
COMS E6998: Algorithms for Massive Data (Fall’23) Oct 30, 2023

Lecture 16: Monotonicity Testing, LIS, LCS

Instructor: Alex Andoni Scribes: Andrei Coman

1 Monotonicity Testing

Algorithm 1 Monotonicity Testing (Under Distinct Elements Assumption)

for iter = 1, ..., T = O(1ε) do
Let i ∈r [n]
Binary search for y , xi in x[1, ..., n]
Reject if the binary search did not return i
return Accept

Algorithm 2 Binary Search

Input: Interval [s, t]
if s = t then

return s
m← b s+t2 c
if xm < xs or xm > xt then

return Reject

if y ≤ xm then
Recurse on [s,m]

else
Recurse on [m+ 1, t]

Claim 1. If x is ε-far from increasing, then

Pri∈r[n] [binary search fails] ≥ ε

Proof. We call an index i ”good” if binary search on xi succeeds.

Now, consider two indices good indices i, j ∈ [n], i < j and let xm = LCA(xi, xj). We have

xm = LCA(xi, xj)⇒ xi < xm < xj ⇒ xi < xj

Therefore, the values at good indices are sorted in increasing order. So, all good indices form an increasing

subsequence of x. However, since x is ε-far from increasing, its longest increasing subsequence has length

at most (1− ε)n. Therefore, there can be at most (1− ε)n good indices and

Pri∈r[n] [binary search fails] ≥ 1− (1− ε)n
n

= ε

1

xn/2

xn/4 x3n/4

xm

xi xj

Fact 2. Algorithm 1 is adaptive. The following modification makes it non-adaptive.

Algorithm 3 Non-adaptive Monotonicity Testing

Pick i ∈r [n]
Generate all the Binary Search queries assuming x is sorted
Perform the original algorithm
if at any moment, algorithm reads an unexpected location then

return Reject

return ”Accept”

Fact 3. Algorithm 1 assumes all values (xi)
n
i=1 are distinct. This assumption can be relaxed as follows:

Algorithm 4 Monotonicity Testing

Modify x into x′ over a different alphabet such that
x′i = (xi, i)

Perform the original algorithm

Remark 4. The O
(
logn
ε

)
sample-complexity of the algorithm above is tight.

2

2 Longest Increasing Subsequence

The original problem (monotonicity testing) is equivalent to distinguishing between

LIS(x) = n

and

LIS)(x) < (1− ε)n

Can we estimate LIS(x)?

Fact 5. Suppose x is a random permutation. Then

E[LIS(x)] = 2
√
n− c1n1/3 ±O(n1/6)

where c1 ≈ 1.758. Variance is of the order of n1/3.

1. (Saks-Seshadhri ’17) We can distinguish between

LIS(x) > λn

and

LIS)(x) < λn− εn

within runtime O
(
(1/ε)O(1/ε) · (log n)O(1)

)
(notice the exponential dependence on 1/ε).

This is equivalent to estimating LIS(x) up to an additive ±εn term. The result is meaningful when

LIS(x) ≥ n
logn , i.e. ε > 1

logn , for, otherwise, 0 is a 1
logn -approximation.

2. (Andoni-Shekel Nosatzki-Sinha-Stein ’22) Given that LIS(x) ≥ n/k, we can estimate LIS(x) up to

a factor of O(no(1)) within time O(kno(1)).

Note 6. If LIS(x) ≈ n/k, then Ω(k) time is necessary. Intuitively, this is because, in a string x

which is decreasing, with the exception of a random contiguous n/k-long increasing section, we need

Ω(k) queries to hit the increasing area.

3 Longest Common Subsequence (Length)

For x, y ∈ Σn, we define LCS(x, y) to be the length of the longest non-contiguous common subsequence.

This problem can be solved in O(n2) time via dynamic programming and, under the Strong Exponential

Time Hypothesis (SETH), it requires O(n2−o(1)) time.

Theorem 7. (Shekel Nosatzki) If the Longest Increasing Subsequence can be computed within O(k · T)

time within an α-approximation, the Longest Common Subsequence length can be computed in O(n · T)

time within an α-approximation (or, also, in O(n) time within an αT 2-approximation).

Corollary 8. We can compute an no(1)-approximation of the LCS length within O(n) time.

3

4 Sublinear Algorithms for Graphs

Given a graph G = (V,E), |V | = n, |E| = m, two representations of G are common:

1. Adjacency matrix: used for dense (m ≈ n2) graphs. If m� n2, even finding an edge in the matrix

takes more than O(1)-time.

2. Adjacency list: for every node i ∈ V = [n], store a list of neighbours Ai. This representation admits

several possible access queries:

(a) jth-neighbour of i query (i, j);

(b) edge existence query (is (i, j) an edge?).

Problems for graphs admitting sublinear algorithms are typically of the following types:

1. Testing: given some property P (e.g. bipartiteness, (dis)connectedness), does G have property P?

Generally, we want to distinguish between G having property P and G being ε-far from P , for some

suitable notion of farness, most commonly:

Definition 9. G is ε-far from P if we need to delete at least εm edges from G to satisfy P .

However, this is not a well-motivated definition and, therefore, we will not study problems of this

type.

2. Estimate some function f(G) (e.g. the value of G’s MST or the number of connected components)

3. Solve a problem on G which admits multiple answers (e.g. find a coloring of G)

5 Problem: Estimating the MST Cost

Assumption 10. all edges in E have cost in {1, 2, ...,M} for some constant M , and G is connected.

Access to G is through an adjacency list with ”jth neighbour” query (returns the edge and its weight).

Theorem 11. ∀ε > 0, we can estimate the MST cost up to a (1± ε)-factor in time

O

(
M4d

ε3

)
≤ O

(
nM4

ε3

)
where d is the maximum degree in G.

Note 12. The best known upper bound is O
(
m
nM

(
1
ε

)O(1)
)

.

4

