
COMS E6998-9: Algorithms for Massive Data (Fall’23) Nov 29, 2023

Lecture Lecture 23: MPC for Estimating MST (cont’d)

Instructor: Alex Andoni Scribes: Ruowang Zhang

1 Recap: Algorithm for computing MST of Geometric Graphs

1.1 Algorithm Overview

Recall in the previous class, we described an algorithm for the problem of computing MST of P ⊂ Rd:

1. Assume n distinct points in an integer grid of size [n2]× [n2].

2. Split the space into a randomly-shifted quad-tree with partition π, which has cells by size σ×σ (or

more precisely (σ + 1)× (σ + 1) with spilled margin).

3. Set σ = s1/4, and define L = O(logs n) where L is the number of levels for the algorithm runs.

The high level algorithm is to run cell − algo on each cell where cell − algo is:

1. From the lowest level.

2. Run the Kruskal algorithm on the cell of V nodes until the edge length > ε4 where 4 is the current

cell’s side length.

3. Represent V ′ as a ε4-net of V .

4. Return V ′ with connectivity info, i.e. the representative set of V .

5. Propagate to the upper next level.

Theorem 1. The algorithm runs in O(logS n)O(1) p-time, if s > (1ε)O(d), assuming d = 2. s is the space

of the machine.

1.2 Correctness of the algorithm

Definition 2. ρ(u, v) as the original distance between u and v in the graph.

ρπ(u, v) = ρ(Nl−1(u), Nl−1(v)) + 2ε4l−1 where l is the level u and v belong to in the same cell, Nl(u) as

the representative set of u in level l, and 4l is the side length at level l.

Fact 3. ρπ(u, v) ≤ ρ(u, v) + 4ε4l

We proved the following result in the previous lecture:

Lemma 4. Eπ[ρπ(u, v)] ≤ (1 + 8
√

2εL)ρ(u, v)

1

2 Today: Remain aspects of the algorithm

2.1 Conclude the correctness proof

We want to prove the following result:

Lemma 5. Output of algo ˆMST satisfies Eπ[ˆMST] ≤ (1 + 8
√

2εL)MSTρ where MSTρ is the optimal

MST under distiance function ρ.

First, we claim:

Claim 6. Our algorithm ≡ run Kruskal’s algorithm on ρπ ≡ MSTρπ , and Eπ[ˆMST] ≤ Eπ[MSTρπ] =

Eπ[minT ρπ(T)] ≤ Eπ[ρπ(T ∗)] where T is one MST and T ∗ is the optimal MSTρ.

Then we can apply Lemma 4 and obtain Eπ[ρπ(T ∗) ≤ (1 + 8
√

2εL)MSTρ

Proof. The Proof for Claim 6 is by induction. On level l, we define IH(l) = when done with level l,

chosen edge ≡ Kruskal up to ε4l cost w.r.t. ρπ.

Base Step:

When l = 0, ε4l < 1 since cell side length is 1.

Inductive Step:

Assume IH(l), looking at l + 1:

Observation 7. ∀u, v in different cells at l + 1, ρπ(u, v) ≥ 2ε4l+1 > ε4l+1 by definition 2, so we can

analyze the cells at l + 1 separately.

Observation 8. ∀u, v in the same cells at l+ 1 with size 4×4. If u, v are not inputs to cell−algo (i.e.

not coming from representive set Nl), ρπ(u, v) = ρ(Nl(u), Nl(v)) + 2ε4l which is bigger than the distance

between their representatives.

which concludes the proof.

2.2 Implementation

1. A stage for each level of the quad-tree

2. In each level, the total input to cell − algo s at level l ≤ O(n)

3. Each cell’s input size is σ2O(#representatives) where O(#representatives) ≤ 4
ε2

. The input size

is therefore ≤
√
S ∗O(1/ε2) < S/2, since

√
S > O(1/ε2)

4. Can distribute work to all machines, keeping input size < S.

One way to arrange the jobs/cells per level as D1, D2, . . . , Dk, then for the non empty ones, we can

pack them in order and assign to machines once the packed size s′ once s′ ∈ [S/2, S].

2.3 Remark

To use the algorithm for problems where the input grid is a [n2] × [n2] integer grid, we should reduce

those problems to it. Here is the algorithm:

2

1. Given n points in R2. Compute D = max{max{xi|∀i ∈ [n]},max{yi|∀i ∈ [n]}}.

Observe that cost(MST) ∈ [D, 2nD], so it’s ok to ignore distance less than ε
nD.

2. Round all points to integer multiples of ε
nD.

3. If a point is repeated, then connect together, leaving just one copy.

4. Divide all coordinates by ε
nD. For each x or y, subtract min-value, which gives all coordinates

∈ [0, nε]

3 Intro: Distributed Algorithms (Models)

3.1 CONGEST model

• Given an undirected graph G.

• Each node = a computation unit

• Communication is done on edges of G only

• In each round, a node can send O(log n) bits message to each neighbor.

We would like to solve a problem on G, e.g. MST, max flow/min cut, shortest path, etc.

Output: each node should have the “relevant” part of the output. E.g. for MST, each node knows which

incident edges belong to the MST.

Time: minimum # of rounds.

For the MST problem, runtime is Ω(D) where D is the diameter / # of hops, or Ω(D +
√
n). We will

show an algorithm that runs in O((D +
√
n) log n).

3

