1 Review

Given $x \in \mathbb{R}^{n}$, think of it as large as a signal of an image, and the main idea to measure it is to use the "measurement matrix" A which greatly reduces dimensions. A matches something from ndimension to m-dimension where $m \ll n$. If we want to recover the information of x using just a few measurements, we need the structure with k-sparsity. Think of x to be k-sparse, or 'almost'. We can define $\operatorname{Err}_{1}^{k}(x)=\min _{k \text {-sparse }} x^{\prime} \in \mathbb{R}^{n}\left\|x-x^{\prime}\right\|_{1}$.
$y=A x \in \mathbb{R}^{m}, m \ll n$, which is the 'measurement'.
$\ell_{1}-\min : \min _{x^{*} \in \mathbb{R}^{n}}\left\|x^{*}\right\|_{1} \quad$ s.t. $A x^{*}=y$, where x^{*} is the approximation of x. This problem is in fact a linear programming problem. We can show it in the LP form:

$$
\begin{gathered}
\min \sum_{i=1}^{n} t_{i} \\
\text { s.t. } A x^{*}=y,-t_{i} \leq x_{i}^{*} \leq t_{i}
\end{gathered}
$$

in unknown variables $\left\{x_{i}^{*}\right\}_{i},\left\{t_{i}\right\}_{i}$
Minimizing the ℓ_{1} norm is equivalent to finding the optimal solution to LP problem. t_{i} will be the absolute value of x_{i}^{*}.

Linear programming problem can be solved in polynomial time $n^{O(1)}$. The goal today is to find faster algorithms.

2 Completing the proof from last lecture

Definition 1. A is (k, ϵ)-RIP if $\forall x \in k$-sparse:

$$
\|A x\|_{2}=(1 \pm \epsilon)\|x\|_{2}
$$

We are trying to recover x , which is k-sparse. If x can not be approximated by k-sparse vectors, the error will be sufficiently large.

Theorem 2. $\exists A$ is (k, ϵ)-RIP for $m=O\left(k \log \frac{n}{k}\right)$
Note that a matrix A, with a weaker bound on m, already follows from existence of OSE matrices (as proved last lecture); existence of good OSE matrices follows by the problem on problem set 2 .

Theorem 3. If A is $(4 k, \epsilon)-R I P$, then the x^{*} from $\ell_{1}-\min$ satisfies:

$$
\left\|x-x^{*}\right\|_{1} \leq C \cdot E r r_{1}^{k}(x)
$$

where C is a constant.
x^{*} is the optimal solution from ℓ_{1}-min. $\left\|x-x^{*}\right\|_{1}$ is vector difference meansured in ℓ_{1} norm. This ℓ_{1} norm is as good as whatever the best k-sparse vector can recover in ℓ_{1} norm. So this is called ℓ_{1} / ℓ_{1} guarantee.

We can use ℓ_{2} / ℓ_{1} guarantee to get a tighter bound.

$$
\left\|x-x^{*}\right\|_{2} \leq C \cdot \frac{E r r_{1}^{k}(x)}{\sqrt{k}}
$$

Note: ℓ_{2} / ℓ_{1} guarantee $\Rightarrow \ell_{1} / \ell_{1}$ guarantee.
Definition 4. A satisfies (k, ϵ) - null space property if $\forall \eta \in \mathbb{R}^{n}, T \subset\{n\}$ of size k

$$
\begin{aligned}
A \eta=0 \Rightarrow & \|\eta\|_{1} \leq(1+\epsilon)\left\|\eta_{-T}\right\|_{1} \\
& \Leftrightarrow\left\|\eta_{T}\right\|_{1} \leq \epsilon \cdot\left\|\eta_{-T}\right\|_{1}
\end{aligned}
$$

Lemma 5. If A is $((2+r) k, \epsilon)-R I P \Rightarrow A$ satisfies $\left(2 k, \sqrt{2 / r} \cdot \frac{1+\epsilon}{1-\epsilon}\right)$ - null space property.
For the proof of this lemma, see the link on the class website.
Lemma 6. If A satisfies $(2 k, \epsilon)$ - null space property, for $\epsilon<1 / 2$, then:

$$
\left\|x-x^{*}\right\|_{1} \leq 2 \frac{1+\epsilon}{1-\epsilon} E r r_{1}^{k}(x)
$$

