COMS E6998: Algorithms for Massive Data

Sep 17, 2025

Lecture 5: Overview of Compressed Sensing

Instructor: Alex Andoni Scribes: Chandhru Karthick

1 Problem Setup

Suppose we have an unknown signal expressed as $X \in \mathbb{R}^n$, that we have to deduce by making some minimal "measurements". Here, we define measurements as a linear projection on a m-dimensional space (m << n).

<u>Goal</u>: To recover x from Ax assuming some structure on x. (Without assuming a structure, this recovery may not be possible for a general signal)

Assumption: Specifically, we assume x is k-sparse.

Note: While this is not always the case in standard basis, we can argue \exists basis B, where the signal is k-sparse. i.e, x = B.z and z is k-sparse.

 $Ax = A.B.z \rightarrow \text{This}$ is where we ask the compressed sensing question for z ("k-sparse" view of the signal), where our linear measurement is (A.B)

1.1 Designing measurement A

Let y = A.x, since x is sparse we can ask the following question, what is the space of solutions minimizing the following objective:

$$L_0(y) = \underset{x \in \mathbb{R}^n, Ax = y}{\arg\min} ||x||_0$$

However, this has ∞ solutions from a |n-m|-dim space as A is a dimension-reducing matrix.

Moreover, this optimization problem is provably NP-hard as we can notice a simple case of L0-ball of n=2 and k=1: The search space is non-convex.

Instead we can look at the minimal convex cover of this search space, which is the surrounding L1 ball:

$$L_1(y) = \underset{x \in \mathbb{R}^n, Ax = y}{\arg\min} ||x||_1$$

Claim: We can solve $L_1(y)$ for any A, y in poly time

Proof. Formulating the problem as an LP:

$$\min \sum_{Ax=y} l_i$$

Such that,

$$Ax = y$$

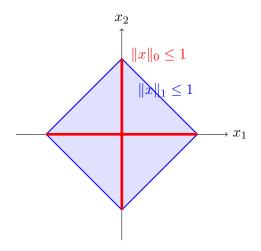
$$\forall i: l_i \geq x_i$$

$$l_i \ge -x_i$$

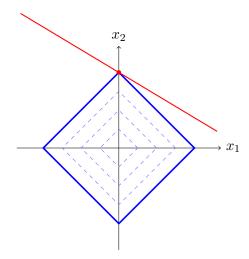
The last 2 constraints are the equivalent of $l_i = |x_i|$

2 $L_1(y)$ as a proxy for $L_0(y)$

1) $||x||_0 \le k$ n = 2, k = 1. Here we can do a convex relaxation of this, and the minimal convex cover is the L1 ball:



2) L1 constraints force a sparsity to solution space (stickier to corners):



Put together, fix x=original signal close to a k-sparse vector

$$x^{**} = \underset{x' \in \mathbb{R}^n, \|x'\|_0 \le k}{\arg \min} \|x' - x\|_1$$

We hope to recover x^{**} approximately close. We can define a cost or error for this sparsity as, $Err_1^k(x) = \min_{x' \in \mathbb{R}^n} ||x' - x||_1$, This encodes distance x is away from k-sparsity In other words, we hope to recover x' such that,

$$||x' - x||_1 \le c \operatorname{Err}_1^k(x). \tag{1}$$

for some constant c > 1 perhaps as small as $c = 1 \pm \epsilon$

Theorem 1. Let $x^* = L_1(y)$, x^* satisfies (1) if A is $(4k, \epsilon)$ -Restricted Isometry Property(RIP), for $\epsilon < \frac{1}{2}$.

Remarks:

- 1) x^* is not necessarily k-sparse
- 2) We can only get k-sparse approximately by retaining only k largest entries of x^*

<u>Definition:</u> A is (k, ϵ) -Restricted Isometry Property iff $\forall x \ k$ -sparse

$$||Ax||_2 \in (1 \pm \epsilon)||x||_2$$

Theorem 2. If A satisfies Oblivious Space Embedding property for a dimension k, with $Pr \ge 1 - \delta$, for $\delta = \frac{0.1}{\binom{n}{k}}$, then A is (k, ϵ) -RIP with $Pr \ge 0.9$:

Reminder of OSE property $\forall U : k\text{-}dim \ subspace:$

$$\Pr_{A} \left[\forall x \in \mathcal{U} : \frac{\|Ax\|_{2}}{\|x\|_{2}} \in 1 \pm \epsilon \right] \ge 1 - \delta$$

3 Approach to choosing A:

- 1. A=random matrix (say, gaussian) satisfying OSE. But works with 90% only.
 - 1.5) To get a smaller fail probability of $\delta < 0.1$, we can increase m by a factor of $\log \frac{1}{\delta}$.
- 2. If we want no probability of failure, we simply resample A if A is not RIP (This is however NP-hard).
- 3. It is possible to design A as an RIP matrix in a pseudorandom fashion (though typically a bit worse bounds).

Theorem 3. A:Gaussian matrix works for measurements m

$$m = O(k \cdot \log \frac{n}{k})$$

.