COMS E6998-9: Algorithms for Massive Data (Fall’23) Oct. 25, 2023

Lecture 15

Instructor: Alex Andoni Scribe: Krish Singal

1 Distribution Testing

We continue our discussion of uniformity testing from last class.

1.1 Uniformity Testing

Algorithm 1 Uniformity Testing via Collision Count

Input: Samples z1,...,xpy ~ D
C« [{i <jlwi = x;}
M (%)
52
if % < HT? then
return Uniform

else
return e-far from uniform

Let d £ ||D||3. Last class, we proved

1. D=U, = E[{¢]=1

~n

2. D efar from U, = E[Y] = |D|3 > ==

n

We claim that the collision rate % concentrates around d for well chosen number of samples m.
. C 62 _ \/ﬁ
Claim 1. Pr[[q; —d| > §d] < 0.1 for m = O(r).

Proof. We compute the variance of C towards applying Chebyshev’s inequality

2

Var[C] = E[C?] ~E[C]* =E | [Y 1[z; = x] — [Md)?
= ; Z:E [1[z; = 2]l [zy = z]] — [Md]?
< E[JC]Q 1 ZPr[mi = 2] +2 | Z | 'mei = x; = x| — [Md]?
=> Pr[ﬂ«“ii rl+2) IZE<[J1J[£L"7TL xj = x|
i<j 1<4,J'#1,3

Observe that the uniform distribution U, is the unique minimizer of minp ||D||3. Thus, d > 1.
< Md +2m?||D|3
< Md’n + 2m*d*? (d= 4% and |- [l2 2|]3)
< % - M2d% + 2m3d%% - Vdn (d>1
< M2 gV
< (37 T85.7)

< M?%d*. 9@
m

To apply Chebyshev’s, we need

VarlC] < L (S an)?
r (=
=10
So,
1 €
M?242 . @<7.7. 202
d gm —10 9 d
:>m2810\/77€:®(@)
€ €
m= @(g) suffices. O

Thus, uniformity testing via collision counting gives the guarantees that

1. If D = U, then with probability > 0.9

in which case we accept.

2. If D is e-far from uniform, then with probability > 0.9

C €3 €2
—>d— —d=d(1 - —
M — 3 (3)
1 €2
> 21— —)(1+ €
> (1=)1+
1 €2 et
- (11— — 2 _ Z
Stz re—3)
1 €2
> ﬁ(1+5) (for e small enough)

in which case, we reject.

1.2 Closeness Testing (with known Q)

We now consider testing closeness between unknown distribution D and known distribution Q. The task
is to distinguish between (1) D = Q and (2) D is e-far from Q.

Theorem 2. There exists an O(y/n - (%)O(l)) closeness-tester

Proof. We only prove the theorem for the special case Vi.QQ; € % - N.

We map closeness testing over [n] to uniformity testing over a new domain S, where |S| = O(n). We
define s; = n - Q; and flatten distribution Q to Q' which is uniform over

n
S=Jix{12..,s}
i=1
$; 70
namely D). ., = % Notice that D = Q = D' = Q'. We also claim that |D' — Q|| = ||D — Q|l;. We

(4,3) i

show it directly from the definition of D’
s
D, O
D= Q=)D 1= = 1=>_IDi-Qil=IID-Qlh
i j=1 "' ' i

Then, we can do uniformity testing of D’ over S (reject if any sample x = i such that s; = 0). Thus, the
sample complexity is m = Oc(4/]S]) = Oc(v/n). O

Theorem 2 shows that O.(y/n) is optimal for general Q, but for distributions Q with special structure,
we might be able to do better. [1] takes advantage of Q with special structure and gives improved sample
complexity bounds. It uses the quantity

Z (mﬁz — sz)Q — mﬁz
~2/3
i Di/
to determine whether to accept or reject. This is very similar to the y2-test by Pearson in 1900 which
uses the quantity

> (mD; —mQ;)? — mQ;
- Q;

1.3 Other Problems

1. Closeness Testing (with unknown Q): We are given sample access to Q and D — both unknown
distributions. The optimal sample complexity in this setting is known to be @(n2/ 3)

2. Independence Testing: We are given sample access to D over [n] X [n]. The task is to determine
whether the marginal distributions are independent or e-far from independent.

3. Tolerant Testing: A different model of property testing where we wish to distinguish whether D
is €1 close to some property P or ex-far.

2 Sublinear Time Algorithms

2.1 Monotonocity Testing

We are given query access to a string € N* and we want to answer whether x is increasing. We
say that x is e-far from increasing if deleting en entries of x cannot make it increasing (equivalently if
LIS(z) < (1—¢€)n).

Theorem 3. There exists a one-sided monotonicity tester that takes O(lo%) time.

Before proving the theorem, we explore two potential ideas. We naturally first consider drawing random
indices 7 < j and checking whether x; < x;. An adversarial case such as z = 2,1,4,3,6,5, ... only has =~ 5
violating pairs, so ©(n) draws are needed in expectation to find one. To remedy performance on cases
such as this where violations are localized, we consider drawing random index 7 and checking whether
r; < xi41. However, we quickly notice that another adversarial case * = 5,5 +1,...,n,1,2,..., 5 — 1 has

only one violating index, so once again ©(n) draws are needed in expectation to find it.

To capture the possibilities of both local and global violations, we try taking pairs 4,5 at distances
2% for all k € [logn] from one another. Consider the following algorithm

Algorithm 2 Monotonicity Testing
for iter = 1,...,7 = O(1) do
Let i €, [n]
Binary search for y = z; in z[1,...,n] to get index j
if j # ¢ then
return Reject

return Accept

with the following binary search subroutine

Algorithm 3 Binary Search(y)

Input: Interval [s,]
if x,, =y then
return m
if x,, < x5 or x,, > z; then

return Reject

if y < z,,, then
Recurse on [s,m)]
else
Recurse on [m, t]

Claim 4. If x is e-far from increasing, then Pric [Binary Search Fails] > e.

We will prove correctness in the next class.

References

1] Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algorithms for
testing closeness of discrete distributions. In Proceedings of 25th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1193-1203, 2014. arXiv:1308.3946.

