
COMS E6998-9: Algorithms for Massive Data (Fall’25) Sep 22, 2025

Lecture 6: Compressed Sensing

Instructor: Alex Andoni Scribe: Dev Goyal

1 Review

Definition 1. A mapping ϕ : Rn → Rm is called a (k,δ) Oblivious Subspace Embedding (OSE) if for any

k-dimensional subspace U ⊆ Rn:

Prϕ

[
∀z ∈ U :

‖ϕ(z)‖2

‖z‖2
∈ (1± ε)

]
≥ 1− δ

Definition 2. A matrix A ∈ Rm×n is said to satisfy the (k,ε )Restricted Isometry Property (RIP) if for

all k-sparse vectors z ∈ Rn:

‖Az‖2 ∈ (1± ε)‖z‖2

2 Guarantees of OSE and RIP

We will start by showing that OSE implies RIP. So we want to prove the following theorem:

Theorem 3. if A is an (k, 0.1
(nk)

)-OSE, then A satisfies (k,ε)-RIP.

Proof. We want to prove:

PrA

[
∀z ∈ Sk :

‖Az‖
‖z‖

∈ (1± ε)
]
≥ 0.9

where Sk is the set of all k-sparse vectors in Rn.

We will write Sk as a union of subspaces:

Sk =
⋃

T⊆[n],|T |=k

UT

where UT = {z ∈ Rn : zi = 0 for i /∈ T}
Note that UT is a k-dimensional subspace of Rn and the number of such subspaces is

(
n
k

)
.
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By the definition of OSE and using union bound, we have:

PrA

[
∃z ∈ Sk :

‖Az‖
‖z‖

/∈ (1± ε)
]

≤ PrA
[
∃z ∈ UT1 :

‖Az‖
‖z‖

/∈ (1± ε)
]

+ PrA

[
∃z ∈ UT2 :

‖Az‖
‖z‖

/∈ (1± ε)
]

+ . . .

≤
∑

T⊆[n],|T |=k

PrA

[
∃z ∈ UT :

‖Az‖
‖z‖

/∈ (1± ε)
]

≤
(
n

k

)
· 0.1(

n
k

) = 0.1

Corollary 4. For fixed ε > 0, if A is a scaled Gaussian m× n matrix with m = O(k + log 1
δ ) then there

exists A that satisfies (k,ε)-RIP m = O(log
(
n
k

)
) ≤ O(log (nk )k) = O(k · log n

k )

3 proving the L1 theorem

Recall the Problem setup from last lecture:

We are given an input x and measurements y = Ax and we want to recover x from y using L1 mini-

mization.

L1(y) = argmin
Ax=y

‖x‖1 , x∗

Recall that we define the distance from k sparsity as:

Errk1(x) = min
x′ is k-sparse

‖x− x′‖1

We want to prove the following theorem:

Theorem 5. if A is (4k, ε)-RIP for a small enough ε, then ‖x∗ − x‖ ≤ O(1) · Errk1(x)

The proof will rely on some intermediate definitions and lemmas.

Definition 6. We say that A satisfies (k,ε) - nullspace property if ∀T ⊆ [n], |T | ≤ k, ∀η ∈ Rn s.t. Aη = 0

‖ηT ‖1 ≤ ε‖η−T ‖1 ⇐⇒ ‖η‖1 ≤ (1 + ε)‖η−T ‖1

We will also use the following two lemmas to prove the above theorem.

Lemma 7. Fix ∀r ∈ N . If A is ((2 + r)k, ε)-RIP for a small enough ε, then A satisfies (2k,
√

2
r ·

1+ε
1−ε) -

nullspace property.
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Lemma 8. if A satisfies (2k,ε)-nullspace property for a small enough ε, then for any x, the output of L1

minimization x∗ satisfies:

‖x∗ − x‖1 ≤ 2 · 1 + ε

1− ε
· Errk1(x)

We will first prove Lemma 8.

