COMS E6998-9: Algorithms for Massive Data (Fall’25) Sep 22, 2025
Lecture 6: Compressed Sensing

Instructor: Alex Andoni Scribe: Dev Goyal

1 Review

Definition 1. A mapping ¢ : R™ — R™ is called a (k,0) Oblivious Subspace Embedding (OSE) if for any
k-dimensional subspace U C R"™:
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Definition 2. A matrizx A € R™*" is said to satisfy the (k,e )Restricted Isometry Property (RIP) if for

all k-sparse vectors z € R™:
[Az[l2 € (1 +€)[[z]l2

2 Guarantees of OSE and RIP

We will start by showing that OSE implies RIP. So we want to prove the following theorem:

Theorem 3. if A is an (k,?Tl))—OSE, then A satisfies (k,e)-RIP.
k

Proof. We want to prove:
|Az||

2]l

Pry [VZ’ € Sk : e (1 :te)] >0.9

where S}, is the set of all k-sparse vectors in R™.
We will write S; as a union of subspaces:

Sy = U Ur

TCln],|T|=k

where Up ={z € R" : z; =0 for i ¢ T}
Note that Ur is a k-dimensional subspace of R™ and the number of such subspaces is (Z)



By the definition of OSE and using union bound, we have:
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Corollary 4. For fized € > 0, if A is a scaled Gaussian m X n matriz with m = O(k + log %) then there
erists A that satisfies (k.e)-RIP m = O(log (7)) < O(log ()¥) = O(k - log %)
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3 proving the L1 theorem

Recall the Problem setup from last lecture:

We are given an input x and measurements y = Az and we want to recover x from y using L1 mini-
mization.

Li(y) = argmin|z[; = z*
Az=y

Recall that we define the distance from k sparsity as:

Ertf(z) = comin lz—2'[y
! is k-sparse

We want to prove the following theorem:
Theorem 5. if A is (4k, ¢)-RIP for a small enough ¢, then ||z* —z| < O(1) - Err§(z)
The proof will rely on some intermediate definitions and lemmas.
Definition 6. We say that A satisfies (k,e) - nullspace property if VI C [n],|T| < k,¥n € R" s.t. An =0
el < el = Il < (L+ ) -l

We will also use the following two lemmas to prove the above theorem.
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Lemma 7. FixVr € N. If A is (24 r)k,€)-RIP for a small enough €, then A satisfies (2k, \/g
nullspace property.



Lemma 8. if A satisfies (2k,e)-nullspace property for a small enough €, then for any x, the output of L1

minimization x* satisfies:
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Errff (z)

We will first prove Lemma 8.

In the proof of the lemma, k-RIPness will be actually good enough. But it’s easier to see why 2k is
useful: consider k-sparse x and a k-sparse potential solution x* such that Ax = Az* = y. Then, then the
nullspace property of n = z — z* (a 2k-sparse vectors) immediately implies that n = 0, and hence x = z*.

Proof of Lemma 8:
let n 22" —ox = An = Az* — Az = y —y = 0 Let T be the indices of the k largest entries of x in
absolute value.

By the definition of L1 minimization, we have:

[zl < [lzlls = ezl + 2ol < ezl + lz—rlh

by triangle inequality, we have:
lezlls = ezl = 27 — 22l = 2zl = [Inrl:

l2Zplly = (-7l = llz—7l:

So we have:
lzrllr = Izl + [In-rll = lo—7|ls < 27l + [[z—7ll1

= [In-rll < llnrlh + 2[lz-rl:

By the nullspace property, we have:

[n-7ll1(1 =€) <2[|z_71

2-(1+¢)
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Where the last step follows from the definition of Errf(z).
This completes the proof of Lemma 8.

We will now prove Lemma 7.
Proof of Lemma 7:
Let M £ rk, define Ty = T, Ty = indices of the largest M entries of 1_7, T = indices of the next largest
M entries of n_r and so on up to Ts.

define o = N1y, = N1y ---5MNs = NTy-
We can write n =no+m + ...+ 7s.
Since An = 0, we have:

Alno+m) = —Am2 + ... +ns)



Taking norms on both sides, we have:

[Ano +mlla = [[A(nz + - + ns)ll2
By triangle inequality (and since 79 and 7; are non-zero on disjoint coordinates), we have:
[Anollz < [[Ano + Amllz < [[Anall2 + ... + [|Ans|l2
By the RIP property, we have:

(1= &)llnoll2 < [[Anoll2 < (1 + €)llmoll2

and hence 1
lnrllz < T (lAm2llz + .. + [1Ans]l2)
1+¢
< 7 Umellz + 4 imsl2)
—€
Let n" = i coord of 7. for all j > 2 and for all i € T}, |n®¥| < w

This implies that:
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So we have:

1+e leﬁTJ 1||1 L+e |n-rlh
1— S1se VM

Now, by the standard inequality between ¢; and ¢5 norms (for vectors of dimension 2k or sparsity
2k), we have:

[nzll2 <

l+e |n-rl
< V2k < V2k- :
Izl < V2klnrlle < V2K - NeTi

oy < /2 1
nrijt < 1= n-ril1-

substituting M = rk, we have:




