
COMS E6998-15: Algorithms for Massive Data Sep 20, 2023

Lecture 5: Dynamic connectivity, Least Square Regression

Instructor: Alex Andoni Scribe: Yufei Guo

1 Recap

Dynamic sampling

Using dynamic sampling, in the generalized turnstile model, given initial vector 𝑋 ∈ ℤ𝑛 and updates to
it, we can provide a linear random sketch of 𝑋. And at the end of the stream, we can output a random

coordinate 𝑆 such that Pr [𝑆 = 𝑖] = (1 ± 𝜀) ⋅ 𝟙 [𝑋𝑖 ≠ 0]
‖𝑋‖0

± 1
𝑛3 . Where ‖𝑋‖0 is the support of vector 𝑋.

We can obtain achieve such goal using 𝒪 (log2 𝑛) space (with high probablity). We will be using this
tool to solve dynamic connectivity problem.

2 Dynamic connectivity

Setting

Compared to previous setting of normal graph streaming, in this new dynamic graph stream setting, the
stream could contain insertion and deletion of edges (as opposed to only have insertions).

Problem

We wish to determine the connectivity and/or spanning forest in the graph using 𝒪 (𝑛 ⋅ (log 𝑛)𝒪(1)) space.

Borůvka’s algorithm

Before designing an online algorithm, we first introduce a offline greedy algorithm that also allows par-
allelization.

Algorithm 1: Borůvka’s algorithm
1 Keep connected components within disconnected graph initialized as {1}, {2}, ⋯ , {𝑛}.;
2 for 𝑡 = 1, ⋯ , 𝒪 (log 𝑛) do
3 For each connected component 𝑄 ⊆ [𝑛], take any edge that cross 𝑄. A edge that cross 𝑄 is

simply an edge leaves 𝑄.;
4 Merge and compute the new connected components.;

Correctness of Borůvka’s algorithm directly comes from its procedure.

1

Proof. Let 𝐶𝐶𝑗 be the number of connected components after 𝑗 iterations, and let 𝐶𝐶 be the total num-
ber of connected components.
Since at each iteration we find an edge that leaves every connected component and merge them, each iter-
ation we decrease the number of connected components by a half and (𝐶𝐶𝑗+1 − 𝐶𝐶) ≤ 1

2 (𝐶𝐶𝑗 − 𝐶𝐶).
Since the maximum number of connected components is 𝑛, and we have 𝑡 = 𝒪 (log 𝑛) iterations, the
algorithm is guaranteed to terminate.

Definition 1 (node-edge incidence vector). ∀𝑣 ∈ 𝑉 , we keep a vector 𝑋𝑣 ∈ ℝ(𝑛
2), where (𝑛

2) is the total
number of vertex pair.

Let 𝑋𝑣 (𝑣, 𝑖) =
⎧{{
⎨{{⎩

1 if (𝑣, 𝑗) ∈ 𝐸, 𝑣 < 𝑗
−1 if (𝑗, 𝑣) ∈ 𝐸, 𝑗 < 𝑣
0 otherwise

In other words, edges that goes out of 𝑣 are marked 1 in 𝑋𝑣, where edges goes to 𝑣 are marked −1. And
edges goes from small index to large index.

The original graph is undirected, but such ”direction” in edges will help us in the future.

Dynamic connectivity algorithm

Streaming phase

In streaming phase we keep a sketch of what we’ve met in the stream, which we will use later to deduce
the connectivity of the graph.

• For each 𝑣 ∈ 𝑉 , keep a dynamic sampling of 𝑋𝑣 called 𝐷𝑆 (𝑋𝑣). Note that all 𝑋𝑣 uses the same
randomness, or same matrix 𝐴 to sketch the vector 𝑋𝑣.

• At insertion of edge (𝑖, 𝑗), we will need to update 𝑋𝑖 and 𝑋𝑗, WLOG, assume 𝑖 < 𝑗.

