
COMS E6998: Algorithms for Massive Data (Spring’25) Sep 24, 2025

Lecture 7: Iterative Hard Thresholding

Instructor: Alex Andoni Scribe: Xian Jiang

1 Review

Recall that in compressed sensing we have a vector x ∈ Rn that is approximately (at most) k sparse, in

the sense that the error

Errk1(x) , min
x′ is k-sparse

‖x− x′‖1

is small. A is an m × n matrix of measurements A. Given A and y = Ax, we can recover a vector x?

from y = Ax such that

‖x− x?‖2 ≤ O(1) · min
x′ is k-sparse

‖x− x′‖2 , Errk2(x)

We can do x? = L1(y), using the following L1 algorithm.

L1 algorithm:

Minimize ‖x∗‖1

such that Ax∗ = y

As long as A RIP for some parameters [Donoho; Candès-Romberg-Tao], it would be sufficient to achieve

guarantees of the type eq. (1) with norm 1 for this algorithm. The L1 algorithm runs in polynomial time

since it is a linear program. Is there a faster algorithm with similar guarantees in less run time?

2 Iterative Hard Thresholding (IHT)

The Iterative Hard Thresholding algorithm allows us to achieve similar guarantees with less run time.

Here we give a brief overview of the algorithm.

Algorithm 1 Iterative Hard Thresholding (IHT).

1: function IHT(A, y(= Ax), k, T)
2: x1 ← (0, ..., 0)
3: for t = 1 · · ·T do
4: xt+1 = Pk

(
xt +A>(y −Axt)

)
5: end for
6: return xT+1

7: end function

1

Explanation of algorithm: The previous guess xt is probably not good enough. If we do not get y

from Axt, then we want to subtract by the amount that does not give the measurement (y − Axt), but

this is in the wrong space (it is in the space of measurements). We project it back to the space of signals

using A>, which is n × m. Since we want our xt+1 to be k-sparse, we can use a projection operator

Pk : Rn → Rn that takes the vector and leaves only k largest entries.

Theorem 1 (Blumensath, Davies ’09). If A is (3k, ε = 1
8)-RIP, suppose that y = Ax + e, where e is

some error (we cannot use the previous result because it requires exact y = Ax), then xT+1 satisfies

‖xT+1 − x‖2 ≤ O(1)

[
2−T ‖x‖2 +

Errk1(x)√
k

+ ‖e‖2
]
.

The guarantee above is called an L2/L1-guarantee, and it is stronger than the L1/L1-guarantee from

the previous lecture.

The error that we get decreases exponentially with the number of iterations.

We will prove a slightly weaker theorem in class:

Theorem 2. Let x ∈ Rn be k-sparse and A is (3k, ε = 1
12)-RIP, then suppose that y = Ax, then

‖xT+1 − x‖2 ≤ 2−T ‖x‖2,

where xT+1 is the output of the IHT algorithm.

Intuition: First observe that ‖Axt‖22 ≈ ‖xt‖22 ∈ (1± ε)‖xt‖22 because A is (3k, ε = 1
12)-RIP. Formally,

we have

(xt)>A>Axt ∈ (1± ε)(xt)>Ixt

which implies

|(xt)>(I −A>Axt)| ≤ ε‖xt‖22.

If A is a very good RIP matrix, then as ε→ 0, A>A ≈ I on vector xt ⇒ A>Axt = xt.

xt+1 = Pk(x
t +A>(Ax−Axt)) = Pk(x

t +A>A(x− xt)) ≈ Pk(xt + (x− xt)) = x,

Proof. We define rt := x − xt, at+1 := xt + A>(y − Axt). We will show that ‖rt+1‖2 ≤ 1
2‖r

t‖2, which

suffices to prove our theorem. The intuition of the proof is that we can write

at+1 = xt +A>(y −Axt) = xt +A>A(x− xt),

and this is an approximation of x when A>A ≈ I (in which we would obtain ≈ xt + I(x− xt) = x).

Let Bt := supp(x) ∪ supp(xt) ⊇ supp(rt) (with |Bt| ≤ 2k). Denote B = Bt+1 = supp(x) ∪ supp(xt+1),

B− := Bt = supp(x) ∪ supp(xt). We now have

‖rt+1‖2 = ‖x− xt+1‖2
= ‖xB − xt+1

B ‖2
= ‖xB − at+1

B + at+1
B − xt+1

B ‖2
≤ ‖xB − at+1

B ‖2 + ‖at+1
B − xB‖2

= 2‖xB − at+1
B ‖2.

2

Let AB = A with columns not in B zeroed out, we have

at+1
B = (xtB +A>Art)B = xtB +A>BAr

t,

which implies

‖rt+1‖2 ≤ 2‖xB − xt −A>BArt‖2
= 2‖rtB −A>BArt‖2
≤ 2‖rtB −A>BABrtB‖2 + 2‖A>BArtBt\B‖2

Claim 3. ‖rtB −A>BABrtB‖2 ≤ ε− ‖rtB‖2

Proof. ∀ 2k-sparse z(:= rtB),

(reason we need 3k RIP is because we require supp(x), supp(xt), and supp(xt+1))

‖zB −A>BABzB‖2 = ‖(IB −A>BAB)− zB‖2
≤ ‖IB −A>BA‖2 · ‖zB‖2

≤ max
u∈Rn, ‖u‖=1

[
u>B(IB −A>BAB)uB

]
· ‖zB‖2

≤ ε · ‖uB‖2 · ‖zB‖2 = ε · ‖zB‖2

where the last inequality follows from the RIPness of A.

Claim 4.

‖A>BABt\B · rBt\B‖2 ≤ 2ε‖rBt\B‖.

Overall,

‖rt+1‖2 ≤ 2(ε‖rtB‖2 + 2ε‖rtBt\B‖2) ≤ 6ε‖rt‖2 ≤ 1
2‖r

t‖2,

assuming ε ≤ 1
12 .

After t iterations:

‖rt+1‖2 ≤ 2−t‖r1‖2 = 2−t‖x‖2.

2.1 Runtime

Runtime of this algorithm is T · O(nm) = O(Tnk · lg n), where T = lg ‖x‖2δ if we want ‖rT+1‖2 ≤ δ.

Can we get RT � n (sublinear regime)? With our current approach, this is not possible, but with a

structured A, this is possible in time k · (log n)O(1) (for slightly different recovery guarantees).

3

