Lecture 4: Streaming for Dynamic Graphs

1 Dynamic sampling tool

Maintain sketch of $x \in \mathbb{Z}^{n}$ under updates $\left(i_{j}, \delta_{j}\right) \in[n] \times \mathbb{Z}$ s.t. at the end we can produce a sample (S, X_{S}) s.t. $\operatorname{Pr}[S=i]=\frac{\mathbb{1}\left[x_{i} \neq 0\right]}{\|x\|_{0}} \pm \frac{1}{n^{3}}$
Recall Case 2.2: when $\|x\|_{0}=1$ or $\|x\|_{0}>1$
Our solution maintains three quantities

- $\alpha=\sum_{i} x_{i} i$
- $\beta=\sum_{i} x_{i}$
- $\gamma=\sum_{i} x_{i} z^{i} \bmod p$ where p is a prime $>n^{4}$ and z is random from \mathbb{Z}_{p}

Test: $\gamma=\beta z^{\frac{\alpha}{\beta}} \bmod p$, if not this implies $\|x\|_{0}>1$. Otherwise output $\left(\frac{\alpha}{\beta}, \beta\right)$
Proof. of correctness.

$$
\text { Test passes if } \gamma=\beta z^{\frac{\alpha}{\beta}} \quad(\bmod p)
$$

$$
\begin{aligned}
\Leftrightarrow \sum x_{i} z^{i} & =\beta z^{\frac{\alpha}{\beta}} & (\bmod p) & \text { if }\|x\|_{0}=1 \text { and } x_{S} \neq 0
\end{aligned}
$$

Suppose $\|x\|_{0}>1$ then $p(z)=\sum_{i=1}^{n} x_{i} z^{i}-\beta z^{\frac{\alpha}{\beta}}(\bmod p) \neq 0$ since there is at least one non-zero term with a power of z .
Failure occurs when $p(z)=0$ for chosen z.

$$
\begin{aligned}
\operatorname{Pr}_{z}[p(z)=0] & \leq \frac{n}{p} & & \text { since } p(z) \text { is of degree } n \text { and } z \in \mathbb{Z}_{p} \\
& \leq \frac{1}{n^{3}} & & \text { since } p>n^{4}
\end{aligned}
$$

Case 3

Case 3: Fix $k,\|x\|_{0} \leq k$, find all non-zeros of x. Target space will be $O(k \cdot \log k)$
Sketch:

- Pick a random hash function $h:[n] \rightarrow[2 k]$ (maps each coordinate of x into something of size $2 k$).

- The figure above displays a linear sketch which throws all coordinates of x into different buckets in S. The number of buckets is $2 k$ (or any constant factor of the total number of non-zeros in x, k). In cell j of S, store Case 2.2 sketch on vector $\left.x\right|_{h=j}($ interpreted as $\mathrm{h}(\mathrm{x}) \rightarrow j)$.
- Fix s s.t $X_{s} \neq 0$, then the $P\left[X_{s}\right.$ is isolated $]$, that is, no collisions with other non-zero coordinates is:

$$
\begin{aligned}
\operatorname{Pr}[s \text { is isolated }] & \geq \frac{\# \text { of free spaces }}{\# \text { of total spaces }} \\
\operatorname{Pr}[s \text { is isolated }] & \geq \frac{k+1}{2 k} \quad \text { in worst case } k-1 \text { cells are occupied in } S \\
& \geq \frac{1}{2} \quad
\end{aligned}
$$

- Hence we succeed in extracting one non-zero coordinate of x with probability $\frac{1}{2}$.

Full sketch

Repeat sketch above $t=2 \log k$ times:
Using hash functions: $h_{1}, \ldots, h_{t}:[n] \rightarrow[2 k]$
Store S_{i} corresponding to $h_{i}, i=1 \ldots 2 k$
Extraction: go over all cells of $S_{1} \ldots S_{t}$:
extract the isolated coordinates (if exist) using Case 2.2.
$\operatorname{Pr}\left[s\right.$ is isolated in at least one $\left.S_{i}\right]=1-\operatorname{Pr}[s$ is not isolated for $i=1 \ldots t]$

$$
\begin{aligned}
& \geq 1-\left(\frac{1}{2}\right)^{t} \\
& \geq 1-\frac{1}{4 k}
\end{aligned}
$$

$\operatorname{Pr}[$ all k non-zeros of x are extracted $] \geq 1-\operatorname{Pr}[\exists$ one non-zero of x which is not isolated $]$

$$
\begin{aligned}
& \geq 1-k \cdot \frac{1}{4 k} \\
& =\frac{3}{4}
\end{aligned}
$$

