
COMS E6998-9: Algorithms for Massive Data (Fall’25) Sep 29, 2025

Lecture 8: Compressed Sensing Extensions, NNS

Instructor: Alex Andoni Scribes: Gillian Simpson

1 Introduction

In the past few lectures, we have covered the fundamentals of compressed sensing. In this lecture, we

consider faster compressed sensing techniques and their applications to machine learning.

2 Problem: Sparse Fourier Transform

Assume we are given measurements y = Ax, where x ∈ Rn is a signal of interest, and the goal is to

recover x efficiently under the assumption that its Fourier transform x̂ = Fx is k-sparse.

Let F be the discrete Fourier transform matrix, defined as:

Fij =
1√
n
e−

2πi
n

ij , where n = 2ω

Theorem 1 (Candes, Tao ’06). Let S be a subset of m indices, and define A = (F−1)S, i.e., a submatrix

of the inverse Fourier transform. Then A is (O(k), 1/4)-RIP, provided |S| = O(k log4 n).

Let a ∈ Rn be something of interest (for us to learn), and suppose that â = Fa is k-sparse (or close

to it). Then we can think of x = â as the signal we want to recover. The measurement becomes:

y = Ax = (F−1â)S = aS

The theorem guarantees that we can recover x∗ ≈ x from y.

This implies that if the Fourier transform of a signal is k-sparse, then it can be approximately recovered

from a small number of samples |S| into a (i.e., never even touching most of entries of a). However, earlier

approaches still required total time > n. The following result improves on this:

Note: The dependence log n on n typically arises due to noise. In the noiseless setting, the recovery

may not require such dependence.

Theorem 2 (Hassanieh, Indyk, Katabi, Price ’12). We can recover a k-sparse â from m = O(k log n ·
log(n/k)) samples in O(m) time.

Here, recovery means computing an approximation â∗ such that:

‖â∗ − â‖2 ≤ O(1) · min
â′ is k-sparse

‖â′ − â‖2

In earlier settings, the subset S of sampled rows was chosen uniformly at random. In this result, the

sampling strategy is more structured.

1

2.1 Application to Machine Learning

Theorem 3 (Bora, Jalal, Price, Dimakis ’17). Let G : Rk → Rn be a generative model represented by a

depth-d neural network with nO(1) hidden units and ReLU activation function σ. Then, even if x = G(z)

is not k-sparse, it is possible to recover x approximately from compressed measurements.

A visual representation of G and σ:

Here, G maps a low-dimensional vector z to a high-dimensional output x (e.g. an image). Suppose

we observe y = Ax+ η with A as a random Gaussian matrix of size m× n, where m = O(kd log n).

Define the recovery as:

ẑ = arg min
z
‖y −AG(z)‖2

Then the recovered image G(ẑ) satisfies:

‖G(ẑ)−G(z)‖2 ≤ 6 ·min
z′
‖G(z′)−G(z)‖2 + 3‖η‖2 + 2ε

This provides a robust approximation to the original signal/image x = G(z).

Example 4 (Image In-Painting). Suppose parts of an image are missing (shown in red):

2

Let G be a generative network for images. Suppose A selects the unmasked (non-red) pixel locations, so

y = AG(z). A is no longer Gaussian, so we cannot directly apply the previous theorem. However, it

motivates us to apply the above algorithm (heuristically) to recover ẑ as follows:

ẑ = arg min
z′
‖y −AG(z′)‖2

The reconstructed image is then G(ẑ).

3 Problem: Nearest Neighbor Search (a.k.a. Vector Search)

Given a dataset P ⊆ Rd of n points and a query q ∈ Rd, the goal is to return:

p∗ = arg min
p∈P
‖q − p‖2

• Naive approach: O(nd) query time

• Goal: Sublinear query time � n and close to O(n) space

Theorem 5. It is impossible to achieve query time n1−ε, space and preprocessing time n2 unless the

Strong Exponential-Time Hypothesis is false.

Note: Strong Exponential-Time Hypothesis is a stronger version of P 6= NP , which asserts that

certain problems cannot be solved in even exponential time.

We now consider an approximate variant. Fix approximation factor c > 1 and threshold radius r > 0.

Preprocess P such that given query q:

• If ∃p∗ ∈ P with ‖q − p∗‖2 ≤ r, return p′ such that ‖q − p′‖2 ≤ c · r

• If no such p∗ exists, the algorithm may return nothing.

3

Interpretation:

• Inside the smaller circle: definite yes (must return a near neighbor)

• Between the two circles: maybe

• Outside the larger circle: definite no

Often, the approximate algorithm can be interpreted as filtering algorithms. In partiuclar, most

algorithms discussed can be modified such that we return a list L ⊆ P such that:

• If ‖q − p‖2 ≤ r, then Pr[p ∈ L] ≥ 0.9

• If p ∈ L, then ‖q − p‖2 ≤ cr

Thus, we have a probabilistic guarantee:

Pr[return p′] ≥ 0.9

Theorem 6. The c-Approximate Nearest Neighbor Search can be reduced to the c-Approximate Near

Neighbor Search with only O(log n) overhead in space and time.

4

