Lecture 12: Sparse Fourier Transform

1 Overview

Given access to signal $a \in \mathbb{R}^{n}$, let $\hat{a}=F a$ be a Fourier transform and assume $\hat{a}+k$ sparse Goal: Recover \hat{a}^{\prime} such that, for $\operatorname{Err}_{2}^{k}(\hat{a})=\underset{\hat{a}(\mathrm{k} \text {-sparse })}{\operatorname{argmin}}\left\|\hat{a}-\hat{a}^{\prime \prime}\right\|$:

$$
\begin{equation*}
\left\|\hat{a}^{\prime}-\hat{a}\right\| \leq C \cdot \operatorname{Err}_{2}^{k}(\hat{a}) \tag{1}
\end{equation*}
$$

for some constant C
Note: W/O assumption on \hat{a}, FFT has $O(n \operatorname{logn})$ runtime
Goal: With assumption on \hat{a}, solve in $O\left(k(\operatorname{logn})^{O(1)}\right)$ runtime

1.1 Case 1: $K=1$ and no noise $\left(\operatorname{Err}_{2}^{1}(\hat{a})=0\right)$

1.2 Case 2: $K=2$ and noise $\left(\operatorname{Err}_{2}^{1}(\hat{a}) \neq 0\right)$

Reminder: Algorithm for Case 1:
$\hat{a}=\hat{a}_{u} e_{u}$
$a_{1} / a_{0}=\omega^{u}$ where $u=\ldots\left(a / a_{0}\right)$
$a_{u}=a_{0}$
Facts from before: $\hat{a}_{u}=\frac{1}{n} \sum a_{j} \omega_{n}^{u j}$ and $\omega_{n} \leq e^{-2 \pi i}$
$\hat{a}=F a$ and $F_{u j}=\frac{1}{n} \omega_{n}^{-u j}$
$a=F^{-1} \hat{a}$ and $F_{j u}^{-1}=\frac{1}{n} \omega_{n}^{u j}$
$\|\hat{a}\|_{2}^{2}=\frac{1}{n} \cdot\|a\|_{2}^{2}$
With these facts, we have
$\hat{a}=\hat{a}_{u} e_{u}+\sum_{v \neq u} \hat{a}_{v} e_{v}$
$E=\operatorname{Err}_{2}^{1}(\hat{a})=\sum_{v \neq u} \hat{a}_{v}^{2}$
For C large enough, might as well assume $E<\epsilon \cdot \hat{a}_{u}^{2}$ for some $\epsilon>0$.
Otherwise, a solution is to take $a=0$, then

$$
\begin{gathered}
\|0-\hat{a}\|=\hat{a}_{u}^{2}+E \leq \frac{E}{\epsilon}+E=\frac{2 E}{\epsilon} \\
C=2 / \epsilon
\end{gathered}
$$

$\left\|F^{-1} \hat{a}_{u}\right\|_{2}^{2}=n \cdot \hat{a}_{u}^{2} \Rightarrow$ distributed almost equally on $[n]$
$\left\|F^{-1} \sum_{v \neq u} \hat{a}_{v}\right\|_{2}^{2}=n \cdot E \Rightarrow$ it can be focused against on a_{0} / a_{1}

2 Algorithm for Case 2

We will recover u (the index in Fourier) bit by bit
$u=\left(b_{\text {logn }}, b_{\text {logn }-1}, \ldots, b_{1}, b_{0}\right)$ in binary

$2.1 b_{0}$

$b_{0}: u=2 v+b_{0}$
$a_{0}: \hat{a}_{u} \cdot \omega^{0}=\hat{a}_{u}$
$a_{n / 2}=\hat{a}_{u} \cdot \omega_{(}(2)^{\left(2 v+b_{0}\right) \cdot \frac{n}{2}}=\hat{a}_{u} \cdot \omega_{n}^{v n} \cdot \omega_{n}^{b} \cdot \frac{n}{2}=(-1)^{b_{0}} \cdot \hat{a}_{u}$

$$
\begin{equation*}
b_{0}=0 \Leftrightarrow\left|a_{0}-a_{n / 2}\right|<\left|a_{0}+a_{n / 2}\right| \tag{2}
\end{equation*}
$$