Case 4

In Case 3, we extracted all k non-zeros. In case 4 we are back to the situation where we only need to extract at random one non-zero coordinate but now the support of x is much larger. We cannot use the previous solution because of this larger space.
Case 4: $\|x\|_{0}=S \in\left[2^{j}, 2^{j+1}\right]$. For example, think of 2^{j} as \sqrt{n}.
Look at a subset of coordinates I_{j} s.t. $\left\|\left.x\right|_{I_{j}}\right\|_{0} \approx 1$.
$I_{j}=$ random subset of $[n]$ where $\operatorname{Pr}\left[i \in I_{j}\right]=2^{-j}$.
Choose a random hash function $h:[n] \rightarrow\left\{0,1, \ldots, 2^{j}-1\right\}$ and define $I_{j}=\{i: h(i)=0\}$, where the $\mathbb{E}\left[\left|I_{j}\right|\right]=n \cdot 2^{-j}$.
We hope to sample exactly one.

$$
\begin{aligned}
\operatorname{Pr}\left[\left\|\left.x\right|_{I_{j}}\right\|_{0}=1\right] & =\sum_{i=1}^{S} P(\text { particular coord is included }) \cdot P(\text { none of the other coords are included }) \\
& =\sum_{i=1}^{S} 2^{-j} \cdot\left(1-2^{-j}\right)^{j-1} \\
& \geq S \cdot 2^{-j}\left(1-2^{-j}\right)^{S} \\
& \approx S \cdot 2^{-j} e^{\frac{-S}{2^{j}}} \\
& \geq 2^{j} \cdot 2^{-j} e^{\frac{-2^{j+1}}{2^{j}}} \\
& =e^{-2}
\end{aligned} \quad \text { for small enough x: } 1-x \approx e^{-x}
$$

Just store Case 2.2 for $\left.x\right|_{I_{j}}$. There is at least e^{-2} probability in succeeding in producing a random s in $\operatorname{supp}(x)$.
Boost success probability to $1-\frac{1}{n^{3}}$ by repeating $t=O(\log n)$ times.
$\operatorname{Pr}[$ succeed in producing a random $s \in \operatorname{supp}(x)$ in at least one of the t trials $]=1-\operatorname{Pr}[$ we fail in all t trials $]$

$$
\begin{aligned}
& \geq 1-\left(1-e^{-2}\right)^{t} \\
& \geq 1-\frac{1}{n^{3}} .
\end{aligned}
$$

Case 5: Arbitrary x

- For each $j=0 \ldots$ logn, prepare Case 4
- To generate a random $s \in \operatorname{supp}(x)$:
just iterate $j=0 \ldots \operatorname{logn}$, and report first $\left(s, x_{s}\right), x_{j} \neq 0$, found.
Correctness: Let j be the unique j s.t. $2^{j} \leq\|x\|_{0} \leq 2^{j+1}$.
Space: $O\left(\log ^{2} n\right)$ words since we needed $O(\log n)$ for $\log n$ iterations of j. $O(\log n)$ for building Case 4 for each iteration $\cdot O(1)$ for space for Case 2.2.
It is important to note that all of these sketches are linear taking the form $=A \cdot x$.

2 Dynamic Connectivity

Setting: dynamic graph in stream (stream contains insertions and deletions of edges which are correct. For example, we never delete an edge which doesn't exist).
Problem: connectivity or spanning forest in $O\left(n(\log n)^{O(1)}\right)$ space, where n is number of vertices. Suppose there is a graph where someone deletes multiple edges:

How do we determine the spanning forest and whether the graph is connected or not?

```
Algorithm 1 Boruka's Algorithm (offline (no streaming) algorithm for spanning forest)
    Keep connected components, starting with each vertex as its own connected component
    For \(\mathrm{t}=O(\log n)\) times:
        for each connected component \(Q \subseteq[n]\), pick an edge crossing \(Q\)
        compute new connected components with chosen edges
        repeat on new connected components
```

Correctness: Connected component ($C C$)
$C C_{j}:=C C s$ after j steps
$C C=$ total $\# C C$ s

Claim 1. $\left(C C_{j+1}-C C\right) \leq \frac{1}{2}\left(C C_{j}-C C\right)$
Proof. Consider a final connected component. Each $C C$ at time j, Q_{j}, is paired with another $C C$. Since they are all paired, the number of $C C$ s will drop by a factor of 2 .

We need to simulate this algorithm in the streaming model.
Dynamic Connectivity: \forall vertex v, we define vector $X_{v} \in \mathbb{R}_{\binom{n}{2}}^{(2)}$ (a node-edge incidence vector).

- $X_{v}(v, j)=+1$ if $(v, j) \in E, v<j$ where E is the set of edges
- $X_{v}(j, v)=-1$ if $(j, v) \in E, j<v$
- $X_{v}=0$ otherwise

Though the graph is undirected, we can orient the edges for the sake of the vectors. For example, (arrows indicate going towards vertices with larger numbers)

$X_{v}=\begin{array}{ccc}(1, v) & (6, v) & (v, 5) \\ {[-1} & -1 & +1]\end{array}$

Dynamic connectivity basic sketch:
\forall vertices $v \in[n]$, just keep a Dynamic Sampling sketch for x_{v}
Space: $O\left(n \log ^{2} n\right)$.
Claim 2. $\forall Q \in[n], \sum_{v \in Q} x_{v}$ is a vertex-edge incidence vector on Q.