Proof. Let $\eta=x-x^{*}$, i.e. "residual" vector. We want $\|\eta\|_{1}$ to be small.
$A \eta=A x-A x^{*}=0$ since x^{*} satisfies $l_{1}-\min \Rightarrow\left\|\eta_{T}\right\|_{1} \leq \epsilon \cdot\left\|\eta_{-T}\right\|_{1}$, for $T=k$ largest entries of x.
Since x^{*} is the optimal solution of ℓ_{1} - min problem,

$$
\begin{array}{r}
\Rightarrow\left\|x^{*}\right\|_{1} \leq\|x\|_{1} \Leftrightarrow\left\|x_{T}^{*}\right\|_{1}+\left\|x_{-T}^{*}\right\|_{1} \leq\left\|x_{T}\right\|_{1}+\left\|x_{-T}\right\|_{1} \\
\text { where }\left\|x_{T}^{*}\right\|_{1}=\left\|x_{T}-\left(x_{T}-x_{T}^{*}\right)\right\|_{1} \geq\left\|x_{T}\right\|_{1}-\left\|\eta_{T}\right\|_{1} \\
\text { and }\left\|x_{-T}^{*}\right\|=\left\|x_{-T}-x_{-T}^{*}-x_{-T}\right\|_{1} \geq\left\|\eta_{-T}\right\|_{1}-\left\|x_{-T}\right\|_{1} \\
\qquad \text { So }\left\|x_{T}^{*}\right\|_{1}+\left\|x_{-T}^{*}\right\|_{1} \leq\left\|x_{T}\right\|_{1}+\left\|x_{-T}\right\|_{1} \\
\Rightarrow\left\|x_{T}\right\|_{1}-\left\|\eta_{T}\right\|_{1}+\left\|\eta_{-T}\right\|_{1}-\left\|x_{-T}\right\|_{1} \leq\left\|x_{T}\right\|_{1}+\left\|x_{-T}\right\|_{1}
\end{array}
$$

Notice that $\left\|x_{T}\right\|_{1}$ is the recovered signal and it is canceled in both sides. $\left\|x_{-T}\right\|_{1}$ is $E r r_{1}^{k}(x)$. So we can get

$$
\begin{aligned}
& \left\|\eta_{-T}\right\|_{1} \leq\left\|\eta_{T}\right\|_{1}+2 \cdot \operatorname{Err}_{1}^{k}(x) \leq \epsilon \cdot\left\|\eta_{-T}\right\|_{1}+2 \cdot \operatorname{Err}_{1}^{k}(x) \\
& \Rightarrow\left\|\eta_{-T}\right\|_{1} \leq \frac{2}{1-\epsilon} \operatorname{Err}_{1}^{k}(x)
\end{aligned}
$$

Relating $\|\eta\|_{1}$ to $\left\|\eta_{-T}\right\|_{1}$, we get

$$
\|\eta\|_{1} \leq(1+\epsilon) \cdot \frac{2}{1-\epsilon} \operatorname{Err}_{1}^{k}(x)=2 \frac{1+\epsilon}{1-\epsilon} \operatorname{Err}_{1}^{k}(x)
$$

3 Iterative Hard Thresholding

Note: In the section, we adopt the notation of \perp for matrices and vectors as transpose symbol, mainly because transpose T would conflict with the iteration number T.

So far, we have been approaching Compressed Sensing via $\ell_{1}-$ min, which is also refered to as "Basis Pursuit". $\ell_{1}-\min$ has a time complexity of $n^{O(1)}$, and our hope is to reduce the time complexity to roughlythe size of matrix A, which is $O(n m)$.