• 𝐷𝑆 (𝑋′
𝑖) = 𝐷𝑆 (𝑋𝑖 + 𝑒𝑖,𝑗) = 𝐷𝑆 (𝑋𝑖) + 𝐷𝑆 (𝑒𝑖,𝑗), where the second step comes from the linearity

of dynamic sampling.

• Similarly, 𝐷𝑆 (𝑋′
𝑗) = 𝐷𝑆 (𝑋𝑗) − 𝐷𝑆 (𝑒𝑖,𝑗).

• Upon deletion, simply reverse the plus and minus sign.

Connectivity algorithm using sketches

This algorithm acts similarly as Borůvka’s algorithm, except some minor differences on line 3.

Algorithm 2: Dynamic connectivity algorithm using sketches
1 Keep connected components within disconnected graph initialized as {1}, {2}, ⋯ , {𝑛}.;
2 for 𝑡 = 1, ⋯ , 𝒪 (log 𝑛) do
3 For each connected component 𝑄 ⊆ [𝑛], sample an edge that cross 𝑄 using the sketches.;
4 Merge and compute the new connected components.;

One immediate question is, how do we do line 3, sample a random edge that cross 𝑄?

2

If 𝑄 = {𝑣}, then it’s simple, we can use 𝐷𝑆 (𝑋𝑣) directly since the goal of dynamic sampling is to provide
an random non-zero coordinate, and the non-zero coordinates in 𝑋𝑣 are exactly edges that enter/leaves 𝑣.

Definition 2. Take any connected 𝑄 ⊆ [𝑛], 𝑋𝑄 ≜ 𝑄-edge incidence vector. Defined as

𝑋𝑄 (𝑖, 𝑗) =
⎧{{
⎨{{⎩

1 if 𝑖 ∈ 𝑄, 𝑣 ∉ 𝑄, (𝑖, 𝑗) ∈ 𝐸, 𝑖 < 𝑗
−1 if 𝑖 ∈ 𝑄, 𝑣 ∉ 𝑄, (𝑗, 𝑖) ∈ 𝐸, 𝑗 < 𝑖
0 otherwise

Definition for 𝑋𝑄 is very similar to vertex edge incidence vector, but in a more ”combined way”, since 𝑄
is a set of vertices, this intuition gives an easier way to calculate 𝑋𝑄.

Claim 3. 𝑋𝑄 = ∑
𝑣∈𝑄

𝑋𝑣

Proof. Consider 𝑋𝑄 (𝑖, 𝑗), WLOG, assume 𝑖 < 𝑗.

𝑋𝑄 (𝑖, 𝑗) =

⎧{{{
⎨{{{⎩

𝑋𝑖 (𝑖, 𝑗) + 𝑋𝑗 (𝑖, 𝑗) = 1 + (−1) = 0 if 𝑖 ∈ 𝑄, 𝑗 ∈ 𝑄
𝑋𝑖 (𝑖, 𝑗) = 1 if 𝑖 ∈ 𝑄, 𝑗 ∉ 𝑄
𝑋𝑗 (𝑖, 𝑗) = −1 if 𝑖 ∉ 𝑄, 𝑗 ∈ 𝑄
0 if 𝑖 ∉ 𝑄, 𝑗 ∉ 𝑄

By construction, 𝑋𝑄 is non-zero on coordinates where edges cross 𝑄. And to sample an edge that cross

𝑄, we can calculate 𝐷𝑆 (𝑋𝑄) = 𝐷𝑆 ⎛⎜
⎝

∑
𝑣∈𝑄

𝑋𝑣
⎞⎟
⎠

= ∑
𝑣∈𝑄

𝐷𝑆 (𝑋𝑣), by linearity of DS.

However, one immediate issue is, recall all 𝐷𝑆 (𝑋𝑣) uses the same randomness (matrix 𝐴) to allow direct
sum, for iteration 𝑡 ≥ 2, DS are not independent, since they are calculated using DS from previous
iteration.
One easy fix is to keep 𝑡 = 𝒪 (log 𝑛) sketches for each 𝑋𝑣, namely 𝐷𝑆1 (𝑋𝑣) , ⋯ , 𝐷𝑆𝑡 (𝑋𝑣). And at
iteration 𝑘, just use 𝐷𝑆𝑘 (𝑋𝑣).

