1 Distance

Consider an unweighted, undirected graph G with n nodes and m edges.
Problem: We want to stream over G by building a "spanner" graph H (where $H \subseteq G$) such that it preserves distances up to α factor

```
Algorithm 1 Algorithm for constructing spanner \(H\)
    Initalize \(H=\emptyset\)
    for each \((i, j) \in G\) in the stream do
        if \(\operatorname{dist}_{H}(i, j)>\alpha\) then
            add \((i, j)\) to \(H\)
        end if
    end for
```

Claim 1. $\operatorname{dist}_{G}(x, y) \leq \operatorname{dist}_{H}(x, y) \leq \alpha \cdot \operatorname{dist}_{G}(x, y)$
Proof. Suppose $\forall x, y \in G$. By construction of H, we will have a path from x to y that traverses k nodes:

$$
x=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}=y
$$

With this, we can compute the distances between two nodes knowing there exists an alternate path in H

$$
\begin{gathered}
\operatorname{dist}_{H}(x, y) \leq \operatorname{dist}\left(v_{0}, v_{1}\right)+\operatorname{dist}\left(v_{1}, v_{2}\right)+\cdots+\operatorname{dist}\left(v_{k-1}, v_{k}\right) \\
\leq \alpha+\alpha+\cdots+\alpha \leq \alpha \cdot k=\alpha \cdot \operatorname{dist}_{G}(x, y)
\end{gathered}
$$

Claim 2 (Bollobas). $|H| \leq O\left(n^{1+\frac{1}{k}}\right)$ where $\alpha=2 k-1$
Proof. Any cycle in H has length $\geq(\alpha+1)+1=\alpha+2=2 k+1$. With this, let's build an H^{\prime} by deleting all nodes of $\operatorname{deg} \leq n^{1 / k}$. Thus, we deleted $\leq n \cdot n^{1 / k}$ edges. Our graph H^{\prime} will have:

1. all nodes with $d e g>n^{1 / k}$
2. minimum length cycle $\geq 2 k+1$ (Note: the minimum length cycle of a graph is the girth)

With this, let's fix r to be a node in H^{\prime} such that a tree is formed where r is the root of the tree. This tree graph will have the property that all nodes up to depth k must differ from each other because if the nodes were similar it would create a cycle length $2 k$ which cannot be true. By the k th level, we will have nodes

$$
\geq\left(n^{1 / k}\right)^{k}\left(n^{1 / k}+1\right)>n
$$

In exploring the tree, we cannot reach the k-th level of the tree and must stop earlier. However, if we stop, the leaves must have $d e g=1$ since they did not expand. Since these nodes would have been removed due to their degree, this implies that H^{\prime} must be empty and therefore $|H| \leq O\left(n^{1+\frac{1}{k}}\right)$

Question: does there exist a smaller spanner H ?
Conjecture 3 (Erdős 63). There exists a graph G that has $|G| \geq \Omega\left(n^{1+\frac{1}{k}}\right)$, girth $\geq \alpha+2=2 k+1$, and size $\geq n^{1+\Omega(1 / k)}$
Theorem 4. There exists a graph G that has girth $\geq 2 k+1$, size $\geq n^{1+\Omega(1 / k)}$
Theorem 5. Erdős conjecture \Longrightarrow any α-spanner H must have size $|H| \geq \Omega\left(n^{1+\frac{1}{k}}\right)$
Proof. Fix graph G with the properties from Erdős conjecture. Assume the following:

1. if $H \subseteq G$, take any $(i, j) \in G \backslash H$
2. If H need not be $\subseteq G$

Let $\mathcal{F}=\left\{\right.$ all graphs $\left.G^{\prime} \subseteq G\right\}$. Consider $G^{\prime} \in F$ such that it has a spanner. Let $H=\{$ spanners of $\left.G^{\prime} \in F\right\}$.

Observation 6. $\forall G_{1}, G_{2} \in \mathcal{F}$, if $G_{1} \neq G_{2}$, then their spanners must be different.
To prove the observation, consider $(i, j) \in G_{1} \backslash G_{2}$. With this, we have the following:

$$
\begin{gather*}
\operatorname{dist}_{G_{1}}(i, j)=1 \tag{1}\\
\operatorname{dist}_{G_{2}}(i, j) \geq 2 k \tag{2}
\end{gather*}
$$

Given a fix H, then

$$
\operatorname{dist}_{G_{1}}(x, y) \leq \operatorname{dist}_{H}(i, j) \leq \alpha \cdot \operatorname{dist}_{G_{1}}(x, y)=\alpha=2 k=1
$$

The proof for the observation implies that $|\mathcal{H}| \geq|\mathcal{F}|=2^{m}$ where $m=\#$ of edges in G. We have

$$
|\mathcal{H}| \geq|\mathcal{F}|=2^{\Omega\left(n^{1+1 / k}\right)}
$$

Suppose the largest $H \in \mathcal{H}$ has size M, then

$$
\begin{gathered}
\Longrightarrow|\mathcal{H}| \leq M \cdot\binom{n^{2}}{M} \leq n^{2} n^{2 M} \\
\Longrightarrow 2 M \log n \geq \Omega\left(n^{1+\frac{1}{k}}\right) \\
\Longrightarrow M \geq \Omega\left(n^{1+\frac{1}{k}} \cdot \frac{1}{\log (n)}\right)
\end{gathered}
$$

Corollary 7. fix any map $S: \mathcal{F} \rightarrow\{0,1\}^{M}$, we can deduce all distances of G up to a factor α using $S(G)$
The corollary implies that $M \geq \log |\mathcal{H}|=\Omega\left(n^{1+\frac{1}{k}}\right)$ bits are required to describe data structure

Definition 8. distance oracle: data structure for undirected, unweighted graph G such that $\forall(i, j) \in G$, it can output an α-approx $\operatorname{dist}_{G}(i, j)$ quickly

Theorem 9 (Thorup-Zwick '05). Assume $\alpha=2 k-1$, then we can build a data structure with

1. Size: $O\left(k \cdot n^{1+\frac{1}{k}}\right)$
2. Query time: $O(k)$
3. Preprocessing $\equiv O($ size $+m \operatorname{logn})$

2 Triangle Counting

Given a graph G, let $T=\#$ of triangles
Goal: Estimate T in the streaming model. For this, you are given t, assume that $T \geq t$, and use an $\alpha=1 \pm \epsilon$ approximation
For S of three nodes, define a vector X such that $X_{S}=\#$ of edges inside S

```
Algorithm 2 Algorithm for constructing spanner \(H\)
    Fix \(K=\)
    Pick \(K\) random sets \(S_{1}, S_{2}, \ldots, S_{k}\) where each subset \(S_{i}\) has three nodes
    In the stream, compute all \(X_{S_{1}}, \ldots X_{S_{t}}\)
    Compute \(\hat{T}=\frac{\#\left\{i, X_{S_{i}}=3\right\}}{K} \cdot M\) where \(M=\) total \(\#\) of sets of size three \(\left.\binom{n}{3}\right)\)
```

Claim 10. $E[\hat{T}]=T$
Claim 11. $\operatorname{Pr}[\hat{T}=T$ up to $1 \pm \epsilon] \geq 90 \%$ as long as K is large enough

