
COMS 6998: Algorithms for Massive Data (Fall’23) Sep 6, 2023

Course Information

Instructor: Alex Andoni

1 Basic Information

Lectures:

• Time: MW 2:40-3:55pm.

• Location: Mudd 633.

Instructor:

• Alex Andoni (andoni@cs.columbia.edu)

Teaching Assistants:

• Andrei Coman, ac4808@columbia.edu.

Website: There is no textbook, but there’s a website with regular updates and links to lectures, and

additional resources:

http://www.cs.columbia.edu/~andoni/massiveF23

Office hours: see calendar linked from Courseworks (requires LionMail login).

Self evaluation test: to confirm for yourself that you have the right background, you should complete

the self-evaluation test asap (definitely, by the end of the first week). It will help you identify potential

parts to brush up before the class starts. See the website for the test and the solution key.

Courseworks: Class announcements, including homework assignments will be posted on Courseworks.

Edstem: There is also a Edstem forum setup for the class (accessible through the Courseworks). You

are encouraged to discuss class lectures and related topics, as well as ask questions or clarifications. (But

you cannot discuss homework solutions on Edstem.)

2 Course Description

Modern Data presents both a big promise but also a big challenge — how are we to extract that promise?

The classic algorithms for processing data are often insufficient to deal with the datasets of modern sizes.

For example, a quadratic-time algorithm means that 10x increase in data size requires a 100x increase in

resources!

This class will focus on algorithmic techniques to tackle massive datasets efficiently. We will cover 1)

some novel computational models for how to think of massive data processing, and 2) core algorithmic

1



techniques. For example, a common thread will be how to summarize complex data into a smaller core, via

sampling and small sketches techniques, so that later processing is more efficient. The class is theoretical

in nature, and hence we will seek to prove correctness and efficiency guarantees of our algorithms.

The ultimate goal of the class is to equip you with skills to:

• model algorithmic questions on massive data;

• apply modern techniques to address such questions, and analyze resulting algorithms;

• be able to read research-level papers in theorical computer science, in particular in sublinear algo-

rithms.

Tentative topics to be covered:

• Sublinear-time algorithms:

– estimation of graph properties;

– geometric problems;

– monotonicity testing;

– distribution testing: uniformity/closeness;

• Graphs: streaming and data structures:

– spanners, connectivity;

– dynamic graph algorithms;

– decompositions;

– matching;

• Numerical linear algebra (via sketching):

– fast dimension reduction;

– regression via Sketch-And-Solve, subspace embeddings;

– low-rank approximation;

• Compressed sensing:

– Restricted Isometry Property (RIP), `1 minimization;

– iteration hard thresholding;

– Faster Fast Fourier Transform;

• Learning-augmented algorithms:

– better algorithms with an ML advice;

• Distributed/Parallel computation:

– MapReduce-like parallel models;

– LOCAL model.

2



3 Prerequisites

Mathematical maturity is a must: the class is based on theoretical ideas and is proof-heavy. You are

expected to be able to read and write formal mathematical proofs. Furthermore, some familiarity with

algorithms and randomness will be assumed as well. COMS 4231 (Analysis of Algorithms) or equivalent

is highly recommended, but not required if you have a solid math background.

Here is a rough list of math/CS topics that you are expected to know or have background in:

• basics of probability theory, including: linearity of expectation, variance, Markov/Chebyshev bound;

• basic linear algebra (eigenvalues, eigenvectors);

• asymptotic analysis of algorithms, runtime analysis;

• basic algorithms, such as hashing, binary search, connectivity in graph;

• graphs.

4 Evaluation and Grading

Your grade is based on the following three components:

• Scribing (1 lecture): 10%;

• 3 homeworks: 45%;

• Project: 45%, including 5% for project proposal, 10% for oral presentation, and 30% for the final

write-up.

5 Scribing

Each one of you will have to scribe one lecture.

Scribes are due by midnight next day after lecture. You have to use the LaTeX template available

on the class website. The scribed lecture will be posted immediately after it is received so that the rest

of the class can use it before the following lecture. The staff will review the scribe, and, if necessary, the

scriber(s) will be asked to improve the write-up.

6 Homeworks

Homeworks will be assigned roughly every two weeks and will be posted on Courseworks. They will

be due in class on their due date before the lecture starts. Please follow the Homework Submission

Guidelines below.

