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Lecture 5: Overview of Compressed Sensing

Instructor: Alex Andoni Scribes: Chandhru Karthick

1 Problem Setup

Suppose we have an unknown signal expressed as X ∈ Rn, that we have to deduce by making some

minimal ”measurements”. Here, we define measurements as a linear projection on a m-dimensional space

(m << n).

Goal: To recover x from Ax assuming some structure on x. (Without assuming a structure, this re-

covery may not be possible for a general signal)

Assumption: Specifically, we assume x is k-sparse.

Note: While this is not always the case in standard basis, we can argue ∃basis B, where the signal is

k-sparse. i.e, x = B.z and z is k-sparse.

Ax = A.B.z →This is where we ask the compressed sensing question for z (”k-sparse” view of the

signal), where our linear measurement is (A.B)

1.1 Designing measurement A

Let y = A.x, since x is sparse we can ask the following question, what is the space of solutions minimizing

the following objective:

L0(y) = arg min
x∈Rn,Ax=y

‖x‖0

However, this has ∞ solutions from a |n−m|-dim space as A is a dimension-reducing matrix.

Moreover, this optimization problem is provably NP-hard as we can notice a simple case of L0-ball of

n=2 and k=1: The search space is non-convex.

Instead we can look at the minimal convex cover of this search space, which is the surrounding L1 ball:

L1(y) = arg min
x∈Rn,Ax=y

‖x‖1

Claim: We can solve L1(y) for any A, y in poly time

Proof. Formulating the problem as an LP:
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min
∑
Ax=y

li

Such that,

Ax = y

∀i : li ≥ xi

li ≥ −xi

The last 2 constraints are the equivalent of li = |xi|

2 L1(y) as a proxy for L0(y)

1) ‖x‖0 ≤ k n = 2, k = 1. Here we can do a convex relaxation of this, and the minimal convex cover is

the L1 ball:

x1

x2

‖x‖1 ≤ 1

‖x‖0 ≤ 1

2) L1 constraints force a sparsity to solution space (stickier to corners):

x1

x2
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Put together, fix x=original signal close to a k-sparse vector

x∗∗ = arg min
x′∈Rn,‖x′‖0≤k

‖x′ − x‖1

We hope to recover x∗∗ approximately close. We can define a cost or error for this sparsity as, Errk1(x) =

minx′∈Rn‖x′ − x‖1, This encodes distance x is away from k-sparsity

In other words, we hope to recover x’ such that,

‖x′ − x‖1 ≤ cErr k1 (x). (1)

for some constant c > 1 perhaps as small as c = 1± ε

Theorem 1. Let x∗ = L1(y), x∗ satisfies (1) if A is (4k, ε)-Restricted Isometry Property(RIP), for ε < 1
2 .

Remarks:

1) x∗ is not necessarily k-sparse

2) We can only get k-sparse approximately by retaining only k largest entries of x*

Definition: A is (k, ε)-Restricted Isometry Property iff ∀x k-sparse

‖Ax‖2 ∈ (1± ε)‖x‖2

Theorem 2. If A satisfies Oblivious Space Embedding property for a dimension k, with Pr≥ 1− δ, for

δ = 0.1

(nk)
, then A is (k, ε)-RIP with Pr≥0.9:

Reminder of OSE property ∀U : k-dim subspace:

Pr
A

[
∀x ∈ U :

‖Ax‖2
‖x‖2

∈ 1± ε
]
≥ 1− δ

3 Approach to choosing A:

1. A=random matrix (say, gaussian) satisfying OSE. But works with 90% only.

1.5) To get a smaller fail probability of δ < 0.1, we can increase m by a factor of log 1
δ .

2. If we want no probability of failure, we simply resample A if A is not RIP (This is however NP-hard).

3. It is possible to design A as an RIP matrix in a pseudorandom fashion (though typically a bit worse

bounds).

Theorem 3. A:Gaussian matrix works for measurements m

m = O(k · log
n

k
)

.
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