In the proof of the lemma, k-RIPness will be actually good enough. But it’s easier to see why 2k is

useful: consider k-sparse x and a k-sparse potential solution x∗ such that Ax = Ax∗ = y. Then, then the

nullspace property of η = x−x∗ (a 2k-sparse vectors) immediately implies that η = 0, and hence x = x∗.

Proof of Lemma 8:

let η , x∗ − x =⇒ Aη = Ax∗ − Ax = y − y = 0 Let T be the indices of the k largest entries of x in

absolute value.

By the definition of L1 minimization, we have:

‖x∗‖1 ≤ ‖x‖1 =⇒ ‖x∗T ‖1 + ‖x∗−T ‖1 ≤ ‖xT ‖1 + ‖x−T ‖1

by triangle inequality, we have:

‖x∗T ‖1 ≥ ‖xT ‖1 − ‖x∗T − xT ‖ = ‖xT ‖1 − ‖ηT ‖1

‖x∗−T ‖1 ≥ ‖η−T ‖1 − ‖x−T ‖1

So we have:

‖xT ‖1 − ‖ηT ‖1 + ‖η−T ‖1 − ‖x−T ‖1 ≤ ‖xT ‖1 + ‖x−T ‖1

=⇒ ‖η−T ‖1 ≤ ‖ηT ‖1 + 2‖x−T ‖1

By the nullspace property, we have:

‖η−T ‖1(1− ε) ≤ 2‖x−T ‖1

=⇒ ‖η‖1 ≤
2 · (1 + ε)

1− ε
‖x−T ‖1

=⇒ ‖x∗ − x‖1 ≤ 2 · 1 + ε

1− ε
· Errk1(x)

Where the last step follows from the definition of Errk1(x).

This completes the proof of Lemma 8.

We will now prove Lemma 7.

Proof of Lemma 7:

Let M , rk, define T0 = T , T1 = indices of the largest M entries of η−T , T2 = indices of the next largest

M entries of η−T and so on up to Ts.

define η0 = ηT0 , η1 = ηT1 , . . . , ηs = ηTs .

We can write η = η0 + η1 + . . .+ ηs.

Since Aη = 0, we have:

A(η0 + η1) = −A(η2 + . . .+ ηs)
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Taking norms on both sides, we have:

‖Aη0 + η1‖2 = ‖A(η2 + . . .+ ηs)‖2

By triangle inequality (and since η0 and η1 are non-zero on disjoint coordinates), we have:

‖Aη0‖2 ≤ ‖Aη0 +Aη1‖2 ≤ ‖Aη2‖2 + . . .+ ‖Aηs‖2

By the RIP property, we have:

(1− ε)‖η0‖2 ≤ ‖Aη0‖2 ≤ (1 + ε)‖η0‖2

and hence

‖ηT ‖2 ≤
1

1− ε
(‖Aη2‖2 + . . .+ ‖Aηs‖2)

≤ 1 + ε

1− ε
(‖η2‖2 + . . .+ ‖ηs‖2)

Let η(i) = ith coord of η. for all j ≥ 2 and for all i ∈ Tj , |η(i)| ≤
‖ηTj−1

‖1
M

This implies that:

‖ηj‖22 ≤
∑
i∈Tj

(‖ηTj−1‖1
M

)2

= M ·
(‖ηTj−1‖1

M

)2

=
‖ηTj−1‖21
M

=⇒ ‖ηj‖2 ≤
‖ηTj−1‖1√

M

So we have:

‖ηT ‖2 ≤
1 + ε

1− ε
·

s∑
j=2

‖ηTj−1‖1√
M

≤ 1 + ε

1− ε
· ‖η−T ‖1√

M

Now, by the standard inequality between `1 and `2 norms (for vectors of dimension 2k or sparsity

2k), we have:

‖ηT ‖1 ≤
√

2k‖ηT ‖2 ≤
√

2k · 1 + ε

1− ε
· ‖η−T ‖1√

M

substituting M = rk, we have:

‖ηT ‖1 ≤
√

2

r
· 1 + ε

1− ε
· ‖η−T ‖1.
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