Here we introduce the Iterative Hard Thresholding algorithm (1). The main idea of this algorithm is to try to determine which coordinates matter when producing k -sparse vector. Note that the function

$$
P_{k}(z)=\underset{z^{\prime}: k-\text { sparse } \in \mathbb{R}^{n}}{\arg \min }\left\|z-z^{\prime}\right\|_{1}
$$

picks the k most significant coordinates from vector z and set the values of remaining coordinates to 0 .

```
Algorithm 1 Iterative Hard Thresholding
Require: \(y(=A x), T\)
Ensure: \(x^{T+1}\), which is a \(k\)-sparse approximation of \(x\)
    \(x^{1} \leftarrow 0^{n}\)
    for \(t \leftarrow 1\) to \(T\) do
        \(x^{t+1} \leftarrow P_{k}\left(x^{t}+A^{\perp}\left(y-A x^{t}\right)\right)\)
    end for
    return \(x^{T+1}\)
```

Here's the intuition why we use $P_{k}(z)$. If we define $a^{t+1}=x^{t}+A^{\perp}\left(y-A x^{t}\right)$, we can see although x^{t} is guaranteed to be k-sparse (by induction), $A^{\perp}\left(y-A x^{t}\right)$ could introduce nonzero values on other coordinates. By using $P_{k}(z)$ function, we can restore the k-sparsity and project a^{t+1} to x^{t+1}.

In a sense, we can see an analogy between IHT algorithm and projection methods in constrained optimization. In constrained optimization problem, we start with a feasible solution and find another solution that yields slightly better objective function value; if that solution violates the constraints, we project it back to the allowed region defined by the constraints.

Now we proceed to proving IHT algorithm works.
Theorem 7. [Blumensath-Davies '09]
A is $(3 k, \epsilon)$-RIP matrix, where $\epsilon<\frac{1}{8}$. Let $y=A x+e$ (e as the error term), then $\forall T \geq 1$, IHT iterate x^{T+1} satisfies:

$$
\left\|x^{T+1}-x\right\|_{2} \leq O(1) \cdot\left[2^{-T} \cdot\|x\|_{2}+\frac{E r r_{1}^{k}(x)}{\sqrt{k}}+\|e\|_{2}\right]
$$

Today we prove a simpler version of the theorem, where we assume zero error and the x is precisely k-sparse.

Theorem 8. Following the notations from Theorem 7, suppose $x \in \mathbb{R}^{n}$ is exactly k-sparse, $e=0$, then

$$
\left\|x^{T+1}-x\right\|_{2} \leq O\left(2^{-T}\right) \cdot\|x\|_{2}
$$

Proof.
Observation 9. Fix k-sparse vector $z \in \mathbb{R}^{n},\|A z\|_{2}^{2} \in(1 \pm \epsilon)\|z\|_{2}^{2}$, which means $z^{\perp} A^{\perp} A z \in(1 \pm \epsilon) z^{T} z \Longrightarrow$ $z^{\perp}\left(A^{\perp} A-I\right) z \in(-\epsilon, \epsilon) \cdot\|z\|^{2}$. We can see $A^{\perp} A \approx I$ when operating on k-sparse vector z.

We first define $r^{t}=x-x^{t}$ to be the residual, our goal is to prove $\left\|r^{t}\right\|_{2}$ decreases exponentially when t iterates from 1 to T.

We have $a^{t+1}=x^{t}+A^{\perp}\left(y-A x^{t}\right)$ (note the second term might not be k-sparse). Intuitively, $a^{t+1}=x^{t}+A^{\perp} A r^{t} \stackrel{\text { Observation } 9}{\approx} x^{t}+r^{t}=x$.

Define $B^{t}=\operatorname{support}(x) \cup \operatorname{support}\left(x^{t}\right)$. Sicne both x and x^{t} are k-sparse vectors, $\left|B^{t}\right| \leq 2 k$.
Let $B=B^{t+1}$ and $B^{-}=B^{t}$.

$$
\begin{aligned}
\left\|r^{t+1}\right\|_{2} & =\left\|x-x^{t+1}\right\|_{2} \\
& =\left\|x_{B}-x_{B}^{t+1}\right\|_{2} \\
& \stackrel{\text { triangle ineq }}{\leq}\left\|x_{B}-a_{B}\right\|_{2}+\left\|a_{B}^{t+1}-x_{B}^{t+1}\right\|_{2}
\end{aligned}
$$

