define Errk1(x) = mink-sparse x′∈Rn ||x− x′||1.
y = Ax ∈ Rm,m� n ,which is the ’measurement’.

`1- min : minx∗∈Rn ||x∗||1 s.t. Ax∗ = y , where x∗ is the approximation of x. This problem is in

fact a linear programming problem. We can show it in the LP form:

min
n∑

i=1

ti

s.t. Ax∗ = y,−ti ≤ x∗i ≤ ti
in unknown variables {x∗i }i, {ti}i

Minimizing the `1 norm is equivalent to finding the optimal solution to LP problem. ti will be the

absolute value of x∗i .

Linear programming problem can be solved in polynomial time nO(1). The goal today is to find faster

algorithms.

2 Completing the proof from last lecture

Definition 1. A is (k, ε)-RIP if ∀x ∈ k-sparse:

||Ax||2 = (1± ε)||x||2

We are trying to recover x, which is k-sparse. If x can not be approximated by k-sparse vectors, the

error will be sufficiently large.

Theorem 2. ∃A is (k, ε)-RIP for m = O(k log n
k )

Note that a matrix A, with a weaker bound on m, already follows from existence of OSE matrices (as

proved last lecture); existence of good OSE matrices follows by the problem on problem set 2.

Theorem 3. If A is (4k, ε)-RIP, then the x∗ from `1- min satisfies:

||x− x∗||1 ≤ C · Errk1(x)
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where C is a constant.

x∗ is the optimal solution from `1- min. ||x − x∗||1 is vector difference meansured in `1 norm. This

`1 norm is as good as whatever the best k-sparse vector can recover in `1 norm. So this is called `1/`1
guarantee.

We can use `2/`1 guarantee to get a tighter bound.

||x− x∗||2 ≤ C ·
Errk1(x)√

k

Note: `2/`1 guarantee ⇒ `1/`1 guarantee.

Definition 4. A satisfies (k, ε) - null space property if ∀η ∈ Rn, T ⊂ {n} of size k

Aη = 0⇒ ||η||1 ≤ (1 + ε)||η−T ||1
⇔ ||ηT ||1 ≤ ε · ||η−T ||1

Lemma 5. If A is ((2 + r)k, ε) - RIP ⇒ A satisfies (2k,
√

2/r · 1 + ε

1− ε
) - null space property.

For the proof of this lemma, see the link on the class website.

Lemma 6. If A satisfies (2k, ε) - null space property, for ε < 1/2, then:

||x− x∗||1 ≤ 2
1 + ε

1− ε
Errk1(x)

Proof. Let η = x− x∗, i.e. ”residual” vector. We want ||η||1 to be small.

Aη = Ax−Ax∗ = 0 since x∗ satisfies l1- min ⇒ ||ηT ||1 ≤ ε · ||η−T ||1, for T = k largest entries of x.

Since x∗ is the optimal solution of `1- min problem,

⇒ ||x∗||1 ≤ ||x||1 ⇔ ||x∗T ||1 + ||x∗−T ||1 ≤ ||xT ||1 + ||x−T ||1
where ||x∗T ||1 = ||xT − (xT − x∗T )||1 ≥ ||xT ||1 − ||ηT ||1

and ||x∗−T || = ||x−T − x∗−T − x−T ||1 ≥ ||η−T ||1 − ||x−T ||1

So ||x∗T ||1 + ||x∗−T ||1 ≤ ||xT ||1 + ||x−T ||1
⇒ ||xT ||1 − ||ηT ||1 + ||η−T ||1 − ||x−T ||1 ≤ ||xT ||1 + ||x−T ||1

Notice that ||xT ||1 is the recovered signal and it is canceled in both sides. ||x−T ||1 is Errk1(x). So we can

get

||η−T ||1 ≤ ||ηT ||1 + 2 · Errk1(x) ≤ ε · ||η−T ||1 + 2 · Errk1(x)

⇒ ||η−T ||1 ≤
2

1− ε
Errk1(x)
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Relating ||η||1 to ||η−T ||1, we get

||η||1 ≤ (1 + ε) · 2

1− ε
Errk1(x) = 2

1 + ε

1− ε
Errk1(x)

3 Iterative Hard Thresholding

Note: In the section, we adopt the notation of ⊥ for matrices and vectors as transpose symbol, mainly

because transpose T would conflict with the iteration number T .

So far, we have been approaching Compressed Sensing via `1−min, which is also refered to as ”Basis

Pursuit”. `1 − min has a time complexity of nO(1), and our hope is to reduce the time complexity to

roughlythe size of matrix A, which is O(nm).

Here we introduce the Iterative Hard Thresholding algorithm (1). The main idea of this algorithm is

to try to determine which coordinates matter when producing k-sparse vector. Note that the function

Pk(z) = arg min
z′:k−sparse∈Rn

||z − z′||1

picks the k most significant coordinates from vector z and set the values of remaining coordinates to 0.

