COMS E6998-9: Algorithms for Massive Data (Fall’25) Oct 13, 2025
Lecture 12: VKDE, Attention, and HNSW

Instructor: Alex Andoni Scribes: Soham Samal

1 Review of KDE

1.1 Definition

Given a dataset P C R% and kernel k(z, y) = e*Hx*yHQ, the KDE at a query point ¢ is defined as:
n
KDE(q) = > k(pi, q)-
i=1
Each term measures how close p; is to ¢, and the sum gives the estimated density around gq.

2 Solving Attention via VKDE

Definition 1. We preprocess the dataset as P = {(p;,v;)} € R? x R%, and define
VKDE(q) = > k(pi, q) vi-
i=1

VKDE averages vectors v; weighted by their similarity to ¢, generalizing KDE to vector-valued data.

2.1 Attention Mechanism
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1, T9, ..., Ty corresponds to the tokens of size n = context length



Definition 2. Given pairs (g;, ki, v;) € R? x R? x R%  define

A” = exp[QKT]U — eqi'k?j7 _DZ — ZAZ] 2 dl
J

Then the attention output is:

edi-kj
Vj.
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Y = D7'AV, whereY; = Z
J

D~ A is row normalized, where each row is essentially a probability distribution. We can then prove
this is a normalized value-KDE where the kernel is the exponential dot-product.
Algorithm for attention via VKDE:
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Suppose ||gi|| = ||k;|| = . This is an appropriate assumption because we can always rescale and/or group
by weight of ¢;’s and k;’s.
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The exponential dot-product kernel is proportional to the Gaussian kernel e llai=k;lI*, Thus, attention
performs a Gaussian-weighted average over the values, up to a constant normalization factor. The
normalization term d; also corresponds to a VKDE instance over the same kernel but with all values

equal to one (scalar).

2.2 Hyper Attention paper

Speedups computation of attention by designing an algorithm to find S € R™*"

D, such that

, an X n diagonal matrix

|Y — D7PASTSV|op < | DT Allopl|V [l op-

The matrix S acts as a sketching operator that reduces computational complexity while preserving
the operator norm up to a small error €. The goal is to approximate the full attention computation
efficiently without sacrificing much accuracy.

2.3 Approximating VKDE using LSH
Fact 3. We can build an LSH hash function h : R* =V such that:

Pr{h(p) = h(q)] = ¢ P~ = k(p, q).
VKDE can be approximated in expectation via hashing:
e Build hash table H with hash function h.

e For each bucket b: H[b] = Zj:h(pj) b Uj-


https://arxiv.org/abs/2310.05869

Claim 4. E[out]| = VKDE(q)

Proof: E[H[h(¢)]] = E[Y; 1[a(p;) = h(q)]vj] = 32, e Ins—al*v;

The expectation over random hash functions recovers the VKDE result, since the indicator function
1[h(p;) = h(q)] has expected value equal to the kernel similarity.

Note: If a function f solves KDE, we incur n't® preprocess time and n” query time for a,8 < 1,

which implies that that total time for the attention algorithm would be n!t® 4 n!+8,

3 HNSW: Hierarchical Navigable Small World Graphs

HNSW is a class of graph-based approximate nearest neighbor (ANN) data structures. The intuition
is to move greedily toward the node whose neighbor is closest to the query. It is efficient in practice
but lacks formal guarantees for random or arbitrary graphs. First, we need someway to define ”intrinsic
dimension.” There exist multiple ways to define it, but we will use doubling dimension.

Definition 5. For a metric space (P,d), the doubling dimension dd(P) is the smallest number such that
for any p € P,r > 0, the ball B(p,r) N P can be covered by 299F) balls B(p;,r/2) with p; € P.

Fact 6. If P = R¥, then dd(P) = O(k).

With infinite points, the doubling dimension should intuitively be k. Even if P C R¥ is random, we
have:

dd(P) < min{O(k), O(logn)}.

since JL proves that you can appproximately preserve all distances with dimension reduction to O(logn)
space.

Theorem 7. (Indyk-Xu ’23) Disk ANN: We can build a graph G with degree O((4a)%log A) where

max dist P

a > 1 is the approximation factor and A is the aspect ratio = min o distP



For each query:
A
#steps < O | log, ——— | -
(o —1)e

Guarantee: +1
c=2""1: wve>o
a—1
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