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Lecture 5: Overview of Compressed Sensing

Instructor: Alex Andoni Scribes: Chandhru Karthick

1 Problem Setup

Suppose we have an unknown signal expressed as X € R", that we have to deduce by making some
minimal "measurements”. Here, we define measurements as a linear projection on a m-dimensional space
(m << n).

Goal: To recover x from Ax assuming some structure on x. (Without assuming a structure, this re-
covery may not be possible for a general signal)

Assumption: Specifically, we assume x is k-sparse.

Note: While this is not always the case in standard basis, we can argue dbasis B, where the signal is
k-sparse. i.e, x = B.z and z is k-sparse.

Axr = A.B.z —This is where we ask the compressed sensing question for z ("k-sparse” view of the
signal), where our linear measurement is (A.B)

1.1 Designing measurement A

Let y = A.x, since x is sparse we can ask the following question, what is the space of solutions minimizing
the following objective:
Lo(y) = argmin |zl
z€R™ Az=y
However, this has oo solutions from a |n — m/|-dim space as A is a dimension-reducing matrix.
Moreover, this optimization problem is provably NP-hard as we can notice a simple case of L0-ball of
n=2 and k=1: The search space is non-convex.

Instead we can look at the minimal convex cover of this search space, which is the surrounding L1 ball:

Li(y) = argmin |[z[)y
z€R™, Az=y

Claim: We can solve Lq(y) for any A, y in poly time

Proof. Formulating the problem as an LP:



min Z l;

Ax=y

Such that,
Ax =y

li; > —x;

The last 2 constraints are the equivalent of [; = |z;|

2 Ly(y) as a proxy for Ly(y)

1) ||lz)lo < kn =2,k =1. Here we can do a convex relaxation of this, and the minimal convex cover is
the L1 ball:

€2
[zflo <1

[ <1
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2) L1 constraints force a sparsity to solution space (stickier to corners):




Put together, fix x=original signal close to a k-sparse vector

= argmin |2’ — x|

z'eR™, ||z’ o<k

We hope to recover ** approximately close. We can define a cost or error for this sparsity as, Err’f (z) =
ming cgn ||z — z||1, This encodes distance x is away from k-sparsity
In other words, we hope to recover x’ such that,

|2’ — 2|1 < cErrf(z). (1)
for some constant ¢ > 1 perhaps as small asc=1+¢

Theorem 1. Let 2* = L1 (y), 2* satisfies (1) if A is (4k, €)-Restricted Isometry Property(RIP), for e < 3.

Remarks:
1) z* is not necessarily k-sparse
2) We can only get k-sparse approximately by retaining only k largest entries of x*

Definition: A is (k, €)-Restricted Isometry Property iff Vx k-sparse
[Az]]2 € (1 £ €)|zl2

Theorem 2. If A satisfies Oblivious Space Embedding property for a dimension k, with Pr>1— 6, for
5= % then A is (k,€)-RIP with Pr>0.9:

Remi%der of OSE property YU : k-dim subspace:

[ Az]l2
]2

1?41“ Ve e U: elte|l>1-96

3 Approach to choosing A:
1. A=random matrix (say, gaussian) satisfying OSE. But works with 90% only.
1.5) To get a smaller fail probability of 6 < 0.1, we can increase m by a factor of log %
2. If we want no probability of failure, we simply resample A if A is not RIP (This is however NP-hard).

3. It is possible to design A as an RIP matrix in a pseudorandom fashion (though typically a bit worse
bounds).

Theorem 3. A:Gaussian matriz works for measurements m

m=O(k - log%)



