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1 Introduction

In this class, we will prove the statement for the Fast Dimension Reduction (also termed FJL: Fast

Johnson-Lindenstrauss elsewhere).

2 Fast Dimension Reduction

First, we recall the Fast Dimension Reduction theorem

Theorem 1 (FDR). There exists distirbution over ϕ : Rn → Rk such that the following holds:

1. ϕ satisfies DJL, in other words, for all x ∈ Rn we have

Pr

[
||ϕ(x)||
||x||

∈ 1± ε
]
≥ 1− δ.

2. ϕ(x) can be computed in time O(n log n+ k).

3. k = O
(

log 1
δ

ε2
log n

δ

)
.

3 Proof of FDR

The idea is as follows: we will show that

ϕ(x) :=

√
n

k
· PHDx

achieves the properties we are looking for. Here, the
√
n/k comes from the renormalization of the vector,

and

P =


p1

p2

· · ·
pn


is an k × n matrix such that each row consists of a vector pi that has entry 1 at a uniformly random

index, and all other entries are 0. The random entries in the vectors pi are independent of each other.

Ideally, we would want
n
k ||Px||

2
2

||x||22
∈ 1± ε (1)

1



to hold, which will immediately prove the FDR (without the need for HD matrices), since Px is computed

by inspecting each vector pi, finding where the random 1 bit ji is, and locating the corresponding value

in xji . This is a process that will take only a runtime of k. However, we note that this is way too

optimistic because if x is a “sparse” vector (we will proceed to define sparsity later on), we would expect

that n
k ||Px||

2
2 would deviate a lot from the original norm. However, for vectors with lower sparsity, we

are actually ok:

Lemma 2. 1 holds with probability 1− δ if

k = O

(
log 1

δ

ε2
· n||x||

2
∞

||x||22

)
.

In addition, we will define the quantity ∆x := n||x||2∞
||x||22

as the sparsity of x (higher means more sparse).

To get some familiarity with the sparsity, if x = (±1, · · · ,±1), then ∆x = n·1∑n
i=1 1

= 1; on the other

hand, if x = (1, 0, · · · , 0), then ∆x = n·1
1 = n.

Proof. We have that ||Px||2 = x2
i1

+ · · · + x2
ik

, where ij ’s are uniform in [n]. Let zj = x2
ij

, then each

zj ∈ [0, ||x||2∞]. We will let yi = zi
||x||2∞

∈ [0, 1] so that we can apply Chernoff. Let Y =
∑
yi, we calculate

µ = E

[
k∑
i=1

yi

]

=
k

||x||2∞
E[zi]

=
k

||x||2∞

n∑
j=1

1

n
x2
j

=
k

n
· ||x||

2
2

||x||2∞
.

By Chernoff, we have

Pr[Y ∈ (1± ε)µ] ≥ 1− 2e−µε
2/9.

For this to imply that
n
k
||Px||22
||x||22

∈ 1 ± ε with probability at least 1 − δ, we want this probability to

be lower bounded by at least 1 − δ, so µ = Ω(
log 1

δ
ε2

). From the calculation above, this implies that

k = Ω
(

log 1
δ

ε2
· n||x||

2
∞

||x||22

)
is enough.

Our conclusion here is that if ∆x is small, then Px is good enough. Therefore, our next idea is to

introduce the Hadamard matrix, for which the goal is to reduce ∆x.

3.1 Hadamard

The Hadamard matrix H is a n× n matrix that has the following property:

1. H is a rotation: ||Hx|| = ||x||.
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2. Hij ∈ ±{ 1√
n
}.

3. It takes O(n log n) time to compute Hx.

4. If x is sparse, Hx is dense.

The last property is usually referred to as the Uncertainty Principle. However, it could still be the the

output Hx is sparse for some dense x’s. The way to fix this is to define a random diagonal matrix

D =


±1 0 . . . 0

0 ±1 . . . 0
...

...
. . .

...

0 0 . . . ±1


that randomly reflects each coordinate. We will show that this is good enough to randomize x away from

“bad cases” that result in sparse Hx.

Lemma 3. Fix x such that ||x||2 = 1, let y = HDx, then

Pr
D

[
||y||2∞ >

log n
δ

n

]
≤ δ.

This is the final piece of puzzle to the proof of the FDR, we can plug in the value of ||y||∞ back into

the statement of Lemma 2 (note that since H is a rotation and D is a reflection we have ||y||2 = 1) to

get the desired value of k.

Proof. We have that

yi =
1√
n

n∑
j=1

rjxj

where each rj is ±1 with equal probability. We will simplify the problem by considering

D =


g1 0 . . . 0

0 g2 . . . 0
...

...
. . .

...

0 0 . . . gn


where each gi ∈ N(0, 1). Then, it follows that if α = Θ(

√
log n

δ ), then

Pr[|yi| > α/
√
n] = Pr[|g| > α] ' e−Ω(α2) < δ/n.

We will note that the original case is very similar:

Fact 4. ∀x1, · · · , xn ∈ R, ri = ±1, we have

Pr
r

[∣∣∣∣∣
n∑
i=1

rixi

∣∣∣∣∣ > 1√
n
α||x||2

]
≤ e−α2/2
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If we let α =
√

2 ln n
δ , then the above probability will be upper bounded by δ/n, hence by a union

bound over all n different yi’s we have finished the proof of the lemma, and hence the proof of FDR.

4 Extra Notes

1. For LSR, we can generally get runtime as good as

O(nnz(A) + (d/ε)O(1))

or

O((log ε−1)(nnz(A) + dO(1)))

where A is the targeted matrix, d is the source dimension, ε is the error, and nnz(A) denotes the

number of non-zero entries in A.

2. DJL and OSE can be extended to `1 norms and beyond using sketching (such as Cauchy projections).

3. a few rounds of HD (for random D) is often used as a peoxy for random rotations, where each Di

is an i.i.d matrix with ±1 on the diagonal. Normally we would need to use n2 random numbers for

random rotation, but this gives us way to only use O(n log n) random numbers.
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