COMS E6998-9: Algorithms for Massive Data (Fall’23) Nov 29, 2023
Lecture Lecture 23: MPC for Estimating MST (cont’d)

Instructor: Alex Andoni Scribes: Ruowang Zhang

1 Recap: Algorithm for computing MST of Geometric Graphs

1.1

Algorithm Overview

Recall in the previous class, we described an algorithm for the problem of computing MST of P C R%:

1.

2.

3.

Assume n distinct points in an integer grid of size [n?] x [n?].

Split the space into a randomly-shifted quad-tree with partition 7, which has cells by size o x o (or
more precisely (o + 1) x (o + 1) with spilled margin).

Set o = s'/4, and define L = O(log, n) where L is the number of levels for the algorithm runs.

The high level algorithm is to run cell — algo on each cell where cell — algo is:

1.

2.

3.
4.

D.

From the lowest level.

Run the Kruskal algorithm on the cell of V nodes until the edge length > ¢/\ where A is the current
cell’s side length.

Represent V' as a e/A-net of V.
Return V' with connectivity info, i.e. the representative set of V.

Propagate to the upper next level.

Theorem 1. The algorithm runs in O(loggn)°M) p-time, if s > (%)O(d), assuming d = 2. s is the space
of the machine.

1.2

Correctness of the algorithm

Definition 2. p(u,v) as the original distance between u and v in the graph.
pr(u,v) = p(Nj—1(u), Nj—1(v)) + 2eNj—1 where | is the level w and v belong to in the same cell, Nj(u) as
the representative set of u in level I, and /\; is the side length at level [.

Fact 3. pr(u,v) < p(u,v) + 4\

We proved the following result in the previous lecture:

Lemma 4. F;[p.(u,v)] < (1 +8v2eL)p(u,v)



2 Today: Remain aspects of the algorithm

2.1 Conclude the correctness proof

We want to prove the following result:

Lemma 5. Output of algo MST satisfies Ex[MST] < (1 + 8v/2eL)M ST, where M ST, is the optimal
MST under distiance function p.

First, we claim:

Claim 6. Our algorithm = run Kruskal’s algorithm on pr = MST,_, and E.[MST] < E [MST, | =
Er[miny pr(T)] < Ex[p=(T*)] where T is one MST and T* is the optimal MST,.
Then we can apply Lemma 4 and obtain Ex|pr(T*) < (1+ 8v2eL)M ST,

Proof. The Proof for Claim 6 is by induction. On level [, we define IH(l) = when done with level [,
chosen edge = Kruskal up to e/A\; cost w.r.t. p,.

Base Step:

When | = 0, eAA; < 1 since cell side length is 1.

Inductive Step:

Assume IH(l), looking at [ + 1:

Observation 7. Yu,v in different cells at 1 + 1, pr(u,v) > 2611 > €1 by definition 2, so we can
analyze the cells at  + 1 separately.

Observation 8. Yu,v in the same cells at l +1 with size A x A. If u,v are not inputs to cell —algo (i.e.
not coming from representive set N;), p=(u,v) = p(Ni(u), N;(v)) + 2e/\; which is bigger than the distance
between their representatives.

which concludes the proof. O

2.2 Implementation

1. A stage for each level of the quad-tree
2. In each level, the total input to cell — algo s at level I < O(n)

3. Bach cell’s input size is 020(#representatives) where O(#representatives) < ;%. The input size
is therefore < v/S % O(1/€?) < §/2, since v/S > O(1/£?)

4. Can distribute work to all machines, keeping input size < S.

One way to arrange the jobs/cells per level as D1, D2, ..., Dy, then for the non empty ones, we can
pack them in order and assign to machines once the packed size s’ once s’ € [S/2, S].

2.3 Remark

To use the algorithm for problems where the input grid is a [n?] x [n?] integer grid, we should reduce

those problems to it. Here is the algorithm:



1. Given n points in R%2. Compute D = max{max{z;|Vi € [n]}, max{y;|Vi € [n]}}.
Observe that cost(MST) € [D,2nD], so it’s ok to ignore distance less than £ D.

2. Round all points to integer multiples of = D.
3. If a point is repeated, then connect together, leaving just one copy.

4. Divide all coordinates by ~D. For each x or y, subtract min-value, which gives all coordinates
€ [0, 2]

3 Intro: Distributed Algorithms (Models)

3.1 CONGEST model
e Given an undirected graph G.
e Each node = a computation unit
e Communication is done on edges of G only

e In each round, a node can send O(logn) bits message to each neighbor.

We would like to solve a problem on G, e.g. MST, max flow/min cut, shortest path, etc.

Output: each node should have the “relevant” part of the output. E.g. for MST, each node knows which
incident edges belong to the MST.

Time: minimum # of rounds.

For the MST problem, runtime is (D) where D is the diameter / # of hops, or Q(D + /n). We will
show an algorithm that runs in O((D + v/n)logn).



