COMS E6998-9: Algorithms for Massive Data (Fall'25)

Sep 22, 2025

Lecture 6: Compressed Sensing

Instructor: Alex Andoni Scribe: Dev Goyal

1 Review

Definition 1. A mapping $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ is called a (k,δ) Oblivious Subspace Embedding (OSE) if for any k-dimensional subspace $U \subseteq \mathbb{R}^n$:

$$Pr_{\varphi}\left[\forall z \in U : \frac{\|\varphi(z)\|^2}{\|z\|^2} \in (1 \pm \epsilon)\right] \ge 1 - \delta$$

Definition 2. A matrix $A \in \mathbb{R}^{m \times n}$ is said to satisfy the (k, ϵ) Restricted Isometry Property (RIP) if for all k-sparse vectors $z \in \mathbb{R}^n$:

$$||Az||_2 \in (1 \pm \epsilon)||z||_2$$

2 Guarantees of OSE and RIP

We will start by showing that OSE implies RIP. So we want to prove the following theorem:

Theorem 3. if A is an $(k, \frac{0.1}{\binom{n}{k}})$ -OSE, then A satisfies (k, ϵ) -RIP.

Proof. We want to prove:

$$Pr_A\left[\forall z \in S_k : \frac{\|Az\|}{\|z\|} \in (1 \pm \epsilon)\right] \ge 0.9$$

where S_k is the set of all k-sparse vectors in \mathbb{R}^n .

We will write S_k as a union of subspaces:

$$S_k = \bigcup_{T \subseteq [n], |T| = k} U_T$$

where $U_T = \{ z \in \mathbb{R}^n : z_i = 0 \text{ for } i \notin T \}$

Note that U_T is a k-dimensional subspace of \mathbb{R}^n and the number of such subspaces is $\binom{n}{k}$.

By the definition of OSE and using union bound, we have:

$$Pr_{A}\left[\exists z \in S_{k} : \frac{\|Az\|}{\|z\|} \notin (1 \pm \epsilon)\right]$$

$$\leq Pr_{A}\left[\exists z \in U_{T_{1}} : \frac{\|Az\|}{\|z\|} \notin (1 \pm \epsilon)\right] + Pr_{A}\left[\exists z \in U_{T_{2}} : \frac{\|Az\|}{\|z\|} \notin (1 \pm \epsilon)\right] + \dots$$

$$\leq \sum_{T \subseteq [n], |T| = k} Pr_{A}\left[\exists z \in U_{T} : \frac{\|Az\|}{\|z\|} \notin (1 \pm \epsilon)\right]$$

$$\leq \binom{n}{k} \cdot \frac{0.1}{\binom{n}{k}} = 0.1$$

Corollary 4. For fixed $\epsilon > 0$, if A is a scaled Gaussian $m \times n$ matrix with $m = O(k + \log \frac{1}{\delta})$ then there exists A that satisfies (k, ϵ) -RIP $m = O(\log \binom{n}{k}) \le O(\log (\frac{n}{k})^k) = O(k \cdot \log \frac{n}{k})$

3 proving the L1 theorem

Recall the Problem setup from last lecture:

We are given an input x and measurements y = Ax and we want to recover x from y using L1 minimization.

$$L_1(y) = \underset{Ax=y}{\operatorname{argmin}} ||x||_1 \triangleq x^*$$

Recall that we define the distance from k sparsity as:

$$\operatorname{Err}_{1}^{k}(x) = \min_{x' \text{ is k-sparse}} \|x - x'\|_{1}$$

We want to prove the following theorem:

Theorem 5. if A is $(4k, \epsilon)$ -RIP for a small enough ϵ , then $||x^* - x|| \leq O(1) \cdot Err_1^k(x)$

The proof will rely on some intermediate definitions and lemmas.

Definition 6. We say that A satisfies (k,ϵ) - nullspace property if $\forall T \subseteq [n], |T| \leq k, \forall \eta \in \mathbb{R}^n$ s.t. $A\eta = 0$

$$\|\eta_T\|_1 \le \epsilon \|\eta_{-T}\|_1 \iff \|\eta\|_1 \le (1+\epsilon)\|\eta_{-T}\|_1$$

We will also use the following two lemmas to prove the above theorem.

Lemma 7. Fix $\forall r \in N$. If A is $((2+r)k, \epsilon)$ -RIP for a small enough ϵ , then A satisfies $(2k, \sqrt{\frac{2}{r}} \cdot \frac{1+\epsilon}{1-\epsilon})$ -nullspace property.

Lemma 8. if A satisfies $(2k,\epsilon)$ -nullspace property for a small enough ϵ , then for any x, the output of L1 minimization x^* satisfies:

$$||x^* - x||_1 \le 2 \cdot \frac{1 + \epsilon}{1 - \epsilon} \cdot Err_1^k(x)$$

We will first prove Lemma 8.

In the proof of the lemma, k-RIPness will be actually good enough. But it's easier to see why 2k is useful: consider k-sparse x and a k-sparse potential solution x^* such that $Ax = Ax^* = y$. Then, then the nullspace property of $\eta = x - x^*$ (a 2k-sparse vectors) immediately implies that $\eta = 0$, and hence $x = x^*$.

