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1 Introduction: Parallel/Distributed Models

Modern datasets often exceed the memory and compute of a single machine. We therefore consider algo-

rithmic models that exploit multiple processors or many machines.

Efficiency goals: In large-scale settings we typically optimize some combination of:

• Parallel time Tp: number of synchronized steps until completion.

• Work W : total operations across all processors/machines.

• Communication: rounds of data exchange and total volume moved.

• Space per machine S (and total memory MS in distributed settings).

Compared to the classical RAM/Turing model (single processor, single memory), these models have

trade-offs between computation and communication.

2 Model 1: PRAM (Parallel Random Access Machine)

2.1 Model description

In the PRAM model we have p identical processors (each with registers) and a shared memory. Com-

putation proceeds in “time steps.” In each step every processor can do one of the following:

1. Read from shared memory

2. Write to shared memory

3. Do local computation

Definition 1 (Parallel Time). The parallel time Tp is the number of synchronized PRAM steps required

for the algorithm to finish with p processors.

Definition 2 (Work). The work of a parallel algorithm is the total number of operations performed across

all processors during its execution. Formally, if Tp is the parallel time then W =
∑Tp

t=1(# active processors at step t).
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Shared Memory: X[1..n] (array)

Processor P1 Processor P2 Processor P3

One PRAM time step

Figure 1: Three processors accessing, different locations of a shared array in one PRAM time step. P1

and P2 are writing and P3 is reading.

2.2 Concurrent vs. exclusive access

There are different variants of PRAM that differ based on what types of memory accesses they allow.

• EREW: Exclusive Read, Exclusive Write (Cannot concurrently reads/write the same element in

shared memory).

• CRCW: Concurrent Read, Concurrent Write. Concurrent writes are hard to define, need some

sort of rule (e.g., arbitrary/priority/min/max).

Observation 3. If a problem is solvable on a p-processor PRAM in time Tp, then a sequential simulation

runs in time O(W ) = O(pTp). Therefore the maximum speedup over the best sequential time is at most

O(p).

2.3 Example: XOR of n bits on PRAM Model

Input: x1, . . . , xn ∈ {0, 1}, output
⊕n

i=1 xi.

Tree Reduction (EREW):

With p = n processors, pairwise reduce along a binary tree:

1. Level 1: processors in parallel compute x2j−1 ⊕ x2j for all j.

2. Level 2: reduce consecutive pairs of results, and so on.

3. After dlog2 ne levels, the root holds the XOR.

This achieves Tp = O(log n), work W = O(n) (work-efficient).

Lemma 4. Even allowing CRCW, computing XOR requires Ω( logn
log logn) parallel time.

Historical note: PRAM model was developed before multi-processing really existed. It is a clean

model, but real machines rarely provide uniform low-latency shared memory at scale so this assumption

is unrealistic.
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x1 x2 x3 x4 x5 x6 x7 x8

Inputs in shared memory array X[1..n] (example with n = 8)

Shared Memory

Level 1 = Timestep 1

Level 2 = Timestep 2

Level 3 = Timestep 3

P1 P2 P3 P4

x1 ⊕ x2 x3 ⊕ x4 x5 ⊕ x6 x7 ⊕ x8

⊕ ⊕

(x1 ⊕ x2)⊕ (x3 ⊕ x4) (x5 ⊕ x6)⊕ (x7 ⊕ x8)

⊕

⊕8
i=1 xi

Tp = O(logn)

W = O(n)

Figure 2: Tree reduction (EREW PRAM): at each level, processors compute pairwise XORs, write results
back to shared memory, and the next level’s processors read those results. Level 1 uses n/2 processors,
Level 2 uses n/4, and so on, until one processor remains. Tp = O(log n) and W = O(n).

3 Model 2: MPC (Massively Parallel Computation

3.1 Model description

This formulation was inspired by googles Map Reduce System. MPC models a cluster with M ma-

chines, each with local memory S. The input (of size n) is arbitrarily distributed across all machines.

Typically S � n and MS ≥ n. Therefore, the dataset of size n cannot fit in the memory of a single

machine, but it fits comfortably across all machines’ total memory.