Total space

Space used is for each vertex, the number of sketches we keep and space for each DS.
Thus 𝑛 ⋅ 𝒪 (log 𝑛) ⋅ 𝒪 (log2 𝑛) = 𝒪 (𝑛 log3 𝑛).

Necessity for keeping 𝑡 = 𝒪 (log 𝑛) copies

Suppose we want to query a DS 𝑘 times and get 𝑘 samples and that 𝑘 ≫ log 𝑛. If we consider the support
of 𝑋 is about 𝑘, doing 𝑘 sampling will almost recover all of 𝑋. Thus it must take 𝑘 space to recover at
least 𝑘 samples. Since one cannot compress a random vector of dimension 𝑛 to a much smaller dimension.

Recent algorithms

[KKM13] provides an 𝒪 (log𝒪(1) 𝑛) update/query time algorithm. Also check [AGM12].

3

3 Numerical Linear Algebra

Problem: Least Square Regression

Definition 4 (Least Square Regression). Given 𝐴 be a 𝑛 × 𝑑 matrix, 𝑏 be a 𝑛 × 1 column vector, find 𝑥∗

such that 𝑥∗ = arg min
𝑥∈ℝ𝑑

‖𝐴𝑥 − 𝑏‖2.

Think 𝐴 as 𝑛 datapoints in dimension 𝑑, and 𝑑 ≪ 𝑛. The closed form solution for 𝑥∗ is simple when
∇𝑥‖𝐴𝑥 − 𝑏‖2 = 0. Which let 𝑥∗ = (𝐴𝑇 𝐴) −1𝐴𝑇 𝑏.
Doing direct calculation for 𝑥∗ takes 𝒪 (𝑛2𝑑 + 𝑑3), using fast matrix multiplication, it can be reduced to
𝒪 (𝑛𝑑𝜔−1 + 𝑑𝜔), where 𝜔 is the fast matrix multiplication exponent (using Strassen’s or Coppersmith’s).
One immediate question is, if we allow some approximation, how can we do this faster.

Tool: Dimension reduction

Theorem 5 (Johnson-Lindenstrauss Lemma [JL84] (Distributive JL)).
∀𝜀 > 0, ∀𝑘 ∈ ℕ, ∃ distribution over linear maps 𝜑 ∶ ℝ𝑛 → ℝ𝑘 such that
∀𝑥, 𝑦 ∈ ℝ𝕟, Pr

𝜑
[‖𝜑 (𝑥) − 𝜑 (𝑦)‖2 ∈ (1 ± 𝜀)‖𝑥 − 𝑦‖2] ≥ 1 − 𝑒− 𝜀2𝑘

9

Corollary. Let 𝑘 = 9 ⋅ log 1
𝛿

𝜀2 , Pr [JL fails] ≤ 𝛿

Corollary. For fixed 𝑛 points, take 𝑘 = 27 ⋅ log 𝑁
𝜀2 , then for each pair of 𝑥, 𝑦, JL fails with probability no

greater than 1
𝑁3 . By union bound, Pr [All pairs are ”nice”] ≥ 1

𝑁 .

We then provide a standard construction for this linear map for distributive JL. Let 𝜑 (𝑥) = 1√
𝑘 ⋅ 𝐺 ⋅ 𝑥,

where 𝐺𝑖𝑗 is from random Gaussian 𝑁 (0, 1). Where 𝐺 is a 𝑘 × 𝑛 matrix.

Claim 6. 𝜑 satisfy DJL theorem.

Proof. Fix arbitrary 𝑧 = 𝑥 − 𝑦, then 𝜑 (𝑥) − 𝜑 (𝑦) = 𝜑 (𝑧). Then it’s enough to prove for a fixed 𝑧 ∈ ℝ𝑛

Pr
𝜑

[‖𝜑 (𝑧)‖2
2 ∈ (1 ± 𝜀)‖𝑧‖2

2] ≥ 1 − 𝑒− 𝜀2𝑘
9 .

