
COMS E6998-9: Algorithms for Massive Data (Spring’19) Oct 1, 2025

Lecture 9: c-ANNS via Locality Sensitive Hashing

Instructor: Alex Andoni Scribes: Alessandro Castillo

1 Review of c-ANNS

1.1 Definition

Given a point set P ⊂ Rd, with n = |P |, and a query q ∈ Rd, the (c, r)-Approximate Nearest Neighbor

Search problem is:

If there exists p∗ ∈ P such that ‖q − p∗‖ ≤ r, then we must return (with probability at least

90%) some p ∈ P with ‖q − p‖ ≤ c r, where c > 1.

1.jpeg

Figure 1: Geometric picture of a c-approximate neighbor: if p∗ lies inside the r-ball around q, we can
return any p in the larger cr-ball.

2 Discussion of the 90% success guarantee

2.1 Algorithm 1: Näıve scan with dimension reduction

A näıve query needs O(nd) time: for each of the n points we compute a d-dimensional distance.

When n is huge (e.g. n ≈ 109) and d ≈ 103, this is too expensive.

A common speed-up is to apply a random Johnson–Lindenstrauss (JL) projection ρ : Rd → Rk

with

k = O

(
log(1/δ)

ε2

)
,

to obtain a (1 + ε)-approximate embedding with failure probability δ.

We preprocess P ′ = {ρ(p) | p ∈ P} and for a query q we compare ρ(q) to all ρ(p).

1

Space:

O(nd) +O(dk),

where the second term stores the projection matrix (or sketch).

Query time:

O(dk) +O(nk) = O

(
n

log(1/ε)

ε2

)
(for d� k).

The lecture emphasized that dimension reduction lowers the per-distance cost, but does not reduce the

n-dependence of query time.

3 Towards Faster Query Time

We want to reduce the dependence on n, even if that means increasing preprocessing.

Two key ideas:

1. Allow the projection ρ to depend on the data P (e.g. data-dependent quantization).

2. Use hashing-based methods (esp. Locality-Sensitive Hashing (LSH)).

3.1 Hashing-based Approach

A hash function h : Rd → U maps points to “buckets” so that nearby points collide with higher probability.

Definition 1 (LSH family). A family H of hash functions is (r, cr, p1, p2)-LSH if for all points p, q:

Pr
h∼H

[h(p) = h(q)] =

≥ p1, if ‖p− q‖ ≤ r,

≤ p2, if ‖p− q‖ ≥ c r.

We require p1 > p2 but can never achieve p1 = 1, p2 = 0.

2.jpeg

Figure 2: Nearby points tend to hash into the same bucket more often than distant points.

3.2 Classic Indyk–Motwani (1998) Theorem

If such an LSH family exists, one can solve (c, r)-ANNS with

space = O(nd) +O(n1+ρ), query time = O(nρ),

2

where

ρ =
log(1/p1)

log(1/p2)
.

3.3 Proof Sketch

Pick an integer k > 0 and define

g(p) = (h1(p), h2(p), . . . , hk(p)), hi ∈ H i.i.d.

Then g behaves like an LSH family with parameters (r, cr, pk1, p
k
2).

4.jpeg

Figure 3: Increasing k lowers collision probability for far points (curve drops) but also for near points.

Base algorithm:

1. Build a single hash table: store each data point p in the bucket indexed by g(p).

2. Given a query q, compute g(q) and examine only the bucket g(q), checking all its occupants for a

valid neighbor.

Analysis:

E[#far points in g(q)] ≤ n pk2.

Success probability with a single table is at least pk1.

Boosting success: Use L = Θ(1/pk1) independent tables. Success probability ≥ 0.9.

Choosing k: Balance the bucket size n pk2 against success probability. Optimal choice (up to constants):

pk2 ≈
1

n
=⇒ k ≈ log n

log(1/p2)
.

Query time:

Tq = L
(
k + E[#candidates]

)
= Õ(nρ), ρ =

log(1/p1)

log(1/p2)
.

3

Your original derivation around the last few lines had algebraic slips; I have simplified to the standard

textbook result.

4 Remarks

• The key idea is that hashing eliminates the need to scan all n points, leaving only about nρ candi-

dates.

• In practice, many refinements exist (data-dependent LSH, product quantization, multi-probe, etc.)

that improve constants or adapt to real distributions.

• The (1+ε) vs. c approximation factors, the choice of distance metric, and how to implement h (e.g.

random hyperplanes for cosine) are all practical concerns.

4

