Lecture 14: Distribution testing: Uniformity

Instructor: Alex Andoni
Scribes: Yiming Fang

1 Uniformity Testing

Last time, we introduced the problem of uniformity testing: given m samples from an unknown distribution D over [n], we want to distinguish between the following cases:

- D is uniform
- D is ε-far from uniform, i.e., $\left\|D-U_{n}\right\|_{T V} \geq \frac{\varepsilon}{2}$, or equivalently, $\left\|D-U_{n}\right\|_{1} \geq \varepsilon$.

Note that there are many possible similarity metrics for distributions, and ε-far is only one of them.
We want to achieve this goal with the smallest sample complexity, m.

1.1 Attempt 1

Algorithm 1: (Testing via Learning)

- Learn \hat{D} such that $\|D-\hat{D}\|_{1} \leq \varepsilon$ by computing the Empirical Distribution of D on samples $\left\{x_{1}, \ldots, x_{m}\right\}$, which is defined as follows:

$$
\hat{D}_{i}=\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}\left[x_{j}=i\right], \quad \forall i \in[n] .
$$

- Compute $\left\|D-U_{n}\right\|_{1}$ directly.

Goal: Determine how large m needs to be such that $\|D-\hat{D}\|_{1} \leq \varepsilon$.
Claim 1. $m=O\left(n / \varepsilon^{2}\right)$ samples are enough for learning \hat{D} such that $\|D-\hat{D}\|_{1} \leq \varepsilon$.
Before proving the claim, we first assume that it is true and demonstrate how we can use it to solve the uniformity problem. We can learn \hat{D} such that $\|D-\hat{D}\|_{1} \leq \varepsilon / 3$, then compute $\left\|\hat{D}-U_{n}\right\|_{1}$ and compare it to $\varepsilon / 2$. To see why this procedure outputs the correct answer, consider both cases:

- If D is uniform, then $\left\|\hat{D}-U_{n}\right\|_{1} \leq \varepsilon / 3$.
- If D is ε-far from uniform, then by triangle inequality

$$
\left\|\hat{D}-U_{n}\right\|_{1} \geq\left\|D-U_{n}\right\|_{1}-\|D-\hat{D}\|_{1} \geq \varepsilon-\varepsilon / 3>\varepsilon / 2
$$

Proof. (of Claim 1)

$$
\begin{aligned}
\mathbb{E}\left[\|D-\hat{D}\|_{1}\right] & =\sum_{i \in[n]} \mathbb{E}\left[\left|D_{i}-\hat{D}_{i}\right|\right] \\
& \leq \sum_{i \in[n]}\left(\mathbb{E}\left[\left|D_{i}-\mathbb{E}\left[D_{i}\right]\right|^{2}\right]\right)^{\frac{1}{2}} \\
& =\sum_{i \in[n]}\left(\operatorname{Var}\left[\hat{D}_{i}\right]\right)^{\frac{1}{2}} \\
& =\sum_{i \in[n]}\left(\operatorname{Var}\left[\frac{1}{m} \sum_{j=1}^{m} \mathbf{1}\left[x_{j}=i\right]\right]\right)^{\frac{1}{2}} \\
& =\sum_{i \in[n]}\left(\frac{1}{m^{2}} \sum_{j=1}^{m} \operatorname{Var}\left[\mathbf{1}\left[x_{j}=i\right]\right]\right)^{\frac{1}{2}} \\
& \leq \sum_{i \in[n]}\left(\frac{1}{m} D_{i}\right)^{\frac{1}{2}} \\
& =\sum_{i \in[n]}\left(\frac{1}{\sqrt{m}} D_{i}^{\frac{1}{2}}\right) \\
& \leq \frac{1}{\sqrt{m}}\left(\sum_{i \in[n]} D_{i}\right)^{\frac{1}{2}} \sqrt{n} \\
& =\sqrt{\frac{n}{m}}
\end{aligned}
$$

where in the second to last step, we used Cauchy-Schwartz Inequality, and the fact that that D is a probability distribution, so $\sum_{i \in[n]} D_{i}=1$.

Therefore, if we let $m=100 \frac{n}{\varepsilon^{2}}$, then $\mathbb{E}\left[\|D-\hat{D}\|_{1}\right] \leq \frac{\varepsilon}{10}$. By Markov Inequality, we get

$$
\underset{D}{\operatorname{Pr}}\left[\|D-\hat{D}\|_{1}>\varepsilon\right]<\frac{1}{10}
$$

Question: It is natural to ask: can we achieve the same goal with $m \ll n$?
It is impossible to use much less than n samples to compute the empirical distribution and achieve the same goal. However, it is possible that we can use the samples in a different and more efficient way.

1.2 Attempt 2

Intuition: If our distribution D is not uniform (or is uniform on a much smaller support than $[n]$), then we should see collisions much earlier than if we were drawing example from U_{n}, because $x_{i} \in D$ comes from a smaller range and collide with higher probability.
Algorithm 2: (Collision counting)
Let $C=\sum_{1 \leq i<j \leq m} \mathbf{1}\left[x_{1}=x_{j}\right]$ be the collision count. We test the uniformity by

- If $C \leq \frac{\alpha}{n}$, then D is uniform;
- If $C>\frac{\alpha}{n}, D$ is ε-far from uniform.
for some constant $\alpha=\alpha(\varepsilon)$ that we will fix later.

