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1 Dynamic sampling tool

Maintain sketch of x ∈ Zn under updates (ij , δj) ∈ [n] × Z s.t. at the end we can produce a sample

(S,XS) s.t. Pr[S = i] = 1[xi ̸=0]
∥x∥0 ± 1

n3

Recall Case 2.2: when ∥x∥0 = 1 or ∥x∥0 > 1

Our solution maintains three quantities

• α =
∑

i xii

• β =
∑

i xi
• γ =

∑
i xiz

i mod p where p is a prime > n4 and z is random from Zp

Test: γ = βz
α
β mod p, if not this implies ∥x∥0 > 1. Otherwise output (αβ , β)

Proof. of correctness.

Test passes if γ = βz
α
β (mod p)

⇔
∑

xiz
i = βz

α
β (mod p)

xSz
S = SzS (mod p) if ∥x∥0 = 1 and xS ̸= 0

Suppose ∥x∥0 > 1 then p(z) =
∑n

i=1 xiz
i − βz

α
β (mod p) ̸= 0 since there is at least one non-zero term

with a power of z.

Failure occurs when p(z) = 0 for chosen z.

Prz[p(z) = 0] ≤ n

p
since p(z) is of degree n and z ∈ Zp

≤ 1

n3
since p > n4

Case 3

Case 3: Fix k, ∥x∥0 ≤ k, find all non-zeros of x. Target space will be O(k · logk)
Sketch:

– Pick a random hash function h : [n] → [2k] (maps each coordinate of x into something of size 2k).
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– The figure above displays a linear sketch which throws all coordinates of x into different buckets in

S. The number of buckets is 2k (or any constant factor of the total number of non-zeros in x, k).

In cell j of S, store Case 2.2 sketch on vector x
∣∣∣
h=j

(interpreted as h(x) → j).

– Fix s s.t Xs ̸= 0, then the P [Xs is isolated], that is, no collisions with other non-zero coordinates

is:

Pr[s is isolated] ≥ # of free spaces

# of total spaces

Pr[s is isolated] ≥ k + 1

2k
in worst case k − 1 cells are occupied in S

≥ 1

2

– Hence we succeed in extracting one non-zero coordinate of x with probability 1
2 .

Full sketch

Repeat sketch above t = 2logk times:
Using hash functions: h1, . . . , ht : [n] → [2k]
Store Si corresponding to hi, i = 1 . . . 2k
Extraction: go over all cells of S1 . . . St:

extract the isolated coordinates (if exist) using Case 2.2.
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Pr[s is isolated in at least one Si] = 1− Pr[s is not isolated for i = 1 . . . t]

≥ 1− (
1

2
)t

≥ 1− 1

4k

Pr[all k non-zeros of x are extracted] ≥ 1− Pr[∃ one non-zero of x which is not isolated]

≥ 1− k · 1

4k

=
3

4

Case 4

In Case 3, we extracted all k non-zeros. In case 4 we are back to the situation where we only need to

extract at random one non-zero coordinate but now the support of x is much larger. We cannot use the

previous solution because of this larger space.

Case 4: ∥x∥0 = S ∈ [2j , 2j+1]. For example, think of 2j as
√
n.

Look at a subset of coordinates Ij s.t. ∥x
∣∣∣
Ij
∥0 ≈ 1.

Ij = random subset of [n] where Pr[i ∈ Ij ] = 2−j .

Choose a random hash function h : [n] → {0, 1, . . . , 2j − 1} and define Ij = {i : h(i) = 0}, where the

E[|Ij |] = n · 2−j .

We hope to sample exactly one.

Pr[∥x
∣∣∣
Ij
∥0 = 1] =

S∑
i=1

P (particular coord is included) · P (none of the other coords are included)

=
S∑

i=1

2−j · (1− 2−j)j−1

≥ S · 2−j(1− 2−j)S

≈ S · 2−je
−S

2j for small enough x: 1− x ≈ e−x

≥ 2j · 2−je
−2j+1

2j

= e−2

Just store Case 2.2 for x
∣∣∣
Ij
. There is at least e−2 probability in succeeding in producing a random s in

supp(x).

Boost success probability to 1− 1
n3 by repeating t = O(logn) times.
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Pr[succeed in producing a random s ∈ supp(x) in at least one of the t trials ] = 1− Pr[we fail in all t trials ]

≥ 1− (1− e−2)t

≥ 1− 1

n3
.

Case 5: Arbitrary x

– For each j = 0 . . . logn, prepare Case 4

– To generate a random s ∈ supp(x):

just iterate j = 0 . . . logn, and report first (s, xs), xj ̸= 0, found.

Correctness: Let j be the unique j s.t. 2j ≤ ∥x∥0 ≤ 2j+1.

Space: O(log2n) words since we needed O(logn) for logn iterations of j· O(logn) for building Case 4 for

each iteration ·O(1) for space for Case 2.2.

It is important to note that all of these sketches are linear taking the form = A · x.

2 Dynamic Connectivity

Setting: dynamic graph in stream (stream contains insertions and deletions of edges which are correct.

For example, we never delete an edge which doesn’t exist).

Problem: connectivity or spanning forest in O(n(logn)O(1)) space, where n is number of vertices.

Suppose there is a graph where someone deletes multiple edges:
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How do we determine the spanning forest and whether the graph is connected or not?

Algorithm 1 Boruka’s Algorithm (offline (no streaming) algorithm for spanning forest)

Keep connected components, starting with each vertex as its own connected component
For t = O(logn) times:

for each connected component Q ⊆ [n], pick an edge crossing Q
compute new connected components with chosen edges
repeat on new connected components

Correctness: Connected component (CC)

CCj := CCs after j steps

CC = total #CCs

Claim 1. (CCj+1 − CC) ≤ 1
2(CCj − CC)

Proof. Consider a final connected component. Each CC at time j, Qj , is paired with another CC. Since

they are all paired, the number of CCs will drop by a factor of 2.
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We need to simulate this algorithm in the streaming model.

Dynamic Connectivity: ∀ vertex v, we define vector Xv ∈ R(
n
2) (a node-edge incidence vector).

• Xv(v, j) = +1 if (v, j) ∈ E, v < j where E is the set of edges

• Xv(j, v) = −1 if (j, v) ∈ E, j < v

• Xv = 0 otherwise

Though the graph is undirected, we can orient the edges for the sake of the vectors. For example, (arrows

indicate going towards vertices with larger numbers)

(1, v) (6, v) (v, 5)

Xv = [−1 − 1 + 1]

Dynamic connectivity basic sketch:

– ∀ vertices v ∈ [n], just keep a Dynamic Sampling sketch for xv

Space: O(nlog2n).

Claim 2. ∀ Q ∈ [n],
∑

v∈Q xv is a vertex-edge incidence vector on Q.

6


