COMS E6998: Algorithms for Massive Data (Spring’25) Sep 24, 2025

Lecture 7: Iterative Hard Thresholding

Instructor: Alex Andoni Scribe: Xian Jiang

1 Review

Recall that in compressed sensing we have a vector z € R™ that is approximately (at most) k sparse, in
the sense that the error
Errf(z) 2  min |z —2/|);
z' is k-sparse
is small. A is an m X n matrix of measurements A. Given A and y = Az, we can recover a vector x*
from y = Ax such that

lo—a*l <O(M)- | min |l —a'|lz & Brrf(a)
x’ is k-sparse

We can do * = Li(y), using the following L; algorithm.

L, algorithm:

Minimize ||z*||1

such that Az* =y

As long as A RIP for some parameters [Donoho; Candés-Romberg-Tao], it would be sufficient to achieve
guarantees of the type eq. (1) with norm 1 for this algorithm. The L; algorithm runs in polynomial time
since it is a linear program. Is there a faster algorithm with similar guarantees in less run time?

2 Iterative Hard Thresholding (IHT)

The Iterative Hard Thresholding algorithm allows us to achieve similar guarantees with less run time.
Here we give a brief overview of the algorithm.

Algorithm 1 Iterative Hard Thresholding (IHT).

1. function THT (A, y(= Ax),k,T)

2 z! <+ (0,...,0)

3 fort=1---T do

4: gl = Py (2l + AT (y — Az?))
5 end for

6 return z 1

7: end function




Explanation of algorithm: The previous guess z! is probably not good enough. If we do not get y
from Ax!, then we want to subtract by the amount that does not give the measurement (y — Ax?'), but

this is in the wrong space (it is in the space of measurements). We project it back to the space of signals

t+1

using A", which is n x m. Since we want our x to be k-sparse, we can use a projection operator

P : R" — R, that takes the vector and leaves only k largest entries.

Theorem 1 (Blumensath, Davies ’09). If A is (3k,e = %)—RIP, suppose that y = Ax + e, where e is

T+1

some error (we cannot use the previous result because it requires exact y = Ax), then x satisfies

_ Err®(z
17— fly < O(1) |27 T alls + ZHE) e

Vi

The guarantee above is called an L2/L1-guarantee, and it is stronger than the L1/L1-guarantee from
the previous lecture.

The error that we get decreases exponentially with the number of iterations.

We will prove a slightly weaker theorem in class:

Theorem 2. Let x € R™ be k-sparse and A is (3k,e = %) RIP, then suppose that y = Ax, then
& = zlla < 27|22,

where 71 is the output of the IHT algorithm.

Intuition: First observe that |Az'(|3 ~ ||2'|3 € (1 £ ¢)||z"||3 because A is (3k,e = 75)-RIP. Formally,
we have

() TAT Azt € (1 &) ()T 12!

which implies
(@) (I — AT Az")| < e|2"|3.

If Ais a very good RIP matrix, then as € — 0, A" A ~ I on vector z! = AT Azt = zt.

= P(a' + AT (Az — Az')) = Po(a' + AT A(z — o)) = Pp(a! + (z — 2%)) = =,
Proof. We define r! := z — zf, o' := 2! + AT (y — Az®). We will show that [r'™1|s < 3|2, which
suffices to prove our theorem. The intuition of the proof is that we can write

atl =gt + AT(y — Azt = 2t + AT A(x — 2t),

and this is an approximation of  when AT A ~ I (in which we would obtain ~ zt + I(z — 2t) = ).
Let B! := supp(z) Usupp(x!) 2 supp(r?) (with |B?| < 2k). Denote B = B! = supp(x) U supp(z't!),
B~ := B! = supp(z) U supp(x!). We now have

[P |2 = [z — 2"
= |lzp — 25"l
_ ”xB . at-i—l + at+1 t—i—lH
<l|lzg — a2 + ol — 2l
=2|lzp — a2



Let Ap = A with columns not in B zeroed out, we have
adt = (2l + AT A g = 2y + AL ArY
which implies

I 2 < 2l|zp — 2* — ApArt]s
= 2||rl — ApArt||2

< 2|y — ApAprilla + 2| Ap Arge pll2

Claim 3. ||rl, — AL Aprhlls <e—|rh]l2

Proof. ¥ 2k-sparse z(:= %),
(reason we need 3k RIP is because we require supp(z), supp(x?), and supp(x'™1))

lzp — ApApzgl2 = ||(Is — ApAB) — 252

15 — ApAllz - l|25]12

|ubls — AfAp)uz| - |21l

IN

< max
u€R™, |lul|=1

<e-llusllz-llzBll2 = £ [|lzBl2
where the last inequality follows from the RIPness of A. 0

Claim 4.
|ApApnp - Tensll2 < 2¢|rpn 5.
Overall,
7 l2 < 2(ellrille + 2ellrgn pll2) < 6ellrll2 < 5172,

assuming € < %
After ¢ iterations:

I 2 < 271t fl2 = 272l

2.1 Runtime

Runtime of this algorithm is 7" - O(nm) = O(Tnk - 1gn), where T' = g % if we want ||r1 Yy < 4.
Can we get RT < n (sublinear regime)? With our current approach, this is not possible, but with a
structured A, this is possible in time k - (logn)?() (for slightly different recovery guarantees).



