COMS E6998-9: Algorithms for Massive Data (Fall'23)

Oct 16, 2023

Lecture 12: Sparse Fourier Transform

Instructor: Alex Andoni

Scribes: Manuel Paez

1 Overview

Given access to signal $a \in \mathbb{R}^n$, let $\hat{a} = Fa$ be a Fourier transform and assume $\hat{a} + k$ sparse Goal: Recover \hat{a}' such that, for $Err_2^k(\hat{a}) = \underset{\hat{a} \text{ (k-sparse)}}{\operatorname{argmin}} \|\hat{a} - \hat{a}''\|$:

$$\|\hat{a}' - \hat{a}\| \le C \cdot Err_2^k(\hat{a}) \tag{1}$$

for some constant C

Note: W/O assumption on \hat{a} , FFT has O(nlogn) runtime Goal: With assumption on \hat{a} , solve in $O(k(logn)^{O(1)})$ runtime

1.1 Case 1: K = 1 and no noise $(Err_2^1(\hat{a}) = 0)$

1.2 Case 2: K = 2 and noise $(Err_2^1(\hat{a}) \neq 0)$

Reminder: Algorithm for Case 1: $\hat{a} = \hat{a}_u e_u$ $a_1/a_0 = \omega^u$ where $u = \dots(a/a_0)$ $a_u = a_0$ Facts from before: $\hat{a}_u = \frac{1}{n} \sum a_j \omega_n^{uj}$ and $\omega_n \leq e^{-2\pi i}$ $\hat{a} = Fa$ and $F_{uj} = \frac{1}{n} \omega_n^{-uj}$ $a = F^{-1}\hat{a}$ and $F_{ju}^{-1} = \frac{1}{n} \omega_n^{uj}$ $\|\hat{a}\|_2^2 = \frac{1}{n} \cdot \|a\|_2^2$ With these facts, we have $\hat{a} = \hat{a}_u e_u + \sum_{v \neq u} \hat{a}_v e_v$ $E = Err_2^1(\hat{a}) = \sum_{v \neq u} \hat{a}_v^2$ For *C* large enough, might as well assume $E < \epsilon \cdot \hat{a}_u^2$ for some $\epsilon > 0$. Otherwise, a solution is to take a = 0, then

$$\|0 - \hat{a}\| = \hat{a}_u^2 + E \le \frac{E}{\epsilon} + E = \frac{2E}{\epsilon}$$
$$C = 2/\epsilon$$

$$\begin{split} \|F^{-1} \hat{a}_u\|_2^2 &= n \cdot \hat{a}_u^2 \Rightarrow \text{distributed almost equally on } [n] \\ \|F^{-1} \sum_{v \neq u} \hat{a}_v\|_2^2 &= n \cdot E \Rightarrow \text{it can be focused against on } a_0/a_1 \end{split}$$

2 Algorithm for Case 2

We will recover u (the index in Fourier) bit by bit $u = (b_{logn}, b_{logn-1}, ..., b_1, b_0)$ in binary

2.1 *b*₀

 $b_0 : u = 2v + b_0$ $a_0 : \hat{a}_u \cdot \omega^0 = \hat{a}_u$ $a_{n/2} = \hat{a}_u \cdot \omega(2)^{(2v+b_0) \cdot \frac{n}{2}} = \hat{a}_u \cdot \omega_n^{vn} \cdot \omega_n^{b_0 \cdot \frac{n}{2}} = (-1)^{b_0} \cdot \hat{a}_u$

$$b_0 = 0 \Leftrightarrow |a_0 - a_{n/2}| < |a_0 + a_{n/2}| \tag{2}$$

Now, Let's look at a_r vs $a_{r+n/2} a_r = \hat{a}_u \cdot \omega^{ur}$ $a_{r+n/2} = \hat{a}_u \cdot \omega^{u(r+n/2)} = \hat{a}_u \cdot \omega^{ur} \cdot \omega^{(2v+b_2) \cdot \frac{n}{2}} = (-1)^{b_0} a_r$ Thus,

$$\forall r, b_0 = 0 \Leftrightarrow |a_r - a_{r+n/2}| < |a_r + a_{r+n/2}| \tag{3}$$

We denoted this previous line as T_r^0

2.1.1 *b*₁

For b_1 : consider shifted signal $a'_j = a_j \omega^j$ $\hat{a}'_u = \hat{a}'_{u-1}$ (time / phase shift) if $b_0 = 1$, apply time / phase shift as it makes $b_0 = 0$ $u = 2b + 0 = 2(2\omega + b_1) + 0 = 4 \cdot \omega + 2b_1$ $a_r = \hat{a}_u \cdot \omega^{ur}$ $a_{r+n/4} = \hat{a}_u \cdot \omega^{u(r+n/4)} = \hat{a}_u \cdot \omega^{ur} \omega^{(4w+2b_1)\cdot n/4)} = a_r \cdot \omega^{b_i \cdot n/2} = (-1)^{b_1} \cdot a_r$ Thus,

$$b_1 = 0 \Leftrightarrow |a_r - a_{r+n/2}| < |a_r + a_{r+n/2}| \tag{4}$$

We denoted this previous line as T'_r Thus for $T^l_r : |a_r - a_{r+n/2(l+1)}| < |a_r + a_{r+n/2(l+1)}|$

2.2 With noise

Suppose $\mu = \text{noise}$ with time $a_j = \hat{a}_u \omega^{uj} + \mu_j$ $\|\mu\|_2^2 = \|a - F^{-1} \hat{a}_u e_u\|_2^2 = n \cdot \sum_{v \neq u} \hat{a}_v^2 = n \cdot E$ Intuition: On average, $\mu_r \approx \sqrt{E} < \sqrt{\epsilon} \cdot \hat{a}_u$ \Rightarrow : For random r, T_r should correct

Claim 1. fix any $e \leq \{0, ..., logn\}$ then T_r^l for random r is correct with $prob \geq 1 - O(\sqrt{\epsilon})$ Proof. T_r^l looks at two random entries r, r' and it is correct if

$$|u_r||u_{r'}| < \frac{1}{4}$$

$$Pr[|u_r| > 1/4\hat{a}_u] = Pr[|u_r|^2 > 1/16 \cdot \hat{a}_u^2]$$

By Markov's, we will have that

$$\leq \frac{E[|u_r|^2]}{\frac{1}{16} \cdot \hat{a}_u^2} = \frac{\frac{1}{n} \cdot n \cdot E}{\hat{a}_u} \cdot 16 \leq 16\epsilon$$

Thus, $Pr[|u_r| \text{ and } |u_{r'}| < \hat{a}_u/u] \le 32\epsilon$ (via union bound)

Therefore, for $\epsilon < 1/128$, $T_{r,r'}^l$ correct with prob geq3/4. We need to recover every bit l with successful prob $\geq 1 - \frac{1}{10logn}$ To guarantee this successful prob: for fixed bit l, To guarantee this: for fixed bit lTake majority vote

By Chernoff bound, Pr[Maj is wrong $] \leq e^{-O(z)}$

samples into $a : \log n \cdot z \cdot 2 = O(\log n \log \log n)$

Thus, we have shown Fourier transform for 1-sparse vector