Lecture Lecture 23: MPC for Estimating MST (cont'd)

1 Recap: Algorithm for computing MST of Geometric Graphs

1.1 Algorithm Overview

Recall in the previous class, we described an algorithm for the problem of computing MST of $P \subset \mathbb{R}^{d}$:

1. Assume n distinct points in an integer grid of size $\left[n^{2}\right] \times\left[n^{2}\right]$.
2. Split the space into a randomly-shifted quad-tree with partition π, which has cells by size $\sigma \times \sigma$ (or more precisely $(\sigma+1) \times(\sigma+1)$ with spilled margin $)$.
3. Set $\sigma=s^{1 / 4}$, and define $L=O\left(\log _{s} n\right)$ where L is the number of levels for the algorithm runs.

The high level algorithm is to run cell - algo on each cell where cell - algo is:

1. From the lowest level.
2. Run the Kruskal algorithm on the cell of V nodes until the edge length $>\varepsilon \triangle$ where \triangle is the current cell's side length.
3. Represent V^{\prime} as a $\varepsilon \triangle$-net of V.
4. Return V^{\prime} with connectivity info, i.e. the representative set of V.
5. Propagate to the upper next level.

Theorem 1. The algorithm runs in $O\left(\log _{S} n\right)^{O(1)}$ p-time, if $s>\left(\frac{1}{\varepsilon}\right)^{O(d)}$, assuming $d=2$. s is the space of the machine.

1.2 Correctness of the algorithm

Definition 2. $\rho(u, v)$ as the original distance between u and v in the graph.
$\rho_{\pi}(u, v)=\rho\left(N_{l-1}(u), N_{l-1}(v)\right)+2 \varepsilon \Delta_{l-1}$ where l is the level u and v belong to in the same cell, $N_{l}(u)$ as the representative set of u in level l, and \triangle_{l} is the side length at level l.

Fact 3. $\rho_{\pi}(u, v) \leq \rho(u, v)+4 \varepsilon \Delta_{l}$
We proved the following result in the previous lecture:
Lemma 4. $E_{\pi}\left[\rho_{\pi}(u, v)\right] \leq(1+8 \sqrt{2} \varepsilon L) \rho(u, v)$

2 Today: Remain aspects of the algorithm

2.1 Conclude the correctness proof

We want to prove the following result:
Lemma 5. Output of algo $\hat{M S T}$ satisfies $E_{\pi}[\hat{M S T}] \leq(1+8 \sqrt{2} \varepsilon L) M S T_{\rho}$ where $M S T_{\rho}$ is the optimal MST under distiance function ρ.

First, we claim:
Claim 6. Our algorithm \equiv run Kruskal's algorithm on $\rho_{\pi} \equiv M S T_{\rho_{\pi}}$, and $E_{\pi}[\hat{M S T}] \leq E_{\pi}\left[M S T_{\rho_{\pi}}\right]=$ $E_{\pi}\left[\min _{T} \rho_{\pi}(T)\right] \leq E_{\pi}\left[\rho_{\pi}\left(T^{*}\right)\right]$ where T is one MST and T^{*} is the optimal $M S T_{\rho}$.
Then we can apply Lemma 4 and obtain $E_{\pi}\left[\rho_{\pi}\left(T^{*}\right) \leq(1+8 \sqrt{2} \varepsilon L) M S T_{\rho}\right.$
Proof. The Proof for Claim 6 is by induction. On level l, we define $I H(l)=$ when done with level l, chosen edge \equiv Kruskal up to $\varepsilon \triangle_{l}$ cost w.r.t. ρ_{π}.

Base Step:

When $l=0, \varepsilon \triangle_{l}<1$ since cell side length is 1 .

Inductive Step:

Assume $I H(l)$, looking at $l+1$:
Observation 7. $\forall u, v$ in different cells at $l+1, \rho_{\pi}(u, v) \geq 2 \varepsilon \triangle_{l+1}>\varepsilon \triangle_{l+1}$ by definition 2, so we can analyze the cells at $l+1$ separately.

Observation 8. $\forall u, v$ in the same cells at $l+1$ with size $\triangle \times \triangle$. If u, v are not inputs to cell -algo (i.e. not coming from representive set $\left.N_{l}\right), \rho_{\pi}(u, v)=\rho\left(N_{l}(u), N_{l}(v)\right)+2 \varepsilon \Delta_{l}$ which is bigger than the distance between their representatives.
which concludes the proof.

2.2 Implementation

1. A stage for each level of the quad-tree
2. In each level, the total input to cell - algo s at level $l \leq O(n)$
3. Each cell's input size is $\sigma^{2} O$ (\#representatives) where O (\#representatives) $\leq \frac{4}{\varepsilon^{2}}$. The input size is therefore $\leq \sqrt{S} * O\left(1 / \varepsilon^{2}\right)<S / 2$, since $\sqrt{S}>O\left(1 / \varepsilon^{2}\right)$
4. Can distribute work to all machines, keeping input size $<S$.

One way to arrange the jobs/cells per level as $D 1, D 2, \ldots, D_{k}$, then for the non empty ones, we can pack them in order and assign to machines once the packed size s^{\prime} once $s^{\prime} \in[S / 2, S]$.

2.3 Remark

To use the algorithm for problems where the input grid is a $\left[n^{2}\right] \times\left[n^{2}\right]$ integer grid, we should reduce those problems to it. Here is the algorithm:

1. Given n points in \mathbb{R}^{2}. Compute $D=\max \left\{\max \left\{x_{i} \mid \forall i \in[n]\right\}, \max \left\{y_{i} \mid \forall i \in[n]\right\}\right\}$.

Observe that $\operatorname{cost}(M S T) \in[D, 2 n D]$, so it's ok to ignore distance less than $\frac{\varepsilon}{n} D$.
2. Round all points to integer multiples of $\frac{\varepsilon}{n} D$.
3. If a point is repeated, then connect together, leaving just one copy.
4. Divide all coordinates by $\frac{\varepsilon}{n} D$. For each x or y , subtract min-value, which gives all coordinates $\in\left[0, \frac{n}{\varepsilon}\right]$

3 Intro: Distributed Algorithms (Models)

3.1 CONGEST model

- Given an undirected graph G.
- Each node $=$ a computation unit
- Communication is done on edges of G only
- In each round, a node can send $O(\log n)$ bits message to each neighbor.

We would like to solve a problem on G, e.g. MST, max flow/min cut, shortest path, etc.
Output: each node should have the "relevant" part of the output. E.g. for MST, each node knows which incident edges belong to the MST.
Time: minimum \# of rounds.
For the MST problem, runtime is $\Omega(D)$ where D is the diameter / \# of hops, or $\Omega(D+\sqrt{n})$. We will show an algorithm that runs in $O((D+\sqrt{n}) \log n)$.

