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Lecture 13: Sparse Fourier Transform and Distribution Testing
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1 Introduction

We continue our discussion of Sparse Fourier Transforms, focusing on the case where k > 1.

Our setup has:

a ∈ Rn as the ”signal”.

â ∈ Rn as the Fourier transform.

Assumption 1. (noise free):

We assume ||â||0 ≤ k. We will consider the case in which â has k non-zeros.

Goal: we want to recover â in time ≈ O
(
k · logO(1)(n)

)
.

Assumption 2. (random):

We assume that the non-zero values of â are at random positions.

Main idea: Reduce our problem to the case of k = 1. We will achieve this by bucketing the non-zero

values such that each bucket isolates a single value.

2 Bucketing algorithm

Theorem 3. Aliasing: Fix L ∈ [n] that divides n. For a′ ∈ R
n
L , where a′ = (a0, aL, a2L · · · ) we have:

â′u =

L−1∑
l=0

âu+l· n
L

where u ∈ [nL ].

Our algorithm requires us to choose buckets. We will use the aliasing theorem for our choice of buckets.

Namely we define our buckets as:
L−1∑
l=0

âu+l· n
L

for u = 0 to n
L − 1.
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Note 1: This is merely a reinterpretation of our input a: for a′ the algorithm does not need to perform

any calculations but rather only needs to consider certain coordinates of the given input.

Algorithm:
The algorithm proceeds as follows:

1. Set n
L = 2k2 (see analysis ahead for derivation)

2. Define a′ = (a0, aL, a2L · · · ), such that from the aliasing theorem we have:

â′u =
L−1∑
l=0

âu+l· n
L

Likewise, using phase shifting we define a′′ = (a1, aL+1, a2L+1 · · · ), such that from the aliasing

theorem and phase shift theorem (from lecture 12) we have:

â′′u =

L−1∑
l=0

âu+l· n
L
· ωu+l·

n
L

n

We will use â′u and â′′u as bucket u. (with â′u and â′′u, we can recover the coefficients for the case of

k = 1 with no error by using the algorithm from lecture 11)

3. Run standard FFT on a′ and a′′ to output â′ and â′′.

4. For each bucket u ∈ [nL − 1], we use â′u and â′′u to recover at most 1 non-zero coefficient of â.

Implementation of step (4):

• If âu = 0, then output ”there are no non-zero coordinates in bucket u”.

• Otherwise, we have exactly one index v such that âv 6= 0 and the coefficient maps to bucket u. We

can then recover v as:

v = logω

(
â′′

â′

)

3 Proof of correctness

The Bucketing algorithm succeeds when all non-zero coordinates of â fall into different buckets. Namely,

the algorithm succeeds when there are no collisions. We therefore want to set the number of buckets in

order to achieve the desired success probability.

Note 2: Our choice of buckets is not random. We therefore rely on assumption 2 that the non-zero values

of â are at random positions in order to achieve the effect of randomly tossing the non-zero values into
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buckets.

Claim 4. Setting n
L = 2k2 gives success probability ≥ 1

2 .

Proof. We set n
L = 2k2. Let S = {j1, j2, · · · jk} be the non-zero coordinates of â. We have:

E[# of collisions] = E

 ∑
p=1···k
q=1···k

1
[
âjp& âjq collide in the same bucket

]
≤ k2 · Pr[âjp& âjq collide]

≤ k2 · L
n

= k2 · 1

2k2

=
1

2

By Markov’s bound, we have that:

Pr[The number of collisions is ≥ 1] ≤ E[# of collisions]

1
=

1

2

We therefore have that the algorithm succeeds with probability at least 1
2 .

4 Runtime analysis:

Claim 5. The runtime of the bucketing algorithm is O
(
k2log(k) + k2

)
.

Proof. The runtime of the algorithm is from steps (3) and (4):

• Step (3) requires O(k2log(k)) to perform the FFT on a′ and a′′ (each of size n
L = 2k2).