Computation happens in rounds. In each round we do the following:

1. Local compute: Each machine performs computation on its local data (usually linear time in its

data).

2. Shuffle: Machines send their data to other machines, with the constraint that each machine receives

at most S total data.

Performance measures.

• Rounds R: number of global compute/shuffle phases.

• Per-round machine compute ≤ S (i.e., linear compute on each machine)

• Total work ≈ R ·M · S.

• Typical regime: MS = Θ(n) and set S = nδ for some constant δ ∈ (0, 1).

3



3.2 Relationship to PRAM

With S = O(1) the model becomes a “message-passing” version of CREW-PRAM. One can show that

such a PRAM algorithm can be made into a MPC algorithm with constant S with only O(1) blowup in

number of rounds.

Increasing S (e.g., S = nδ) reduces the number of rounds for many (but not all!) problems to

R = O(logS n) = O(1/δ), highlighting a memory–communication trade-off.

4 Example: XOR in MPC

Partition the n bits across M machines (worst-case distribution allowed).

1. Local step: Each of the M machines XORs its local block into one bit.

2. Shuffle/reduce: Route those M bits to a designated machine responsible for aggregating results.

With S = nδ, a d-ary reduction yields

R = O(logS n) = O

(
1

δ

)
,

and the per-round machine remains ≤ S. Therefore, the XOR can be computed in a constant number of

rounds when each machine has polynomial (nδ) memory. e.g. if δ = 1
2 then S =

√
n and R = O(2).

5 Example: Prefix Sum in MPC

Input: Pairs (ai, i) for i ∈ [n]. Each pair is arbitrarily distributed across machines.

Goal: Compute prefix sums σi =
∑i

j=1 aj , allowing output to be arbitrarily distributed.

Step 1: Sorting / Rebucket by index

First we redistribute the data so that each machine stores a contiguous range of indices.

• Sort or route each pair (ai, i) by key i.

• After routing, each machine M` holds roughly S consecutive elements

M1 : (a1, . . . , aS), M2 : (aS+1, . . . , a2S), . . .

• This can be done in a single round since we have the element indices.

Step 2: Up-sweep (computing partial sums):

Each machine locally computes the prefix sums of its own data and then sends its sum upward in a tree

structure. This process repeats until we get to the root. See Figure 3. for the upsweep visualization.

• Each machine M` computes its local sum T` =
∑

ai∈M`
ai.

• Parent machines in higher levels aggregate the totals received from the children machines to compute

their subtree sum.
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• This continues up the tree until the root holds the total sum
∑n

i=1 ai.

Step 3: Down-sweep (propagating offsets):

Starting from the root with offset 0, offsets are pushed down the tree so that each machine learns the

total sum of all elements preceding its block. See Figure 4 for a visualization.

• The root has offset 0 and sends it to its leftmost child.

• Each parent P maintains its current offset (the total sum of all elements before its subtree). Suppose

P has children C1, . . . , Cd with corresponding subtree totals T1, . . . , Td (computed during the up-

sweep). Then:

offset(C1) = offset(P ), offset(C2) = offset(P ) + T1, offset(C3) = offset(P ) + T1 + T2, . . .

• Each leaf machine receives an offset equal to the prefix sum up to its first local element. It then

adds this offset to all its local prefix sums to produce the correct global values.

In other words, every machine M` learns the total sum of all elements preceding its local block. This

allows each machine to convert its local prefix sums into global prefix sums.

Overall complexity. The algorithm runs in R = O(logS n) rounds with total work O(MS logS n).

At the end, every machine holds the correct global prefix sums for its indices.

M1 M2 M3 M4

+ +

+
Total sum =

∑
i ai

Figure 3: Up-sweep phase: local block sums are aggregated in a tree until the root holds the global total.

5



M1 M2 M3 M4

+ +

+

T1 T2 T3 T4

0 T1+T2

0 T1 T1+T2 T1+T2+T3

Root offset = 0

Child offset = parent offset + sum of all left siblings’ subtree totals

Figure 4: Down-sweep phase: each parent passes offsets to its children so every machine knows the total
sum before its block. Leaf machines add these offsets to their local prefix sums to get global results.
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