Claim 2.

$$
\left\|D-U_{n}\right\|_{2}^{2}=\|D\|_{2}^{2}-\frac{1}{n}
$$

Note: $\left\|U_{n}\right\|^{2}=\left(\frac{1}{n}\right)^{2} n=\frac{1}{n}$. Also, if D is such that $\left\|D-U_{n}\right\|_{1} \geq \varepsilon$, then $\left\|D-U_{n}\right\|_{2} \geq \frac{1}{\sqrt{n}}\left\|D-U_{n}\right\|_{1} \geq \frac{\varepsilon}{\sqrt{n}}$.

Claim 3.

$$
\mathbb{E}\left[\frac{C}{\binom{m}{2}}\right]=\|D\|_{2}^{2}
$$

Analysis of Algorithm 2: Assuming the claims above are true. We analyze the l_{2} distance:

- If $D=U_{n}$, we have $\left\|D-U_{n}\right\|_{1}=0$ and $\left\|D-U_{n}\right\|_{2}^{2}=0$. So $\|D\|^{2}=\frac{1}{n}$, and we have

$$
\mathbb{E}\left[\frac{C}{\binom{m}{2}}\right]=\frac{1}{n}
$$

- If $\left\|D-U_{n}\right\|_{1} \geq \varepsilon$, we have $\|D-U\|_{2} \geq \frac{\left\|D-U_{n}\right\|_{1}}{\sqrt{n}} \geq \frac{\varepsilon}{\sqrt{n}}$, then $\|D\|_{2}^{2} \geq \frac{1}{n}+\frac{\varepsilon^{2}}{n}$. Then,

$$
\mathbb{E}\left[\frac{C}{\binom{m}{2}}\right]=\frac{1+\varepsilon^{2}}{n}
$$

We will thus set α so that the algorithm threshold is in the middle of these two expectations: namely, $\alpha=1+\epsilon^{2} / 2$. In addition to proving the above claim, we also want to prove that the expectation concentrates around the expectation, without passing erroneously this threshold.

Proof. (of Claim 2)

$$
\begin{aligned}
\|D-U\|_{2}^{2} & =\sum_{i=1}^{m}\left(D_{i}-\frac{1}{n}\right)^{2} \\
& =\sum_{i=1}^{m}\left(D_{1}^{2}+\frac{1}{n^{2}}-\frac{2 D_{i}}{n}\right) \\
& =\|D\|_{2}^{2}+\frac{1}{n^{2}}-\frac{2}{n} \sum_{i=1}^{m} D_{i} \\
& =\|D\|_{2}^{2}-\frac{1}{n} .
\end{aligned}
$$

Proof. (of Claim 3)

$$
\begin{aligned}
\mathbb{E}(C) & =\mathbb{E}\left[\sum_{1 \leq i<j \leq m} \mathbf{1}\left[x_{i}=x_{j}\right]\right] \\
& =\sum_{1 \leq i<j \leq m} \operatorname{Pr}\left[x_{i}=x_{j}\right] \\
& =\sum_{1 \leq i<j \leq m} \sum_{k \in[n]} D_{k}^{2} \\
& =\binom{m}{2}\|D\|_{2}^{2} .
\end{aligned}
$$

Rearranging the terms gives $\mathbb{E}\left(\frac{C}{\binom{m}{2}}\right)=\|D\|_{2}^{2}$.
Claim 4. For $m=\Omega\left(\sqrt{n} / \epsilon^{4}\right)$, we have:

$$
\underset{D}{\operatorname{Pr}}\left[\left|\frac{C}{\binom{m}{2}}-\|D\|^{2}\right| \leq \frac{\varepsilon^{2}}{2 n}\right] \geq 90 \%
$$

Proof. (of Claim 4)

$$
\begin{aligned}
\operatorname{Var}[C] & =\mathbb{E}\left[\left(\sum_{i<j} \mathbf{1}\left[x_{i}=x_{j}\right]\right)^{2}\right]-\left(\|D\|^{2}\binom{m}{2}\right)^{2} \\
& =\left(\sum_{i<j} \sum_{i^{\prime}<j^{\prime}} \mathbb{E}\left[\mathbf{1}\left[x_{i}=x_{j} \wedge x_{i^{\prime}}=x_{j^{\prime}}\right]\right]\right)-\left(\|D\|^{2}\binom{m}{2}\right)^{2} \\
& \leq(\mathbb{E}\{C])^{2}-\left(\|D\|^{2}\left(\frac{m}{2}\right)\right)^{2}+\sum_{i<j} \operatorname{Pr}_{D}\left[x_{i}=x_{j}\right]+2 \sum_{i<j} \sum_{j^{\prime} \neq i, j} \operatorname{Pr}_{D}\left[\mathbf{1}\left[x_{i}=x_{j}=x_{j^{\prime}}\right]\right] \\
& =\binom{m}{2}\|D\|^{2}+2 \sum_{k=1}^{m}\left(m D_{k}\right)^{3} \\
& =\binom{m}{2}\|D\|^{2}+2 m^{3}\|D\|_{3}^{3} \\
& \leq\binom{ m}{2}\|D\|^{2}+2 m^{3}\|D\|_{2}^{3} \\
& \leq\binom{ m}{2} n\|D\|^{4}+2 m^{3} \sqrt{n}\|D\|_{2}^{4},
\end{aligned}
$$

since $\|D\|_{2} \geq 1 / n$.
For $m=1200 \sqrt{n} / \epsilon^{4}$, we obtain that $\operatorname{Var}[C] \leq 3 \frac{\sqrt{n}}{m}\left(\binom{m}{2}\|D\|_{2}^{2}\right)^{2} \leq 0.0025 \epsilon^{4} \cdot \mathbb{E}[C]$. By Chebyshev bound, we have that:

$$
\operatorname{Pr}\left[C \in E[C] \cdot\left(1 \pm \epsilon^{2} / 2\right)\right] \geq 0.9
$$

