
COMS E6998-15: Algorithms for Massive Data (Fall’2023) Sep 6, 2023

Lecture 9: Compressed Sensing

Instructor:Alex Andoni Scribes:Yasaman Mahdaviyeh

1 Overview

Recall that in compressed sensing we have a vector x ∈ Rn that is approximately (at most) k sparse, in

the sense that the error

Errk1(x) ≜ min
x′ is k-sparse

∥∥x− x′
∥∥
1

is small. The goal is to design an m× n matrix of measurements A, where m < n such that given A and

y = Ax, we can recover a vector x′ such that∥∥x− x′
∥∥
1
≤ c Errk1(x), (1)

for some small constant c. We considered the following L1 algorithm.

L1 algorithm:

Minimize ∥x∗∥1
such that Ax∗ = y

Note that the algorithm above is a linear program and can be solved in polynomial time in n. We define

the following property of matrix A that would be sufficient to get guarantees of the type eq. (1) for this

algorithm.

Definition 1 (Restricted Isometry Property). We say that the matrix A is (k, ε)-RIP if for all k-sparse

x

∥Ax∥2 = (1± ε) ∥x∥2 .

2 Guarantee on L1 algorithm

The main focus of the class today is to prove the following theorem. Let x∗ be a solution to L1 algorithm.

Theorem 2 (L1 theorem). If A is (4k, ε)-RIP then

∥x∗ − x∥1 ≤ O(1) Errk1(x).

1

Before we prove the theorem above we will show that there are matrices that satisfy RIP.

Theorem 3. If A is an OSE for dimension k with probability of at least 1− δ where δ ≤ 0.1

(nk)
, then with

probability of at least 0.9, A is (k, ε)-RIP.

Proof. On a high level, since the set of vectors supported on a fixed set of coordinates of size at most

k form a subspace of dimension k and there are at most
(
n
k

)
such subspaces, we can apply OSE to each

subspace and then do a union bound.

Fix any set U ⊂ [n] of size k, by OSE,

Pr

[
∀x, supp(x) ⊆ U, 1− ε ≤

∥Ax∥2
∥x∥2

≤ 1 + ε

]
≥ 1− δ.

By union bound over all U ⊂ [n] of size k,

Pr

[
∀x, x is k-sparse, 1− ε ≤

∥Ax∥2
∥x∥2

≤ 1 + ε

]
≥ 1−

(
n

k

)
· δ ≥ 0.9.

Corollary 4. Existence of OSE (see HW2 problem 1) with dimension m = O(k+ log(1/δ)) implies that

there exists A that is (k, ε)-RIP with m = O(k + log
(
n
k

)
) = O(k log(n/k)).

Normally we would upper bound log
(
n
k

)
by O(k log n), but here we have written the tighter bound

above because in a lot of the applications of compressed sensing, k can be cn for a small constant c, so

the difference between log n/k and log n becomes significant.

It is known that if our goal is to achieve eq. (1) the bound above is tight. But if the original x is

k-sparse and our goal is to recover it exactly, the bound above for m is not tight, as we saw in the last

question of HW1.

Note that RIP itself is deterministic, while OSE is a random map. So we could take an OSE and

check whether it is actually RIP, if it is not, then we can sample again, and we know that we won’t have

to resample too many times. One issue is that it is hard to check whether a matrix is RIP (can’t be done

in polynomial time). Another option is to hand design a deterministic matrix A and know for sure that

it is RIP.

Now we prove the L1 Theorem.

Proof of theorem 2 The proof will rely on the following intermediate property.

Definition 5. We say that A satisfies (k, ε)-nullspace property if for all T ⊂ [n], |T | ≤ k, and for all

η ∈ Rn, if Aη = 0 then ∥η∥1 ≤ (1 + ε) ∥η−T ∥1 or equivalently ∥ηT ∥1 ≤ ε ∥η−T ∥1. Here we have used ηT
to denote the restriction of η to coordinates that are in T , and η−T to denote the restriction to the rest

of the coordinates.

Proof of the theorem would then follow from the two following Lemmas which we will prove next.

Lemma 6. If A is ((2 + r)k, ε-RIP then A satisfies (2k,
√

2
r ·

1+ε
1−ε)-nullspace property.

Lemma 7. If A satisfies (2k, ε)-nullspace property with ε < 1/2, then ∥x∗ − x∥1 ≤ 2 · 1+ε
1−ε · Err

k
1(x).

2

We will first prove the lemma above.

