COMS E6998-9: Algorithms for Massive Data (Fall’23) Oct 23, 2023
Lecture 14: Distribution testing: Uniformity

Instructor: Alex Andoni Scribes: Yiming Fang

1 Uniformity Testing

Last time, we introduced the problem of uniformity testing: given m samples from an unknown distribu-
tion D over [n|, we want to distinguish between the following cases:

e D is uniform
o D is e-far from uniform, i.e., ||D — U,||7v > §, or equivalently, || D — Uy||1 > «.

Note that there are many possible similarity metrics for distributions, and e-far is only one of them.
We want to achieve this goal with the smallest sample complexity, m.

1.1 Attempt 1
Algorithm 1: (Testing via Learning)

e Learn D such that ||D — f)Hl < & by computing the Empirical Distribution of D on samples
{z1,...,2m}, which is defined as follows:

Di=—> 1z =1], Vie[n]

J=1

e Compute ||D — Uy,||; directly.
Goal: Determine how large m needs to be such that ||D — D||; < e.
Claim 1. m = O(n/e?) samples are enough for learning D such that ||D — ].5|\1 <e.

Before proving the claim, we first assume that it is true and demonstrate how we can use it to solve
the uniformity problem. We can learn D such that ||D — D||; < ¢/3, then compute ||D — U,||; and
compare it to £/2. To see why this procedure outputs the correct answer, consider both cases:

e If D is uniform, then ||D — U,||; <&/3.
e If D is e-far from uniform, then by triangle inequality

1D = Unlls 2 [|ID = Un|ly = ||D = Dlls 2 e — /3 > /2



Proof. (of Claim 1)
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where in the second to last step, we used Cauchy-Schwartz Inequality, and the fact that that D is a
probability distribution, so Eie[n} D;=1.

Therefore, if we let m = 100, then E [HD — lA?Hl} < By Markov Inequality, we get
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Pr {HD —D|; > 5} < %

Question: It is natural to ask: can we achieve the same goal with m << n?
It is impossible to use much less than n samples to compute the empirical distribution and achieve
the same goal. However, it is possible that we can use the samples in a different and more efficient way.



1.2 Attempt 2

Intuition: If our distribution D is not uniform (or is uniform on a much smaller support than [n]), then
we should see collisions much earlier than if we were drawing example from U, because z; € D comes
from a smaller range and collide with higher probability.

Algorithm 2: (Collision counting)

Let C'=3 1<, j<m 1[z1 = 2] be the collision count. We test the uniformity by
o If C <2, then D is uniform;

o IfC > 7, D is e-far from uniform.

for some constant o = a(e) that we will fix later.

Claim 2. )
ID = U3 = DI -

Note: |Up||? = (£)?*n = 1. Also, if D is such that ||D—Up||y > ¢, then ||[D— Uyl > ﬁHD—Unul > .
Claim 3.
C
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E = 1D

Analysis of Algorithm 2: Assuming the claims above are true. We analyze the [o distance:

e If D ="U,, we have |[D — U,|1 = 0 and |[D — U, |3 =0. So ||D||?> = L, and we have

o If [D = Uyl > &, we have ||D — Ul| > 12—l > ==, then [D[3 > £ + <. Then,
(%) n

We will thus set « so that the algorithm threshold is in the middle of these two expectations: namely,
a = 1+ €2/2. In addition to proving the above claim, we also want to prove that the expectation
concentrates around the expectation, without passing erroneously this threshold.



Proof. (of Claim 2)
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Proof. (of Claim 3)
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Rearranging the terms gives E <(mc)) = ||D|j3.
2

Claim 4. For m = Q(y/n/€*), we have:

2
Pr —ID|?| < 5] > 90%
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Proof. (of Claim 4)
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since ||Dll2 > 1/n.

W+ 2 Drlei=al 423 D Drliwi =y =y

For m = 1200y/n/€*, we obtain that Var[C] < 3@((75)\\DH%)2 < 0.0025¢* - E[C]. By Chebyshev

bound, we have that: N
Pr[C € E[C] - (1 £¢€%/2)] > 0.9.