‖𝜑 (𝑧)‖2
2 = 1

𝑘
𝑘

∑
𝑖=1

(𝜑𝑖 (𝑧))2

= 1
𝑘

𝑘
∑
𝑖=1

(𝐺𝑖 ⋅ 𝑧)2 Where 𝜑𝑖 is essentially the 𝑖-th row of matrix 𝐺

Now we take a look at 𝐺𝑖 ⋅ 𝑧 =
𝑛

∑
𝑗=1

𝑔𝑖𝑗𝑧𝑗

Fact 7 (Stability of Gaussian distribution).
𝑛

∑
𝑖=1

𝑔𝑖 ⋅ 𝑧𝑖 ∼‖𝑧‖2 ⋅ 𝑔, where 𝑔𝑖, 𝑔 ∼ 𝑁 (0, 1)
One easy interpretation of this is the summation of variances make this equality hold.

4

Now by stability, we have 𝐺𝑖 ⋅ 𝑧 ∼ 𝑔𝑖 ⋅‖𝑧‖2, where 𝑔𝑖 ∼ 𝑁 (0, 1).

‖𝜑 (𝑧)‖2
2 = 1

𝑘
𝑘

∑
𝑖=1

(𝐺𝑖 ⋅ 𝑧)2

= 1
𝑘

𝑘
∑
𝑖=1

(𝑔𝑖 ⋅‖𝑧‖2)2

= ⎛⎜
⎝

1
𝑘

𝑘
∑
𝑖=1

(𝑔𝑖)
2⎞⎟
⎠

⋅‖𝑧‖2
2

Then it suffice to prove (1
𝑘 ∑𝑘

𝑖=1 (𝑔𝑖)
2) ∈ (1 ± 𝜀)

Fact 8. 1
𝑘

𝑘
∑
𝑖=1

(𝑔𝑖)
2 is called 𝜒2 distribution with 𝑘 degrees of freedom.

And it’s known that Pr ⎡⎢
⎣

1
𝑘

𝑘
∑
𝑖=1

(𝑔𝑖)
2 ∈ (1 ± 𝜀)⎤⎥

⎦
≥ 1 − 𝑒− 𝜀2𝑘

9

Approximation for Least square regression

Goal: Find 𝑥′ ∈ ℝ𝑑 such that ‖𝐴𝑥′ − 𝑏‖2 ≤ (1 + 𝜀)‖𝐴𝑥∗ − 𝑏‖2.
Since 𝑥∗ = arg min𝑥∈ℝ𝑑‖𝐴𝑥 − 𝑏‖2. And we have 𝜑 (𝑥) = 𝑆𝑥 that satisfy DJL, we should have that
𝑥∗ ≈ arg min

𝑥∈ℝ𝑑
‖𝜑 (𝐴𝑥 − 𝑏)‖2

= arg min
𝑥∈ℝ𝑑

‖§ (𝐴𝑥 − 𝑏)‖2

= arg min
𝑥∈ℝ𝑑

‖𝑆𝐴𝑥 − 𝑆𝑏‖2

Since 𝑆𝐴 is an 𝑘 × 𝑑 matrix, and 𝑆𝑏 is of dimension 𝑘, this should provide a speed-up compared to direct
calculation.

5

References
[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. “Analyzing Graph Structure via Lin-

ear Measurements”. In: Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2012, pp. 459–467. doi: 10.1137/1.9781611973099.40. eprint: https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611973099.40. url: https://epubs.siam.
org/doi/abs/10.1137/1.9781611973099.40.

[JL84] William Johnson and Joram Lindenstrauss. “Extensions of Lipschitz maps into a Hilbert
space”. In: Contemporary Mathematics 26 (Jan. 1984), pp. 189–206. doi: 10.1090/conm/026/
737400.

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. “Dynamic graph connectivity in poly-
logarithmic worst case time”. In: Proceedings of the 2013 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2013, pp. 1131–1142. doi: 10.1137/1.9781611973105.81.
eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611973105.81. url: https:
//epubs.siam.org/doi/abs/10.1137/1.9781611973105.81.

6

