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Lecture 14: Distribution testing: Uniformity

Instructor: Alex Andoni Scribes: Yiming Fang

1 Uniformity Testing

Last time, we introduced the problem of uniformity testing : given m samples from an unknown distribu-

tion D over [n], we want to distinguish between the following cases:

• D is uniform

• D is ε-far from uniform, i.e., ||D − Un||TV ≥ ε
2 , or equivalently, ||D − Un||1 ≥ ε.

Note that there are many possible similarity metrics for distributions, and ε-far is only one of them.

We want to achieve this goal with the smallest sample complexity, m.

1.1 Attempt 1

Algorithm 1: (Testing via Learning)

• Learn D̂ such that ||D − D̂||1 ≤ ε by computing the Empirical Distribution of D on samples

{x1, . . . , xm}, which is defined as follows:

D̂i =
1

m

m∑
j=1

1[xj = i], ∀i ∈ [n].

• Compute ||D − Un||1 directly.

Goal: Determine how large m needs to be such that ||D − D̂||1 ≤ ε.

Claim 1. m = O(n/ε2) samples are enough for learning D̂ such that ||D − D̂||1 ≤ ε.

Before proving the claim, we first assume that it is true and demonstrate how we can use it to solve

the uniformity problem. We can learn D̂ such that ||D − D̂||1 ≤ ε/3, then compute ||D̂ − Un||1 and

compare it to ε/2. To see why this procedure outputs the correct answer, consider both cases:

• If D is uniform, then ||D̂ − Un||1 ≤ ε/3.

• If D is ε-far from uniform, then by triangle inequality

||D̂ − Un||1 ≥ ||D − Un||1 − ||D − D̂||1 ≥ ε− ε/3 > ε/2
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Proof. (of Claim 1)

E
[
‖D − D̂‖1

]
=
∑
i∈[n]

E
[
|Di − D̂i|

]
≤
∑
i∈[n]

(
E
[
|Di − E[Di]|2

]) 1
2

=
∑
i∈[n]

(
Var[D̂i]

) 1
2

=
∑
i∈[n]

Var

 1

m

m∑
j=1

1[xj = i]

 1
2

=
∑
i∈[n]

 1

m2

m∑
j=1

Var [1[xj = i]]

 1
2

≤
∑
i∈[n]

(
1

m
Di

) 1
2

=
∑
i∈[n]

(
1√
m
D

1
2
i

)

≤ 1√
m

∑
i∈[n]

Di

 1
2

√
n

=

√
n

m

where in the second to last step, we used Cauchy-Schwartz Inequality, and the fact that that D is a

probability distribution, so
∑

i∈[n]Di = 1.

Therefore, if we let m = 100 n
ε2

, then E
[
‖D − D̂‖1

]
≤ ε

10 . By Markov Inequality, we get

Pr
D

[
‖D − D̂‖1 > ε

]
<

1

10

Question: It is natural to ask: can we achieve the same goal with m << n?

It is impossible to use much less than n samples to compute the empirical distribution and achieve

the same goal. However, it is possible that we can use the samples in a different and more efficient way.
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1.2 Attempt 2

Intuition: If our distribution D is not uniform (or is uniform on a much smaller support than [n]), then

we should see collisions much earlier than if we were drawing example from Un, because xi ∈ D comes

from a smaller range and collide with higher probability.

Algorithm 2: (Collision counting)

Let C =
∑

1≤i<j≤m 1[x1 = xj ] be the collision count. We test the uniformity by

• If C ≤ α
n , then D is uniform;

• If C > α
n , D is ε-far from uniform.

for some constant α = α(ε) that we will fix later.

Claim 2.

‖D − Un‖22 = ‖D‖22 −
1

n

.

Note: ‖Un‖2 = ( 1
n)2n = 1

n . Also, if D is such that ‖D−Un‖1 ≥ ε, then ‖D−Un‖2 ≥ 1√
n
‖D−Un‖1 ≥ ε√

n
.

Claim 3.

E

[
C(
m
2

)] = ‖D‖22

.

Analysis of Algorithm 2: Assuming the claims above are true. We analyze the l2 distance:

• If D = Un, we have ‖D − Un‖1 = 0 and ‖D − Un‖22 = 0. So ‖D‖2 = 1
n , and we have

E

[
C(
m
2

)] =
1

n

• If ‖D − Un‖1 ≥ ε, we have ‖D − U‖2 ≥ ‖D−Un‖1√
n

≥ ε√
n

, then ‖D‖22 ≥ 1
n + ε2

n . Then,

E

[
C(
m
2

)] =
1 + ε2

n

We will thus set α so that the algorithm threshold is in the middle of these two expectations: namely,

α = 1 + ε2/2. In addition to proving the above claim, we also want to prove that the expectation

concentrates around the expectation, without passing erroneously this threshold.

3



Proof. (of Claim 2)

‖D − U‖22 =

m∑
i=1

(
Di −

1

n

)2

=

m∑
i=1

(
D2

1 +
1

n2
− 2Di

n

)

= ‖D‖22 +
1

n2
− 2

n

m∑
i=1

Di

= ‖D‖22 −
1

n
.

Proof. (of Claim 3)

E(C) = E

 ∑
1≤i<j≤m

1[xi = xj ]


=

∑
1≤i<j≤m

Pr[xi = xj ]

=
∑

1≤i<j≤m

∑
k∈[n]

D2
k

=

(
m

2

)
‖D‖22.

Rearranging the terms gives E
(

C

(m2 )

)
= ‖D‖22.

Claim 4. For m = Ω(
√
n/ε4), we have:

Pr
D

[∣∣∣∣ C(m
2

) − ‖D‖2∣∣∣∣ ≤ ε2

2n

]
≥ 90%
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Proof. (of Claim 4)

Var[C] = E

∑
i<j

1[xi = xj ]

2− (‖D‖2(m
2

))2

=

∑
i<j

∑
i′<j′

E
[
1[xi = xj ∧ xi′ = xj′ ]

]− (‖D‖2(m
2

))2

≤ ����(E[C])2 −
��������
(
‖D‖2

(
m

2

))2

+
∑
i<j

Pr
D

[xi = xj ] + 2
∑
i<j

∑
j′ 6=i,j

Pr
D

[1[xi = xj = xj′ ]]

=

(
m

2

)
‖D‖2 + 2

m∑
k=1

(mDk)
3

=

(
m

2

)
‖D‖2 + 2m3‖D‖33

≤
(
m

2

)
‖D‖2 + 2m3‖D‖32

≤
(
m

2

)
n‖D‖4 + 2m3√n‖D‖42,

since ‖D‖2 ≥ 1/n.

For m = 1200
√
n/ε4, we obtain that Var[C] ≤ 3

√
n
m (
(
m
2

)
‖D‖22)2 ≤ 0.0025ε4 · E[C]. By Chebyshev

bound, we have that:

Pr[C ∈ E[C] · (1± ε2/2)] ≥ 0.9.
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