
COMS E6998-9: Algorithms for Massive Data (Fall’23) Oct. 25, 2023

Lecture 15

Instructor: Alex Andoni Scribe: Krish Singal

1 Distribution Testing

We continue our discussion of uniformity testing from last class.

1.1 Uniformity Testing

Algorithm 1 Uniformity Testing via Collision Count

Input: Samples x1, ..., xm ∼ D
C ← |{i < j|xi = xj}|
M ←

(
m
2

)
if C

M <
1+ ε2

2
n then

return Uniform
else

return ε-far from uniform

Let d , ‖D‖22. Last class, we proved

1. D = Un =⇒ E[CM] = 1
n

2. D ε-far from Un =⇒ E[CM] = ‖D‖22 ≥ 1+ε2

n

We claim that the collision rate C
M concentrates around d for well chosen number of samples m.

Claim 1. Pr[| CM − d| >
ε2

3 d] ≤ 0.1 for m = O(
√
n
ε4

).

Proof. We compute the variance of C towards applying Chebyshev’s inequality

Var[C] = E[C2]− E[C]2 = E

∑
i<j

1[xi = xj]

2− [Md]2

=
∑
i<j

∑
i′<j′

E
[
1[xi = xj]1[xi′ = xj′]

]
− [Md]2

≤ E[C]2 +
∑
i<j

Pr[xi = xj] + 2
∑

i<j,j′ 6=i,j
E[1[xi = xj = xj′]]− [Md]2

=
∑
i<j

Pr[xi = xj] + 2
∑

i<j,j′ 6=i,j
E[1[xi = xj = xj′]]

1

Observe that the uniform distribution Un is the unique minimizer of minD ‖D‖22. Thus, d ≥ 1
n .

≤Md+ 2m3‖D‖33
≤Md2n+ 2m3d3/2 (d ≥ 1

n and ‖ · ‖2 ≥ ‖ · ‖3)

≤ n

M
·M2d2 + 2m3d3/2 ·

√
dn (d ≥ 1

n)

≤M2d2(
n

M
+ 8

√
n

m
)

≤M2d2 · 9
√
n

m

To apply Chebyshev’s, we need

Var[C] ≤ 1

10
(
ε2

3
dM)2

So,

M2d2 · 9
√
n

m
≤ 1

10
· ε

4

9
· d2M2

=⇒ m ≥ 810

√
n

ε4
= Θ(

√
n

ε4
)

m = Θ(
√
n
ε4

) suffices.

Thus, uniformity testing via collision counting gives the guarantees that

1. If D = Un, then with probability ≥ 0.9

C

M
≤ 1

n
+
ε2

3
· 1

n
=

1 + ε2/3

n

in which case we accept.

2. If D is ε-far from uniform, then with probability ≥ 0.9

C

M
≥ d− ε3

3
d = d(1− ε2

3
)

≥ 1

n
(1− ε2

3
)(1 + ε2)

=
1

n
(1− ε2

3
+ ε2 − ε4

3
)

≥ 1

n
(1 +

ε2

2
) (for ε small enough)

in which case, we reject.

2

1.2 Closeness Testing (with known Q)

We now consider testing closeness between unknown distribution D and known distribution Q. The task

is to distinguish between (1) D = Q and (2) D is ε-far from Q.

Theorem 2. There exists an O(
√
n · (1ε)

O(1)) closeness-tester

Proof. We only prove the theorem for the special case ∀i.Qi ∈ 1
n · N.

We map closeness testing over [n] to uniformity testing over a new domain S, where |S| = O(n). We

define si = n · Qi and flatten distribution Q to Q′ which is uniform over

S =

n⋃
i=1
si 6=0

i× {1, 2, ..., si}

namely D′
(i,j) = Di

si
. Notice that D = Q =⇒ D′ = Q′. We also claim that ‖D′ −Q′‖1 = ‖D − Q‖1. We

show it directly from the definition of D′

‖D′ −Q′‖1 =
∑
i

si∑
j=1

|Di
si
− Qi
si
| =

∑
i

|Di −Qi| = ‖D −Q‖1

Then, we can do uniformity testing of D′ over S (reject if any sample x = i such that si = 0). Thus, the

sample complexity is m = Oε(
√
|S|) = Oε(

√
n).

Theorem 2 shows that Oε(
√
n) is optimal for general Q, but for distributions Q with special structure,

we might be able to do better. [1] takes advantage of Q with special structure and gives improved sample

complexity bounds. It uses the quantity

∑
i

(mD̂i −mQi)2 −mD̂i
D̂2/3
i

to determine whether to accept or reject. This is very similar to the χ2-test by Pearson in 1900 which

uses the quantity

∑
i

(mD̂i −mQi)2 −mQ̂i
Qi

1.3 Other Problems

1. Closeness Testing (with unknown Q): We are given sample access to Q and D – both unknown

distributions. The optimal sample complexity in this setting is known to be Θ(n2/3)

2. Independence Testing: We are given sample access to D over [n]× [n]. The task is to determine

whether the marginal distributions are independent or ε-far from independent.

3. Tolerant Testing: A different model of property testing where we wish to distinguish whether D
is ε1 close to some property P or ε2-far.

3

2 Sublinear Time Algorithms

2.1 Monotonocity Testing

We are given query access to a string x ∈ Nn, and we want to answer whether x is increasing. We

say that x is ε-far from increasing if deleting εn entries of x cannot make it increasing (equivalently if

LIS(x) < (1− ε)n).

Theorem 3. There exists a one-sided monotonicity tester that takes O(lognε) time.

Before proving the theorem, we explore two potential ideas. We naturally first consider drawing random

indices i < j and checking whether xi < xj . An adversarial case such as x = 2, 1, 4, 3, 6, 5, ... only has ≈ n
2

violating pairs, so Θ(n) draws are needed in expectation to find one. To remedy performance on cases

such as this where violations are localized, we consider drawing random index i and checking whether

xi < xi+1. However, we quickly notice that another adversarial case x = n
2 ,

n
2 + 1, ..., n, 1, 2, ..., n2 − 1 has

only one violating index, so once again Θ(n) draws are needed in expectation to find it.

To capture the possibilities of both local and global violations, we try taking pairs i, j at distances

2k for all k ∈ [log n] from one another. Consider the following algorithm

Algorithm 2 Monotonicity Testing

for iter = 1, ..., T = O(1ε) do
Let i ∈r [n]
Binary search for y , xi in x[1, ..., n] to get index j
if j 6= i then

return Reject

return Accept

with the following binary search subroutine

Algorithm 3 Binary Search(y)

Input: Interval [s, t]
m← b s+t2 c
if xm = y then

return m
if xm < xs or xm > xt then

return Reject

if y < xm then
Recurse on [s,m]

else
Recurse on [m, t]

Claim 4. If x is ε-far from increasing, then Pri∈r[n][Binary Search Fails] ≥ ε.

We will prove correctness in the next class.

4

References

[1] Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algorithms for

testing closeness of discrete distributions. In Proceedings of 25th ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 1193–1203, 2014. arXiv:1308.3946.

5