Now, Let's look at a_{r} vs $a_{r+n / 2} a_{r}=\hat{a}_{u} \cdot \omega^{u r}$
$a_{r+n / 2}=\hat{a}_{u} \cdot \omega^{u(r+n / 2)}=\hat{a}_{u} \cdot \omega^{u r} \cdot \omega^{\left(2 v+b_{2}\right) \cdot \frac{n}{2}}=(-1)^{b_{0}} a_{r}$
Thus,

$$
\begin{equation*}
\forall r, b_{0}=0 \Leftrightarrow\left|a_{r}-a_{r+n / 2}\right|<\left|a_{r}+a_{r+n / 2}\right| \tag{3}
\end{equation*}
$$

We denoted this previous line as T_{r}^{0}

2.1.1 b_{1}

For b_{1} : consider shifted signal $a_{j}^{\prime}=a_{j} \omega^{j}$
$\hat{a}_{u}^{\prime}=\hat{a}_{u-1}^{\prime}$ (time / phase shift)
if $b_{0}=1$, apply time / phase shift as it makes $b_{0}=0$
$u=2 b+0=2\left(2 \omega+b_{1}\right)+0=4 \cdot \omega+2 b_{1}$
$a_{r}=\hat{a}_{u} \cdot \omega^{u r}$
$a_{r+n / 4}=\hat{a}_{u} \cdot \omega^{u(r+n / 4)}=\hat{a}_{u} \cdot \omega^{u r} \omega^{\left.\left(4 w+2 b_{1}\right) \cdot n / 4\right)}=a_{r} \cdot \omega^{b_{i} \cdot n / 2}=(-1)^{b_{1}} \cdot a_{r}$
Thus,

$$
\begin{equation*}
b_{1}=0 \Leftrightarrow\left|a_{r}-a_{r+n / 2}\right|<\left|a_{r}+a_{r+n / 2}\right| \tag{4}
\end{equation*}
$$

We denoted this previous line as T_{r}^{\prime}
Thus for $T_{r}^{l}:\left|a_{r}-a_{r+n / 2(l+1)}\right|<\left|a_{r}+a_{r+n / 2(l+1)}\right|$

2.2 With noise

Suppose $\mu=$ noise with time
$a_{j}=\hat{a}_{u} \omega^{u j}+\mu_{j}$
$\|\mu\|_{2}^{2}=\left\|a-F^{-1} \hat{a}_{u} e_{u}\right\|_{2}^{2}=n \cdot \sum_{v \neq u} \hat{a}_{v}^{2}=n \cdot E$
Intuition: On average, $\mu_{r} \approx \sqrt{E}<\sqrt{\epsilon} \cdot \hat{a}_{u}$
\Rightarrow : For random r, T_{r} should correct
Claim 1. fix any $e \leq\{0, \ldots, \operatorname{logn}\}$ then T_{r}^{l} for random r is correct with prob $\geq 1-O(\sqrt{\epsilon})$
Proof. T_{r}^{l} looks at two random entries r, r^{\prime} and it is correct if

$$
\left|u_{r}\right|\left|u_{r^{\prime}}\right|<\frac{1}{4}
$$

$$
\operatorname{Pr}\left[\left|u_{r}\right|>1 / 4 \hat{a}_{u}\right]=\operatorname{Pr}\left[\left|u_{r}\right|^{2}>1 / 16 \cdot \hat{a}_{u}^{2}\right]
$$

By Markov's, we will have that

$$
\leq \frac{E\left[\left|u_{r}\right|^{2}\right]}{\frac{1}{16} \cdot \hat{a}_{u}^{2}}=\frac{\frac{1}{n} \cdot n \cdot E}{\hat{a}_{u}} \cdot 16 \leq 16 \epsilon
$$

Thus, $\operatorname{Pr}\left[\left|u_{r}\right|\right.$ and $\left.\left|u_{r^{\prime}}\right|<\hat{a}_{u} / u\right] \leq 32 \epsilon$ (via union bound)
Therefore, for $\epsilon<1 / 128, T_{r, r^{\prime}}^{l}$ correct with prob geq3/4. We need to recover every bit l with successful prob $\geq 1-\frac{1}{10 \operatorname{logn}}$
To guarantee this successful prob: for fixed bit l,
To guarantee this: for fixed bit l
Take majority vote
By Chernoff bound, $\operatorname{Pr}[$ Maj is wrong $] \leq e^{-O(z)}$
\# samples into $a: \log n \cdot z \cdot 2=O(\log n \log \log n)$
Thus, we have shown Fourier transform for 1 -sparse vector