Proof of lemma 7 Define the error vector η ≜ x∗ − x. Since x∗ is a solution to L1 algorithm, we

must have Ax∗ = y and consequently Aη = Ax∗ −Ax = 0. Set T to be the largest k coordinates of x so

that support(x′) ⊆ T (where x′ is a k-sparse vector that realizes Errk1(x)). By definition 5 we have

∥ηT ∥1 ≤ ε ∥η−T ∥1 . (2)

Since x∗ a solution to L1 algorithm we also have ∥x∗∥1 ≤ ∥x∥1, or equivalently

∥x∗T ∥1 +
∥∥x∗−T

∥∥
1
≤ ∥xT ∥1 + ∥x−T ∥1 (3)

By triangle inequality we have

∥x∗T ∥1 = ∥x∗T − xT + xT ∥1 ≥ ∥xT ∥1 − ∥ηT ∥1 ,
and∥∥x∗−T

∥∥
1
≥∥η−T ∥1 − ∥x−T ∥1 .

Plugging these lower bounds in eq. (3) we get

∥x−T ∥1 ≥ ∥η−T ∥1 − ∥ηT ∥1 − ∥x−T ∥1 ,

which means that

∥η−T ∥1 ≤ 2 ∥x−T ∥1 + ∥ηT ∥1 ≤ 2Errk1(x) + ε · ∥η−T ∥1 ,

where we have applied eq. (2) and used the fact that ∥x−T ∥1 = Errk1(x). Rearranging the terms in

equation above we get

∥η−T ∥1 ≤
2

1− ε
Errk1(x).

By the nullspace property we get

∥η∥1 ≤ 2 · 1 + ε

1− ε
Errk1(x).

Proof of lemma 6 Define M ≜ rk, and let T0 = T , Now let T1 be the next largest M coordinates of

η−T , and so on up to Ts, which is the last at most M coordinates. Define η0 = ηT0 + ηT and ηi = ηTi+1 .

Then we can write η =
∑

i≥0 ηi. We have

∥ηT ∥2 ≤ ∥η0∥2 ≤
∥Aη0∥2
1− ε

.

Since Aη = 0, we can write Aη0 = −Aη1 − Aη2 − · · · − Aηs−1. Combining this with equation above we

3

get

∥ηT ∥2 ≤
∥Aη1∥2 + ∥Aη2∥2 + · · ·

1− ε
.

Let η(j) denote the jth coordinate of η. For all j ≥ 1, and all j ∈ Tj+1, |η(i)| ≤
∥ηj−1∥1

M , which implies

that

∥ηj+1∥2 ≤
(
M · (

∥ηj−1∥1
M

)2
)1/2

=
∥ηj−1∥1√

M

This implies that

∥ηT ∥2 ≤
1 + ε

1− ε

∑
j≥1

∥ηj∥2 ≤
1 + ε

1− ε

∑
j≥1

∥∥ηTj

∥∥
1√

M
=

1 + ε

1− ε
· 1√

M
· ∥η−T ∥1 .

We have

∥ηT ∥1 ≤
√
2k ∥ηT ∥2 ≤

1 + ε

1− ε
·
√
2k√
rk

· ∥η−T ∥2 =
1 + ε

1− ε
·
√

2

r
· ∥η−T ∥2

The L1 algorithm runs in polynomial time since it is a linear program. Can we get a solution with

similar guarantees in nO(1)?

3 Iterative Hard Thresholding

In the next lecture we will go over Iterative Hard Thresholding algorithm and see that we can get similar

guarantees with less run time. Here we give a brief overview of the algorithm. For a vector z, define

projection Pk(z) ≜ argminz′ is k-sparse ∥z − z′∥1, that is, projection into the top k coordinates of z.

Hard Thresholding Algorithm:

x1 = (0, . . . , 0)

For t = 1 . . . T :

xt−1 = Pk(x
t +A⊤(y −Axt))

Return xT+1

Theorem 8 (Blumensath, Davies’ 09). If A is (3k, ε)-RIP, where ε < 1/8, suppose that y = Ax + e,

4

where e is some error, then xT+1 satisfies

∥∥xT+1 − x
∥∥
2
≤ O(1)

[
2−T ∥x∥2 +

Errk1(x)√
k

+ ∥e∥2
]

Note the guarantee above, which is called L2, L1 guarantee is stronger than the guarantees of the

type in eq. (1), and in fact implies a guarantee of type eq. (1). We will prove a slightly weaker theorem

in the next class.

5

	Overview
	Guarantee on L1 algorithm
	Iterative Hard Thresholding

