COMS E6998-9: Algorithms for Massive Data (Fall’23) Sep 18, 2023
Lecture 4: Streaming for Dynamic Graphs

Instructor: Alex Andoni Scribe: Sian Lee Kitt

1 Dynamic sampling tool

Maintain sketch of # € Z™ under updates (ij,0;) € [n] X Z s.t. at the end we can produce a sample
(S, Xs) s.t. Pr[s =i = Lzl 4 L

Recall Case 2.2: when ||x|||l)xH:O Lor [|zflo > 1
Our solution maintains three quantities

o ¥ = Zz Iii

3= Zz €y

oy=> z;z' mod p where p is a prime > n* and z is random from Ly,

Test: v = 825 mod p, if not this implies [z]o > 1. Otherwise output (3,)

Proof. of correctness.

™[R

Test passes if v = Bz (mod p)
& Za:izi = Bz? (mod p)
r52° = Sz (mod p) if |z|lo =1 and zg # 0
O

Suppose ||z]jp > 1 then p(z) = Y0 22" — Bz8 (mod p) # 0 since there is at least one non-zero term
with a power of z.
Failure occurs when p(z) = 0 for chosen z.

Prelp(z) = 0] <

since p(z) is of degree n and z € Z,,

4

3@‘,_."6\3

< since p > n

Case 3

Case 3: Fix k, ||z|lo < k, find all non-zeros of x. Target space will be O(k - logk)
Sketch:

— Pick a random hash function h : [n] — [2k] (maps each coordinate of x into something of size 2k).

— The figure above displays a linear sketch which throws all coordinates of x into different buckets in
S. The number of buckets is 2k (or any constant factor of the total number of non-zeros in z, k).

In cell j of S, store Case 2.2 sketch on vector x - (interpreted as h(x) — j).
=j

— Fix s s.t X5 # 0, then the P[Xj is isolated], that is, no collisions with other non-zero coordinates
is:

f f
Prls is isolated] > 7# of free spaces
of total spaces

E+1
Pr(s is isolated] > % in worst case k — 1 cells are occupied in S
1
>
2

— Hence we succeed in extracting one non-zero coordinate of x with probability %

Full sketch
Repeat sketch above t = 2logk times:
Using hash functions: hq,..., R : [n] — [2K]
Store S; corresponding to h;, ¢ = 1...2k
Extraction: go over all cells of S7...S;:
extract the isolated coordinates (if exist) using Case 2.2.

Prls is isolated in at least one S;] = 1 — Pr[s is not isolated for i = 1...¢]

>1—(2)!
>1- ()
1
>1- —
- 4k
Prlall k non-zeros of x are extracted] > 1 — Pr[3 one non-zero of = which is not isolated|
1
>1—-k-—
- 4k
_3

Case 4

In Case 3, we extracted all k non-zeros. In case 4 we are back to the situation where we only need to
extract at random one non-zero coordinate but now the support of x is much larger. We cannot use the
previous solution because of this larger space.

Case 4: ||z]|o = S € [27,27T!]. For example, think of 27 as v/n.

Look at a subset of coordinates I; s.t. ||JI‘I.||O ~ 1.

J .
I; = random subset of [n] where Pri € I;] =277,

Choose a random hash function h : [n] — {0,1,...,27 — 1} and define I; = {i : h(i) = 0}, where the
B[=n- 2.
We hope to sample exactly one.

S
Pr{||x , lo=1] = Z P(particular coord is included) - P(none of the other coords are included)
J i=1
S . . .
- Z 277 . (1 -2yt
i=1

>8.277(1—279)9

;=5 _
~S -2 e for small enough x: 1 —z ~e™*
. R
>0 .9 de o
= 672

Just store Case 2.2 for x o There is at least e~? probability in succeeding in producing a random s in
j

supp(x).

Boost success probability to 1 — % by repeating ¢t = O(logn) times.

Prlsucceed in producing a random s € supp(x) in at least one of the ¢ trials | = 1 — Pr|we fail in all ¢ trials]
>1—(1—e?)

>1—-—.

Case 5: Arbitrary x

— For each j =0...logn, prepare Case 4

— To generate a random s € supp(z):

just iterate j = 0...logn, and report first (s, z;), z; # 0, found.

Correctness: Let j be the unique j s.t. 29 < ||zlo < 2771

Space: O(log?n) words since we needed O(logn) for logn iterations of j- O(logn) for building Case 4 for
each iteration -O(1) for space for Case 2.2.

It is important to note that all of these sketches are linear taking the form = A - x.

e

2 Dynamic Connectivity

Setting: dynamic graph in stream (stream contains insertions and deletions of edges which are correct.
For example, we never delete an edge which doesn’t exist).

Problem: connectivity or spanning forest in O(n(logn)®M)) space, where n is number of vertices.
Suppose there is a graph where someone deletes multiple edges:

sh =)

How do we determine the spanning forest and whether the graph is connected or not?

Algorithm 1 Boruka’s Algorithm (offline (no streaming) algorithm for spanning forest)

Keep connected components, starting with each vertex as its own connected component
For t = O(logn) times:

for each connected component @ C [n], pick an edge crossing Q

compute new connected components with chosen edges

repeat on new connected components

Correctness: Connected component (C'C')
CCj := CCs after j steps
CC = total #CCs

Claim 1. (CCj4; — CC) < 3(CC; — CC)

Proof. Consider a final connected component. Each CC' at time j, Q);, is paired with another C'C. Since
they are all paired, the number of C'C's will drop by a factor of 2.

(83

@

We need to simulate this algorithm in the streaming model.
Dynamic Connectivity: V vertex v, we define vector X, € R(:) (a node-edge incidence vector).

o X,(v,j) =+11if (v,j) € E,v < j where E is the set of edges
e X,(j,v)=—-1if (jyv) €E,j<v
e X, =0 otherwise

Though the graph is undirected, we can orient the edges for the sake of the vectors. For example, (arrows
indicate going towards vertices with larger numbers)

|0

(L,v) (6,v) (v,5)
X, =[-1 -1 +1]

Dynamic connectivity basic sketch:
— V vertices v € [n], just keep a Dynamic Sampling sketch for x,
Space: O(nlog®n).

Claim 2. V Q € [n], }_,cq @v is a vertez-edge incidence vector on Q.