Algorithm 1 Iterative Hard Thresholding

Require: y (= Ax), T
Ensure: xT+1, which is a k-sparse approximation of x
x1 ← 0n

for t← 1 to T do
xt+1 ← Pk(xt +A⊥(y −Axt))

end for
return xT+1

Here’s the intuition why we use Pk(z). If we define at+1 = xt + A⊥(y − Axt), we can see although

xt is guaranteed to be k-sparse (by induction), A⊥(y − Axt) could introduce nonzero values on other

coordinates. By using Pk(z) function, we can restore the k-sparsity and project at+1 to xt+1.

In a sense, we can see an analogy between IHT algorithm and projection methods in constrained

optimization. In constrained optimization problem, we start with a feasible solution and find another

solution that yields slightly better objective function value; if that solution violates the constraints, we

project it back to the allowed region defined by the constraints.

Now we proceed to proving IHT algorithm works.

Theorem 7. [Blumensath-Davies ’09]

A is (3k, ε)-RIP matrix, where ε < 1
8 . Let y = Ax+ e (e as the error term), then ∀T ≥ 1, IHT iterate

xT+1 satisfies:

||xT+1 − x||2 ≤ O(1) ·
[
2−T · ||x||2 +

Errk1(x)√
k

+ ||e||2
]
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Today we prove a simpler version of the theorem, where we assume zero error and the x is precisely

k-sparse.

Theorem 8. Following the notations from Theorem 7, suppose x ∈ Rn is exactly k-sparse, e = 0, then

||xT+1 − x||2 ≤ O(2−T ) · ||x||2

Proof.

Observation 9. Fix k-sparse vector z ∈ Rn, ||Az||22 ∈ (1±ε)||z||22, which means z⊥A⊥Az ∈ (1±ε)zT z =⇒
z⊥(A⊥A− I)z ∈ (−ε, ε) · ‖z‖2. We can see A⊥A ≈ I when operating on k-sparse vector z.

We first define rt = x− xt to be the residual, our goal is to prove ||rt||2 decreases exponentially when

t iterates from 1 to T .

We have at+1 = xt + A⊥(y − Axt) (note the second term might not be k-sparse). Intuitively,

at+1 = xt +A⊥Art
Observation 9
≈ xt + rt = x.

Define Bt = support(x) ∪ support(xt). Sicne both x and xt are k-sparse vectors, |Bt| ≤ 2k.

Let B = Bt+1 and B− = Bt.

||rt+1||2 = ||x− xt+1||2
= ||xB − xt+1

B ||2
triangle ineq
≤ ||xB − aB||2 + ||at+1

B − xt+1
B ||2

Since by definition xt+1
B = arg minxt+1:k-sparse ||at+1−xt+1||2, we have ||at+1

B −xt+1
B ||2 ≤ ||xB − a

t+1
B ||2.

Therefore ||rt+1||2 ≤ 2||xB − at+1
B ||2.

at+1
B = [xt + ATArt]B = xtB + (A⊥Art)B = xtB + A⊥BAr

t. Here we define AB to be the matrix where

all columns not in set B zeroed out while entries with columns in B have the same value as in A. Then

we can continue work on

||xB − at+1
B ||2 = ||xB − xtB −A⊥BArt||2

= ||rtB −A⊥BArt||2
= ||rtB −A⊥BABr

t
B −A⊥BArt−B||2

triangle ineq
≤ ||(I −A⊥BAB)rtB||2 + ||A⊥BArt−B||2

Observation 9
≤ ε||rtB||2 + ||A⊥BArt−B||2

= ε||rtB||2 + ||A⊥BAB−\Br
t||2

note the last equation comes from the fact that we have rt−B = rtB−\B and ArtB−\B = AB−\Br
t.

Claim 10.

||A⊥BAB−\B||2 ≤ 2ε

Not done during the lecture. Let C = B− \ B. Consider unit-norm pB, supported on B, and unit-norm

qC , supported on C. Then ||A⊥BAB−\B||2 = maxpB ,qC |pBA⊥AqC |.
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Consider the quantity ‖pB − qC‖2 = 2. Then ‖A(pB − qC)‖2 ≥ 2− 2ε by RIP property of A. At the

same time, ‖A(pB − qC)‖2 = ‖ApB‖2 + ‖AqC‖2 − 2pBA
⊥AqC ≤ 2 + 2ε − 2pbA

⊥AqC (again, by RIP).

Hence, pBA
⊥AqC ≤ 2ε and the claim follows.

Therefore we get

||rt+1
B ||2 ≤ 2||xB − at+1

B ||2
≤ 2(ε+ ||A⊥BAB−\B||2) · ||rt||2
Claim 10
≤ 6ε||rt||2

≤ 1

2
||rt||2

so

||rt||2 ≤ O(2−t) · ||r1||2 = O(2−t)||x||2

Theorem 7 and Theorem 8 tell us that the error of the k-sparse approximation xt decreases exponen-

tially with T .
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