Since by definition $x_{B}^{t+1}=\arg \min _{x^{t+1}: k \text {-sparse }}\left\|a^{t+1}-x^{t+1}\right\|_{2}$, we have $\left\|a_{B}^{t+1}-x_{B}^{t+1}\right\|_{2} \leq\left\|x_{B}-a_{B}^{t+1}\right\|_{2}$. Therefore $\left\|r^{t+1}\right\|_{2} \leq 2\left\|x_{B}-a_{B}^{t+1}\right\|_{2}$.
$a_{B}^{t+1}=\left[x^{t}+A^{T} A r^{t}\right]_{B}=x_{B}^{t}+\left(A^{\perp} A r^{t}\right)_{B}=x_{B}^{t}+A_{B}^{\perp} A r^{t}$. Here we define A_{B} to be the matrix where all columns not in set B zeroed out while entries with columns in B have the same value as in A. Then we can continue work on

$$
\begin{aligned}
\left\|x_{B}-a_{B}^{t+1}\right\|_{2} & =\left\|x_{B}-x_{B}^{t}-A_{B}^{\perp} A r^{t}\right\|_{2} \\
& =\left\|r_{B}^{t}-A_{B}^{\perp} A r^{t}\right\|_{2} \\
& =\left\|r_{B}^{t}-A_{B}^{\perp} A_{B} r_{B}^{t}-A_{B}^{\perp} A r_{-B}^{t}\right\|_{2} \\
& \stackrel{\text { triangle ineq }}{\leq}\left\|\left(I-A_{B}^{\perp} A_{B}\right) r_{B}^{t}\right\|_{2}+\left\|A_{B}^{\perp} A r_{-B}^{t}\right\|_{2} \\
& \stackrel{\text { Observation 9 }}{\leq} \epsilon\left\|r_{B}^{t}\right\|_{2}+\left\|A_{B}^{\perp} A r_{-B}^{t}\right\|_{2} \\
& =\epsilon\left\|r_{B}^{t}\right\|_{2}+\left\|A_{B}^{\perp} A_{B^{-} \backslash B} r^{t}\right\|_{2}
\end{aligned}
$$

note the last equation comes from the fact that we have $r_{-B}^{t}=r_{B^{-} \backslash B}^{t}$ and $A r_{B^{-} \backslash B}^{t}=A_{B^{-} \backslash B} r^{t}$.
Claim 10.

$$
\left\|A_{B}^{\perp} A_{B^{-} \backslash B}\right\|_{2} \leq 2 \epsilon
$$

Not done during the lecture. Let $C=B^{-} \backslash B$. Consider unit-norm p_{B}, supported on B, and unit-norm q_{C}, supported on C. Then $\left\|A_{B}^{\perp} A_{B^{-} \backslash B}\right\|_{2}=\max _{p_{B}, q_{C}}\left|p_{B} A^{\perp} A q_{C}\right|$.

Consider the quantity $\left\|p_{B}-q_{C}\right\|^{2}=2$. Then $\left\|A\left(p_{B}-q_{C}\right)\right\|^{2} \geq 2-2 \epsilon$ by RIP property of A. At the same time, $\left\|A\left(p_{B}-q_{C}\right)\right\|^{2}=\left\|A p_{B}\right\|^{2}+\left\|A q_{C}\right\|^{2}-2 p_{B} A^{\perp} A q_{C} \leq 2+2 \epsilon-2 p_{b} A^{\perp} A q_{C}$ (again, by RIP). Hence, $p_{B} A^{\perp} A q_{C} \leq 2 \epsilon$ and the claim follows.

Therefore we get

$$
\begin{aligned}
\left\|r_{B}^{t+1}\right\|_{2} & \leq 2\left\|x_{B}-a_{B}^{t+1}\right\|_{2} \\
& \leq 2\left(\epsilon+\left\|A_{B}^{\perp} A_{B^{-} \backslash B}\right\|_{2}\right) \cdot\left\|r^{t}\right\|_{2} \\
& \underset{\text { Claim } 10}{ }{ }^{10} 6 \epsilon\left\|r^{t}\right\|_{2} \\
& \leq \frac{1}{2}\left\|r^{t}\right\|_{2}
\end{aligned}
$$

so

$$
\left\|r^{t}\right\|_{2} \leq O\left(2^{-t}\right) \cdot\left\|r^{1}\right\|_{2}=O\left(2^{-t}\right)\|x\|_{2}
$$

Theorem 7 and Theorem 8 tell us that the error of the k-sparse approximation x^{t} decreases exponentially with T.