• Step (4) requires O(k2) to iterate through the buckets.

The total runtime is therefore O
(
k2log(k) + k2

)
Improved runtimes:

Our algorithm has a factor of k2 instead of k because we want to guarantee no collisions and therefore

require O(k2) buckets.
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There are algorithms that limit the number of buckets to O(k) (e.g. 10k) for which each non-zero value

has a constant probability of not colliding. Namely, setting n
L = O(k) achieves:

Pr [j1 does not collide] ≥ .9

The algorithm would need to detect and filter out buckets in which a collision occurred (possibly requiring

further coefficients â′′′). The buckets that survive allow us to recover a constant fraction of non-zeros.

The algorithm can be further improved by shifting the randomness from the location of the non-zero

coordinates to the tossing into buckets. The algorithm is then repeated a number of times. Each iter-

ation recovers a random fraction of the non-zeros which are then subtracted out before performing the

next iteration. We can perform the subtraction by using the inverse Fourier transform on the non-zeros

already found.

The best runtime is O
(
k · log(n) · log(nk )

)
even in the presence of noise from [1].

See also Lecture 17 from [3] and [2] for further discussion.

5 Introduction to Sublinear time algorithms:

Given a string y ∈ Rn or a graph, we want to check a property or compute a parameter in time << than

the input size.

We therefore cannot access the entire input, and therefore the algorithms will usually be approximations.

Sparse Fourier transform was a special case because what we are recovering was spread around the input,

but in general the problems we consider will not have this property and therefore require some tolerance

to error.

Examples of problems on a string include: checking whether a string of integers is monotone, longest

increasing subsequence.

Examples of problems on a graphs include: coloring problems, number of connected components.

6 Distribution testing:

Our first subtopic will be distribution testing.

Given a distribution D on [n]. Goal: check a property of D using only samples drawn from D.
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E.g.

• Is D=Uniform?

• Is D= a fixed distribution Q that we have?

• If D is Gaussian, how many samples do we need to determine the mean and variance?

Note 3: distribution testing differs from the other examples of sublinear time algorithms above. In the

other examples, we can choose how to access (portions) of the input as we want. For distribution testing

we are not given D and cannot choose which samples to be given. We have examples drawn from D

(therefore if a particular example xi has low probability it will probably not be sampled).

Problem 1: Uniformity testing:

Our first problem is testing whether D is Uniform. Namely, given m samples from distribution D, we

want to decide whether D is Uniform or not. How many samples m do we need? (We want to minimize

m and usually the runtime will be roughly m).

Without further constraints, we have that m =∞: it is possible that we are unlucky and D is very close

to uniform such that we cannot detect the differences.

We therefore need to introduce a tolerance parameter and redefine our problem statement.

Definition 6. ε−far for distributions: D and Q are ε−far, ε > 0 iff:

||D −Q||1 > ε

Note 4: The definition of ε−far from a property will change depending on the context and what results

are feasible.

Problem 1′:
Given m samples from D, we want to determine whether D is :

• Uniform

or

• ε−far from Q which is uniform.

Definition 7. Total variation distance: we define ||D −Q||TV as:

max
T⊆[n]

∣∣∣∣Pri∈D
[i ∈ T ]− Pr

i∈Q
[i ∈ T ]

∣∣∣∣
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Intuition: If we are given a single sample i and want to determine whether it is from D or Q our best

probability of being able do so is ||D −Q||TV . then for a single sample

If ||D − Q||TV ≤ ε, then if given a sample either from D or from Q then the behavior will be the same

except with ε probability.

Fact 8.

||D −Q||TV =
1

2
||D −Q||1

We therefore can justify our new problem statement. If ||D−Q||1 ≤ ε such that D is ”in the gray zone”

between the options of being Uniform and being ε−far (i.e. within ε-close), we then have:

||D −Q||1 ≤ ε

such that:

||D −Q||TV ≤
ε

2

such that even if D is ”incorrectly” output as Uniform there would be no statistical difference except

with ε
2 probability.
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