Proof of Lemma 8:

let $\eta \triangleq x^* - x \implies A\eta = Ax^* - Ax = y - y = 0$ Let T be the indices of the k largest entries of x in absolute value.

By the definition of L1 minimization, we have:

$$||x^*||_1 \le ||x||_1 \implies ||x_T^*||_1 + ||x_{-T}^*||_1 \le ||x_T||_1 + ||x_{-T}||_1$$

by triangle inequality, we have:

$$||x_T^*||_1 \ge ||x_T||_1 - ||x_T^* - x_T|| = ||x_T||_1 - ||\eta_T||_1$$
$$||x_{-T}^*||_1 \ge ||\eta_{-T}||_1 - ||x_{-T}||_1$$

So we have:

$$||x_T||_1 - ||\eta_T||_1 + ||\eta_{-T}||_1 - ||x_{-T}||_1 \le ||x_T||_1 + ||x_{-T}||_1$$

$$\implies ||\eta_{-T}||_1 \le ||\eta_T||_1 + 2||x_{-T}||_1$$

By the nullspace property, we have:

$$\|\eta_{-T}\|_{1}(1-\epsilon) \leq 2\|x_{-T}\|_{1}$$

$$\implies \|\eta\|_{1} \leq \frac{2 \cdot (1+\epsilon)}{1-\epsilon} \|x_{-T}\|_{1}$$

$$\implies \|x^{*} - x\|_{1} \leq 2 \cdot \frac{1+\epsilon}{1-\epsilon} \cdot \operatorname{Err}_{1}^{k}(x)$$

Where the last step follows from the definition of $\operatorname{Err}_1^k(x)$.

This completes the proof of Lemma 8.

We will now prove Lemma 7.

Proof of Lemma 7:

Let $M \triangleq rk$, define $T_0 = T$, $T_1 =$ indices of the largest M entries of η_{-T} , $T_2 =$ indices of the next largest M entries of η_{-T} and so on up to T_s .

define
$$\eta_0 = \eta_{T_0}, \eta_1 = \eta_{T_1}, \dots, \eta_s = \eta_{T_s}.$$

We can write $\eta = \eta_0 + \eta_1 + \ldots + \eta_s$.

Since $A\eta = 0$, we have:

$$A(\eta_0 + \eta_1) = -A(\eta_2 + \ldots + \eta_s)$$

Taking norms on both sides, we have:

$$||A\eta_0 + \eta_1||_2 = ||A(\eta_2 + \ldots + \eta_s)||_2$$

By triangle inequality (and since η_0 and η_1 are non-zero on disjoint coordinates), we have:

$$||A\eta_0||_2 \le ||A\eta_0 + A\eta_1||_2 \le ||A\eta_2||_2 + \ldots + ||A\eta_s||_2$$

By the RIP property, we have:

$$(1 - \epsilon) \|\eta_0\|_2 \le \|A\eta_0\|_2 \le (1 + \epsilon) \|\eta_0\|_2$$

and hence

$$\|\eta_T\|_2 \le \frac{1}{1-\epsilon} (\|A\eta_2\|_2 + \dots + \|A\eta_s\|_2)$$

$$\le \frac{1+\epsilon}{1-\epsilon} (\|\eta_2\|_2 + \dots + \|\eta_s\|_2)$$

Let $\eta^{(i)} = i^{th}$ coord of η . for all $j \geq 2$ and for all $i \in T_j, |\eta^{(i)}| \leq \frac{\|\eta_{T_{j-1}}\|_1}{M}$ This implies that:

$$\|\eta_j\|_2^2 \le \sum_{i \in T_j} \left(\frac{\|\eta_{T_{j-1}}\|_1}{M}\right)^2 = M \cdot \left(\frac{\|\eta_{T_{j-1}}\|_1}{M}\right)^2 = \frac{\|\eta_{T_{j-1}}\|_1^2}{M}$$

$$\implies \|\eta_j\|_2 \le \frac{\|\eta_{T_{j-1}}\|_1}{\sqrt{M}}$$

So we have:

$$\|\eta_T\|_2 \le \frac{1+\epsilon}{1-\epsilon} \cdot \sum_{j=2}^s \frac{\|\eta_{T_{j-1}}\|_1}{\sqrt{M}} \le \frac{1+\epsilon}{1-\epsilon} \cdot \frac{\|\eta_{-T}\|_1}{\sqrt{M}}$$

Now, by the standard inequality between ℓ_1 and ℓ_2 norms (for vectors of dimension 2k or sparsity 2k), we have:

$$\|\eta_T\|_1 \le \sqrt{2k} \|\eta_T\|_2 \le \sqrt{2k} \cdot \frac{1+\epsilon}{1-\epsilon} \cdot \frac{\|\eta_{-T}\|_1}{\sqrt{M}}$$

substituting M = rk, we have:

$$\|\eta_T\|_1 \le \sqrt{\frac{2}{r}} \cdot \frac{1+\epsilon}{1-\epsilon} \cdot \|\eta_{-T}\|_1.$$