
COMS E6998-9: Algorithms for Massive Data (Fall’25) Oct 20, 2025

Lecture 14: Massively Parallel Computing

Instructor: Alex Andoni Scribes: Sadi Gulcelik

1 Massively Parallel Computing

Model parameters recap:

• N — input size

• S — space per machine (or O(S)), typically we think of it as N δ for constant δ > 0

• M — number of machines (e.g., Θ(N/S))

• R — number of rounds (parallel time)

From past lecture:

• XOR / ADD: R = O(logS N)

• Prefix Sum: R = O(logS N)

2 Parameter Setting and Questions

We typically assume S = N δ for some constant 0 < δ < 1. Then

logS N =
logN

logN δ
=

1

δ
,

which is a constant — so many problems can be solved in O(1) rounds.

Examples and questions:

• PageRank: can we parallelize it efficiently given the many iterations?

• Distinct elements, mode: example problems for MPC.

• Reconstruction: what kinds of problems can’t be reconstructed in MPC?

1

3 Sorting with MPC

We’ll now consider sorting with MPC.

Goal: show that sorting can be done in

R = O(logS N)

rounds.

Setup

We’ll take S = N3/4, so the number of machines is O(N1/4).

Idea

We’ll use a quicksort-style approach: take N1/4 random pivots — as in standard quicksort, we pick

random pivots and split the array accordingly.

Inputs and Outputs

• Input: (i, ai), where i is the index

• Output: (i, ai, ri), where ri is the rank of ai

4 Sorting with MPC — Quicksort-Style Approach

At the start, each machine holds O(S) = O(N3/4) input pairs. We’ll run a quicksort-style algorithm with

N1/4 pivots.

Step 1: Sampling pre-pivots

For each element i ∈ [N], mark i as a pre-pivot with probability N−2/3.

• Expected number of pre-pivots: N1/3.

• With high probability, the number of pre-pivots is within a constant factor of N1/3 (Chernoff

bounds).

Step 2: Sharing pre-pivots

Each machine sends all of its pre-pivots to every other machine.

Each machine sends O(N1/3) items to each of the M = O(N1/4) machines. Total data per machine:

O(N7/12) < O(S), so this fits the per-machine constraint.

Step 3: Local rank computation

For each machine j and each pivot p, compute the local rank rj(p) — the number of items on machine j

smaller than p.

2

Step 4: Sending local ranks to controller

Each machine sends all its local ranks rj(p) to a controller machine M1.

Step 5: Global rank computation

The controller M1 computes the global rank of each pre-pivot p:

r(p) =
∑
j

rj(p) + 1

After this, M1 knows the global ranks of all pre-pivots.

Justification. To perform this computation, M1 must receive O(N1/3) local ranks from each of the

M = O(N1/4) machines. The total data received is O(N1/3) × O(N1/4) = O(N7/12), which is strictly

less than the available memory S = O(N3/4). Hence, M1 can safely aggregate all local ranks without

exceeding its space bound.

Step 6: Choosing final pivots

From the pre-pivots, M1 selects N1/4 final pivots.

For the j-th pivot pj :

rank(pj) ∈
[
jN

N1/4
,
jN

N1/4
+O

(
N

N1/4

)]
Claims:

|r(pj+1)− r(pj)| = O(N3/4) = O(S)

so each partition fits within one machine’s memory. With high probability, we can find suitable pivots

for all j.

Justification. There are N1/3 pre-pivots in total, and we select N1/4 final pivots from them. The

expected number of data items between two consecutive final pivots is N/N1/4 = N3/4. Since we sampled

significantly more pre-pivots (N1/3), the distribution of their global ranks approximates the true data

distribution well. Chernoff bounds guarantee that actual ranks concentrate around expectations, so M1

can select N1/4 pivots such that each partition contains O(N3/4) = O(S) items with high probability.

This ensures that every partition fits in a single machine’s memory.

Step 7: Broadcasting pivots

The controller M1 sends chosen pivots pj (with their ranks) to all machines.

Step 8: Redistributing data

Each machine sends (i, ai) to machine Mj such that pj−1 < ai ≤ pj .
After this, machine j holds all elements in (pj−1, pj].

3

Step 9: Local sort and rank reconstruction

Each machine locally sorts its elements and computes their global ranks by adding the global rank of the

previous pivot pj−1.

Justification. Machine Mj holds all elements in (pj−1, pj] and knows the global rank r(pj−1) broadcast

by M1. By sorting locally, it obtains the local rank rlocal(ai) of each element. The global rank is then

computed as

r(ai) = r(pj−1) + rlocal(ai),

ensuring every element’s final rank is globally consistent.

At this point, every element (i, ai) has an associated global rank ri, and the array is sorted.

5 Problem 4 — Counting Distinct Elements

Input: ai, for i = 1, . . . , N Output: total number of distinct elements

Algorithm

1. Sort the input: using the MPC sorting algorithm. After sorting, the data is distributed across

machines (M1,M2, . . .).

2. Local distinct count: Each machine computes the number of distinct elements in its local block

and outputs: cj (count), lj (leftmost), rj (rightmost). Handle duplicates across machine boundaries.

3. Aggregation phase (S-ary tree): Combine results using an S-ary tree structure: sum counts,

subtract duplicates across block boundaries. Continue until the root computes the global number

of distinct elements.

Result: Final count at root = total number of distinct elements.

R = O(logS N)

Complexity Justification.

1. Sorting takes O(logS N) rounds (as shown above).

2. Local counting is purely local and takes 0 additional rounds.

3. Aggregation uses an S-ary tree overM = O(N/S) machines, whose depth is logS(N/S) = logS N−1.

Hence, total round complexity remains O(logS N).

6 Problem 5 — Graph Connectivity in MPC

Graphs with n nodes and m edges.

Input size N = O(n+m), typically m ≥ n so N = Θ(m).

Input: (ai, bi) for i = 1, . . . ,m. Problem: connectivity in an undirected, unweighted graph.

4

Typically we have S = N δ = mδ. Depending on how S compares to n, we distinguish dense vs sparse

regime.

Dense Regime

Dense regime means S ≥ n1+ε.
Since m = N � S ≥ n1+ε, we have m ≥ n1+ε.

Theorem 1. We can solve connectivity in

O

(
δ

ε

)
rounds, where m = n1+δ.

Algorithm Sketch

1. Local computation: Each machine computes its local connected components (spanning trees).

This reduces m, since internal edges no longer matter globally.

2. Aggregation across machines: Merge local spanning trees using an nε-ary tree. Each round

reduces the total number of edges by nε.

3. Round complexity: After δ
ε rounds, m < n. The remaining edges fit on a single machine, and

connectivity is computed locally.

Justification. Let mk denote the number of edges remaining after k rounds. Initially m0 = n1+δ. Each

aggregation round merges nε components, reducing the number of inter-component edges by the same

factor:

mk =
m0

(nε)k
= n1+δ−kε.

The process stops when mk ≤ n, i.e.

n1+δ−kε ≤ n ⇒ 1 + δ − kε ≤ 1 ⇒ k ≥ δ

ε
.

Thus, O(δ/ε) rounds suffice for full connectivity computation.

Result:

R = O

(
δ

ε

)
rounds in the MPC model when m = n1+δ.

Note

Next lecture — we’ll look at the sparse regime, where S � n.

5

