Lecture 18: Sublinear Time Algorithm for Vertex Cover Estimation

Instructor: Alex Andoni
Scribes: Walter McKelvie

Definition 1. Consider a graph $G . V$ is a vertex cover for G if for all edges in G are incident to at least one $v \in V$.

Our goal is to compute, for given G, the minimum vertex cover

$$
\text { MVC }:=\min _{V \text { vertex cover for } G}|V|
$$

Unfortunately this is NP-hard to compute exactly. So, we instead must settle for an approximation algorithm.

Definition 2. M is maximal matching of G if

1. M is a matching of G
2. Cannot add another edge to M and still have a matching.

We note that a maximum matching (i.e., a matching with the greatest number of edges) is maximal, but a maximal matching not necessarily a maximum matching. The problems of estimating the size of a maximal matching and a MVC are related by the following theorem.
Theorem 3 (Garril-Yannakakis). Let M be a maximal matching. Then $|M| \leq M V C \leq 2 \cdot|M|$.
Proof. To prove that MVC $\leq 2 \cdot|M|$, we let V be endpoints of M. $|V|=2|M|$, so we see $|V|=2|M|$. Next, to show that $|M| \leq$ MVC, we let V be a minimum vertex cover. $|V| \geq|M|$ because for all edges in M at least one endpoint is in V.

This shows that we can approximate MVC to a factor of 2 if we can estimate the size of a maximal matching, which will motivate our approximation algorithm.

Algo: Compute a maximal match M by greedily adding edges.
Theorem 4 (Nguyen-Onak 08). There is an algorithm which outputs an approximation $\widehat{M V C}$ such that

$$
M V C-\epsilon n \leq \widehat{M V C} \leq 2 \cdot M V C+\epsilon n
$$

in time

$$
O\left(\frac{d}{\epsilon^{2}} \cdot e^{d}\right)
$$

where d is max degree of G.
Note: Same factor for 2 approximation as above. Does not depend on the number of nodes, only the max degree-this makes it good for sparse graphs.

Pf:
Idea: estimate size of a maximal matching M.

Observation 5. Finding maximal matching in G is the same as finding maximal independent set (IS) in G^{\prime}, where G^{\prime} is the graph where the nodes are edges of G, and where two vertices in G^{\prime} are connected if their corresponding edges in G share a vertex. This follows from the definitions; a maximal matching of G is a set of edges which don't share a vertex, which is exactly a set of vertices in G^{\prime} which don't share an edge.

So, it would suffice to estimate size of some maximal independent set in G^{\prime}. This would motivate the following (naive) algorithm:

Algorithm 6. GY Algorithm

1. $I \leftarrow \emptyset$
2. For $i \in$ vertices of G^{\prime} in arbitrary order:
3. If i not adjacent to some $j \in I$
i. $I:=I \cup\{i\}$
4. Return $2 \cdot|I|$

Unfortunately, this does not give sublinear time. Actually generating an independent set I requires that the complexity grows with m, which we don't want. We will need to do this without actually computing I.

Idea: Fix some (distribution over, independent of samples) I which is implicit. Sample a bunch of nodes in G^{\prime} and check if $i \in I$ without ever computing I. Then, our estimate is

$$
\hat{I}=\frac{n}{k} \cdot \sum_{j=1}^{k} \mathbb{1}_{\left\{i_{j} \in I\right\}}
$$

This requires a so-called Local Oracle: We have a graph G^{\prime}. We want our Local Oracle to be able to tell us whether any particular node i is in a maximal independent set I, which we can choose randomly. In fact, we can design such an oracle, where query time is $O\left(d \cdot e^{d}\right)$. Let I be GY algorithm's output with random order. To implement this random order, pick $r_{i} \in[0,1]$ for all nodes i. Order i in increasing order of r_{i} 's.

First, we define a helper function
Algorithm 7. Get-r(i)

1. If r_{i} is not yet chosen:
2. Choose r_{i} uniformly from $[0,1]$.
3. Store in a hash table $\left(i, r_{i}\right)$.
4. Return r_{i} from the hash table.
and our final local oracle is defined by
Algorithm 8. $\operatorname{Oracle}\left(i, G^{\prime}\right)$:
5. For $j \in N(i)$:
6. If Get-r $(j)<\operatorname{Get}-r(i)$:
i. If $\operatorname{Oracle}(j)$ then return no.

2. Return yes.

This asks "are all of my neighbors who the algorithm will try to add to I before me, not in I." Since these are the only possible reasons that i will not be added to I, correctness is clear. Less clear is the runtime.

Theorem 9. The runtime of the oracle is $O\left(e^{d}\right)$ in expectation.
Proof. The "bad case" here is that there is a chain of decreasing r_{i} which causes the oracle to recursively explore the entire graph; we must claim that is unlikely. In particular,

$$
\mathbb{E}(\# \text { visited nodes in an oracle query }) \leq e^{d}
$$

We can show the above as follows. Fix an arbitrary path P of length k. Then

$$
\mathbb{P}(\text { follow path } P)=\frac{1}{(k+1)!}
$$

This means that the expected number of visited nodes is

$$
\begin{gathered}
\mathbb{E}(\# \text { visited nodes }) \leq \sum_{k \geq 1}(\# \text { path of length } k) \cdot \mathbb{P}(\text { follow path of length } k) \\
\leq \sum_{k \geq 1} d^{k} \cdot \frac{1}{(k+1)!} \leq \frac{1}{d} \sum_{k \geq 0} \frac{d^{k+1}}{(k+1)!}=\frac{e^{d}}{d}
\end{gathered}
$$

using the Taylor expansion for e^{d}.
Note that once we visit a node, we spend $O(d)$ time to check its neighborhood, hence $O\left(e^{d}\right)$ total time.

Let's compute the total runtime. We know the number of nodes in $G^{\prime} \leq d n$, and we aim for an additive error of $\epsilon n=\frac{\epsilon}{d} \cdot n$. Hence, it suffices to sample $k=\frac{d^{2}}{\epsilon^{2}}$ nodes in G^{\prime}. We can shave off a factor of d by remembering that we are estimating the size of the independent set I in G^{\prime}, which is equivalent to some matching M in G. We can think of the above algorithm is directly computing the size of M by sampling nodes and checking whether they are matched. In particular, for additive ϵn nodes (to the size of M), it is enough to sample $k=O\left(1 / \epsilon^{2}\right)$ nodes and check whether each is in the matching M. For each such node, we check whether any of its incident edges participates in M (equivalently I in G^{\prime}). The total runtime becomes

$$
O\left(k \cdot d \cdot e^{d}\right)=O\left(\frac{d}{\epsilon^{2}} \cdot e^{d}\right) .
$$

There are several improvements to the above algorithm, stated below.
Theorem 10 (Yoshita, Yamamoto, Ito 09). The above algorithm can be improved to poly (d / ϵ) runtime. This is achieved through an extra heuristic: in the Oracle loop, go in order of increasing r_{j} 's. Through
probability wrangling, the expected number of recursive calls (over input i and the ordering r) comes down to $1+m / n \leq 1+d$ which yields the desired result.

Theorem 11 (Onak, Ron, Rosen, Rubinfeld 12). This problem can be solved with runtime quasilinear in d :

$$
O\left(\frac{d}{\epsilon^{3}} \log ^{2} \frac{d}{\epsilon}\right)
$$

In fact, this is the best known result.

