
COMS E6998: Algorithms for Massive Data (Fall’23) Oct 11, 2023

Lecture 11: Discrete Fourier Transform

Instructor: Alex Andoni Scribes: Peter Davis

1 Final Projects

Project proposals will be due in 2 weeks. Proposals should be roughly one page and cover team members,

papers to be considered, and general scope. The last two days of class will be presentations of final

projects. There are three general types of projects (some projects may be a combination of these):

1. Reading/survey: Focus on a particular problem, read a few recent papers on that problem, and

summarize in your own words. This should be to a level of detail as if you are preparing a lecture

for your classmates.

2. Implementation: Code up some implementations of algorithms we have covered, and analyze it’s

practical performance. Projects of this form should be comparative in nature to other algorithms,

and should have some message that can be taken away beyond simply ”I implemented this algorithm

and it ran in x seconds on this dataset”.

3. Research/open-ended: Produce some novel theoretical result, such as proving an unproven

theorem, or developing a new algorithm and proving it’s properties.

Projects are expected to be completed in 2-3 person teams. 3 team members is a hard upper limit. This

is intended as a collaborative exercise, so one-person projects are discouraged.

2 Recap on Compressed Sensing

Given a measurement y ∈ Rm, and a signal x ∈ Rn, and some sampling operator A such that y = Ax, we

want to recover an x′ ≈ x, assuming x is approximately k-sparse. We showed that we can do this using

m ≈ k log n
k .

In this case, we managed to extract ≈ m ”pieces” of information from x, and showed that that is

enough to recover x with good accuracy. If m << n, then we can say this is a sublinear compression.

But the recovery process itself takes time O(poly(n)) for LP, and O(nk) for Iterative Hard Thresholding.

Question: Can we get sublinear (o(n)) recovery time? Yes. For example, for IHT, we can design a

more structured A matrix s.t. we can recover x′ in O(k(log n)O(1)) time.
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Figure 1: ω projected on the complex plane.

3 Fourier Transform

Definition 1. Discrete Fourier Transform (DFT)

Assume n = 2`, a ∈ Rn. Then â ∈ Cn is the discrete Fourier transform of a, defined element-wise as:1

âu =
1

n

n−1∑
j=0

aje
− 2πi

n
uj

(In this notation, a0 and â0 are the first elements of a and â)

Equivalently, we can define â = Fa, where

Fuj =
1

n
e−

2πi
n
uj =

ω−uj

n

where ω = e
2πi
n . Intuitively, ω represents a 1

n rotation around the origin in the complex plane (figure 1),

so the exponent of ω can be assumed to be modulo n.

We also have the inverse DFT, a = F−1â, with F−1ju = ωuj

Fact 2.

‖Fa‖22 =
1

n
‖a‖22

‖F−1â‖22 = n‖â‖22

The DFT has many uses in signal processing, where it is often thought of as shifting from a ”time”

basis to a ”frequency” basis.

Observation 3. Many signals can be well-approximated by a sparse DFT, i.e. â is approximately k-sparse

in many applications.

1The leading 1
n

is a normalization factor that has some flexibility. The invariant is that the normalization of
F and F−1 multiply to 1

n
. Different literature may use 1 for F and 1

n
for F−1, or 1√

n
for both. Different normalizations

will change Fact 2 accordingly.
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â4

...

ân





â
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Figure 2: Random selection of rows of the inverse Fourier transform F−1

Goal: compute a′ or â′ such that:

‖â− â′‖2 ≤ c · min
âk∈k-sp.

‖â− âk‖2

Intuitively, we are trying to find an â′ with error that is similar to the error from a k-sparse approximation

of â, to a constant factor.

Theorem 4 (Candes-Tao ’06). Let a compressed sensing matrix A be composed of m random rows from

F−1, then for m = O
(
k
ε2

(log n)4
)
, A is (O(k), ε)-RIP with probability ≥ 0.9.

In other words, we can get an approximation of â which is roughly as good as the best k-sparse

approximation of â by looking at just a few rows of F−1 (figure 2) and their corresponding entries in a.

Importantly, this result does not extend to other changes of basis; it is unique to the Fourier transform.
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4 Sparse Fourier Transform (SFT)

Theorem 5. For some c = O(1), it is possible to recover â′ in time O
(
k(log n)O(1)

)
.

This informally implies that an algorithm to recover â′ uses at-most O
(
k(log n)O(1)

)
positions in A,

making it similar to a compressed sensing algorithm. We will not prove this theorem to full generality,

but will prove some cases.

Case 1: k = 1 and there is no error.

This means the Fourier transform is approximated perfectly by a 1-sparse vector, e.g.:

â = (0, 0, . . . âu, . . . 0)

Observation 6.

aj =

n−1∑
v=0

âj · ωvj = âu · ωuj

This comes directly from applying F−1 to â. Now if we look at the ratios between adjacent entries:

aj+1

aj
=
âu · ωu(j+1)

âu · ωuj
= ωu

Using the geometric interpretation, we can extract u as

u =
n

2π
∠(aj+1, aj)

And finally:

âu =
aj
ωuj

= aj · ω−uj ,∀j

Looking ahead: when transition from the time domain to the frequency domain, it is possible that

the noise will compact into specific elements, so in the noisy case we will pick j at random.
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