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Lecture 12: VKDE, Attention, and HNSW

Instructor: Alex Andoni Scribes: Soham Samal

1 Review of KDE

1.1 Definition

Given a dataset P ⊂ Rd and kernel k(x, y) = e−‖x−y‖
2
, the KDE at a query point q is defined as:

KDE(q) =

n∑
i=1

k(pi, q).

Each term measures how close pi is to q, and the sum gives the estimated density around q.

2 Solving Attention via VKDE

Definition 1. We preprocess the dataset as P = {(pi, vi)} ∈ Rd × Rdv , and define

VKDE(q) =

n∑
i=1

k(pi, q) vi.

VKDE averages vectors vi weighted by their similarity to q, generalizing KDE to vector-valued data.

2.1 Attention Mechanism

x1, x2, ..., xn corresponds to the tokens of size n = context length
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Definition 2. Given pairs (qi, ki, vi) ∈ Rd × Rd × Rdv , define

Aij = exp[QKT ]ij = eqi·kj , Di =
∑
j

Aij , di.

Then the attention output is:

Y = D−1AV, where Yi =
∑
j

eqi·kj

di
vj .

D−1A is row normalized, where each row is essentially a probability distribution. We can then prove

this is a normalized value-KDE where the kernel is the exponential dot-product.

Algorithm for attention via VKDE:

Yi =
1

di

∑
j

e2qikj · vj =
1

di

∑
j

e‖qi‖
2+‖kj‖2−‖qi−kj‖2vj =

Suppose ‖qi‖ = ‖kj‖ = α. This is an appropriate assumption because we can always rescale and/or group

by weight of qi’s and kj ’s.

e2α
2

di

∑
j

e−‖qi−kj‖
2
vj =

e2α
2

di
V KDE(qi)

The exponential dot-product kernel is proportional to the Gaussian kernel e−‖qi−kj‖
2
. Thus, attention

performs a Gaussian-weighted average over the values, up to a constant normalization factor. The

normalization term di also corresponds to a VKDE instance over the same kernel but with all values

equal to one (scalar).

2.2 Hyper Attention paper

Speedups computation of attention by designing an algorithm to find S ∈ Rm×n, a n×n diagonal matrix

D, such that

‖Y −D−1ASTSV ‖op ≤ ε‖D−1A‖op‖V ‖op.

The matrix S acts as a sketching operator that reduces computational complexity while preserving

the operator norm up to a small error ε. The goal is to approximate the full attention computation

efficiently without sacrificing much accuracy.

2.3 Approximating VKDE using LSH

Fact 3. We can build an LSH hash function h : Rd → V such that:

Pr[h(p) = h(q)] ≈ e−‖p−q‖2 = k(p, q).

VKDE can be approximated in expectation via hashing:

• Build hash table H with hash function h.

• For each bucket b: H[b] =
∑

j:h(pj)=b
vj .
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Claim 4. E[out] = V KDE(q)

Proof : E[H[h(q)]] = E[
∑

j 1[h(pj) = h(q)]vj ] =
∑

j e
−‖pj−q‖2·vj

The expectation over random hash functions recovers the VKDE result, since the indicator function

1[h(pj) = h(q)] has expected value equal to the kernel similarity.

Note: If a function f solves KDE, we incur n1+α preprocess time and nβ query time for α, β < 1,

which implies that that total time for the attention algorithm would be n1+α + n1+β.

3 HNSW: Hierarchical Navigable Small World Graphs

HNSW is a class of graph-based approximate nearest neighbor (ANN) data structures. The intuition

is to move greedily toward the node whose neighbor is closest to the query. It is efficient in practice

but lacks formal guarantees for random or arbitrary graphs. First, we need someway to define ”intrinsic

dimension.” There exist multiple ways to define it, but we will use doubling dimension.

Definition 5. For a metric space (P, d), the doubling dimension dd(P ) is the smallest number such that

for any p ∈ P, r > 0, the ball B(p, r) ∩ P can be covered by 2dd(P ) balls B(pi, r/2) with pi ∈ P .

Fact 6. If P = Rk, then dd(P ) = Θ(k).

With infinite points, the doubling dimension should intuitively be k. Even if P ⊂ Rk is random, we

have:

dd(P ) ≤ min{Θ(k), O(log n)}.

since JL proves that you can appproximately preserve all distances with dimension reduction to O(log n)

space.

Theorem 7. (Indyk–Xu ’23) Disk ANN: We can build a graph G with degree O((4α)dd log ∆) where

α > 1 is the approximation factor and ∆ is the aspect ratio = max distP
min 6=0 distP

.
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For each query:

#steps ≤ O
(

logα
∆

(α− 1)ε

)
.

Guarantee:

C =
α+ 1

α− 1
+ ε, ∀ε > 0.
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