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Lecture 14: Massively Parallel Computing
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1 Massively Parallel Computing

Model parameters recap:
e N — input size
e S — space per machine (or O(S)), typically we think of it as N° for constant § > 0
e M — number of machines (e.g., ©(N/S))

e R — number of rounds (parallel time)

From past lecture:
¢ XOR / ADD: R = O(logg N)

e Prefix Sum: R = O(logg N)

2 Parameter Setting and Questions

We typically assume S = N? for some constant 0 < § < 1. Then

log N 1

1 N=—"—=-
08s log N §’

which is a constant — so many problems can be solved in O(1) rounds.

Examples and questions:

e PageRank: can we parallelize it efficiently given the many iterations?
¢ Distinct elements, mode: example problems for MPC.

e Reconstruction: what kinds of problems can’t be reconstructed in MPC?



3 Sorting with MPC

We’ll now consider sorting with MPC.
Goal: show that sorting can be done in

R = 0O(logg N)

rounds.

Setup
We'll take S = N3/% so the number of machines is O(N'/4).

Idea
We'll use a quicksort-style approach: take N/4 random pivots — as in standard quicksort, we pick
random pivots and split the array accordingly.
Inputs and Outputs
e Input: (i,a;), where i is the index

e Output: (i,a;r;), where r; is the rank of a;

4 Sorting with MPC — Quicksort-Style Approach

At the start, each machine holds O(S) = O(N3/%) input pairs. We’ll run a quicksort-style algorithm with
N1/ pivots.

Step 1: Sampling pre-pivots

For each element i € [N], mark i as a pre-pivot with probability N~2/3.

e Expected number of pre-pivots: N1/3,
e With high probability, the number of pre-pivots is within a constant factor of N/3 (Chernoff
bounds).
Step 2: Sharing pre-pivots

Fach machine sends all of its pre-pivots to every other machine.
Each machine sends O(N'/3) items to each of the M = O(N'/*) machines. Total data per machine:
O(N7/2) < O(S), so this fits the per-machine constraint.

Step 3: Local rank computation

For each machine j and each pivot p, compute the local rank r;(p) — the number of items on machine j
smaller than p.



Step 4: Sending local ranks to controller

Each machine sends all its local ranks 7;(p) to a controller machine M.

Step 5: Global rank computation

The controller M7 computes the global rank of each pre-pivot p:

r(p) = er(p) +1
J
After this, M; knows the global ranks of all pre-pivots.

Justification. To perform this computation, M; must receive O(N 1/ 3) local ranks from each of the
M = O(N'Y*) machines. The total data received is O(N/3) x O(NY*) = O(N7/12), which is strictly
less than the available memory S = O(N 3/ 4). Hence, M; can safely aggregate all local ranks without
exceeding its space bound.

Step 6: Choosing final pivots

From the pre-pivots, M selects NY/4 final pivots.

For the j-th pivot p;:
jN jN N
rank(p;) € N1/A’ N4 +O<N1/4>]

Claims:
[r(pj1) = (py)| = O(N*1) = O(S)

so each partition fits within one machine’s memory. With high probability, we can find suitable pivots
for all j.

Justification. There are N'/3 pre-pivots in total, and we select N*/4 final pivots from them. The
expected number of data items between two consecutive final pivots is N/N 1/4 — N3/4. Since we sampled
significantly more pre-pivots (N 1/ 3), the distribution of their global ranks approximates the true data
distribution well. Chernoff bounds guarantee that actual ranks concentrate around expectations, so M;
can select N1/* pivots such that each partition contains O(N3/4) = O(S) items with high probability.
This ensures that every partition fits in a single machine’s memory.

Step 7: Broadcasting pivots

The controller M; sends chosen pivots p; (with their ranks) to all machines.

Step 8: Redistributing data

Each machine sends (i, a;) to machine M; such that p;_1 < a; < p;.
After this, machine j holds all elements in (pj_1, pj].



Step 9: Local sort and rank reconstruction

Each machine locally sorts its elements and computes their global ranks by adding the global rank of the
previous pivot pj_1.

Justification. Machine M holds all elements in (p;j_1, p;] and knows the global rank 7(p;_1) broadcast
by M;. By sorting locally, it obtains the local rank 7oca1(a;) of each element. The global rank is then
computed as

r(ai) = r(pj—1) + Moca1(as),

ensuring every element’s final rank is globally consistent.
At this point, every element (i, a;) has an associated global rank 7;, and the array is sorted.

5 Problem 4 — Counting Distinct Elements

Input: a;, for i =1,..., N Output: total number of distinct elements

Algorithm

1. Sort the input: using the MPC sorting algorithm. After sorting, the data is distributed across
machines (My, Ma,...).

2. Local distinct count: Each machine computes the number of distinct elements in its local block
and outputs: ¢; (count), l; (leftmost), r; (rightmost). Handle duplicates across machine boundaries.

3. Aggregation phase (S-ary tree): Combine results using an S-ary tree structure: sum counts,
subtract duplicates across block boundaries. Continue until the root computes the global number
of distinct elements.

Result: Final count at root = total number of distinct elements.
R = 0O(logg N)

Complexity Justification.
1. Sorting takes O(logg N) rounds (as shown above).
2. Local counting is purely local and takes 0 additional rounds.
3. Aggregation uses an S-ary tree over M = O(N/S) machines, whose depth is logg(N/S) = logg N—1.

Hence, total round complexity remains O(logg V).

6 Problem 5 — Graph Connectivity in MPC

Graphs with n nodes and m edges.
Input size N = O(n + m), typically m > n so N = ©(m).
Input: (a;,b;) for i = 1,...,m. Problem: connectivity in an undirected, unweighted graph.



Typically we have S = N% = m®. Depending on how S compares to n, we distinguish dense vs sparse
regime.
Dense Regime

Dense regime means S > n!*e.
Since m = N > S > n!'*¢, we have m > n'*e.

Theorem 1. We can solve connectivity in

rounds, where m = n'*9.

Algorithm Sketch

1. Local computation: Each machine computes its local connected components (spanning trees).
This reduces m, since internal edges no longer matter globally.

2. Aggregation across machines: Merge local spanning trees using an nf-ary tree. Each round
reduces the total number of edges by n®.

3. Round complexity: After g rounds, m < n. The remaining edges fit on a single machine, and
connectivity is computed locally.

Justification. Let my, denote the number of edges remaining after k rounds. Initially mg = n'*?. Each
aggregation round merges n® components, reducing the number of inter-component edges by the same
factor:

mo _
_ n1+5 ks‘

my = (ne)F

The process stops when my < n, i.e.

T <n = 146—ke<1l = k>

M| >

Thus, O(d/¢) rounds suffice for full connectivity computation.

Result: 5
r-off)
€

rounds in the MPC model when m = nl*9,

Note

Next lecture — we’ll look at the sparse regime, where S < n.