Late policy. You have a default 5 days of extension (fractions of a day are rounded up), over all the

homeworks. Once you’ve used up the 5 days, late homeworks will be penalized at the rate of 10%,

additively, per late day or part thereof (i.e. fractions of a day are rounded up), for up to 7 days. To

allow us to distribute the solutions in a timely fashion, homeworks submitted more than 7 days after the

deadline will not be accepted. Exceptions will be made only for exceptional unforeseen circumstances

3



(e.g., serious illness), in which case you will need to provide some additional documentation (e.g., doctor’s

note).

You are strongly encouraged to start working on the homeworks early: some problems may require

you to sit on the problem for a while before you get your “aha” moment. Starting early also gives you

time to ask questions and make effective use of the office hours of the teaching staff.

Writing up solutions: precise and formal proofs. The goal of the class, in part, is for you to learn to

reason about algorithms, precisely describe them, and formally prove claims about their correctness and

performance. Hence, it is important that you write up your assignments clearly, precisely, and concisely.

Legibility of your write-up will be an important factor in its grading. When writing up (algorithmic)

solutions, keep in mind the following:

• The best way for you to convey an algorithm is by using plain English description. A worked

example can also help; but revert to pseudocode only if necessary. Generally, give enough details

to clearly present your solution, but not so many that the main ideas are obscured.

• The analysis of the algorithm has to include both 1) proof of correctness, and 2) upper bound on

performance (usually runtime, but sometimes space as well).

• You are encouraged (but not required) to type up your solutions using LaTeX (e.g., using overleaf).

Latex is the standard package for typesetting and formatting mathematically-rich content. Since La-

TeX knowledge is a good life skill, now may be a good chance to learn it. A short mini-course on La-

TeX is available here: http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf.

Macros to format pseudocode are available at http://www.cs.dartmouth.edu/~thc/clrscode/

Note that our lectures will generally be at a slightly lower level of formalism, in the interest of time.

Clarity points. To encourage clarity (and conciseness), for each problem, 20% of the points are given

for the clarity of your presentation. In particular, you will be awarded a default 20% of the points for an

empty solution (note that, if you submit no coversheet whatsoever, you get only 0%). Note that you can

lose these 20% if you write something that is unintelligible, does not lead to a solution, or is excessively

long (including scoring a 0%).

7 Collaboration and Academic Honesty

Collaboration: you are permitted to discuss the homework assignments. If you collaborate, you must

write the solutions individually (without looking at anybody else’s solutions), and acknowledge anyone

with whom you have discussed the problems. It will be considered an honor code violation to consult

solutions from previous years, from the web or elsewhere, in the event that homework problems have

been previously assigned or solutions are available elsewhere.

You are expected to abide by the policies of academic honesty. The CS department web page lists

the department’s academic honesty policies: http://www.cs.columbia.edu/education/honesty.

8 Homework Submission Guidelines

• Submit your homeworks electronically via GradeScope. You may write solution by hand, in which

case you should either scan or photograph your solutions.

4

http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf
http://www.cs.dartmouth.edu/~thc/clrscode/
http://www.cs.columbia.edu/education/honesty


• Homeworks are due on the specified due date 10minutes before the class starts.

• Collaborators must be mentioned for each problem.

9 Final Project

In the final project you will delve into a particular topic in more detail in a team of your own. The final

projects can be of three types:

• Reading-based: read a few recent research papers on a concrete topic and summarize them.

• Implementation-based: implement some of the algorithms from the class (or from other theoretical

literature), and perhaps apply to your area of interest/expertise, using real-world datasets. One

aspect of such projects will be a comparison among a few algorithms.

• Research-based: investigate a research topic on your own (eg, develop an algorithm, and prove

its properties; or prove an impossibility result). It may be more applied: e.g., perhaps in your

area, certain theoretical algorithms can be modified to have even better performance, due to special

properties of the datasets, etc.

Teams: you are allowed to have a team of up to 2-3 people in total per team. Single-person teams are

possible but discouraged and need special permission from the instructor (the reason is that the topics

are hard, and having a collaborating partner/s will qualitatively improve your experience).

You are encouraged to find a team early, and discuss with the instructor the potential topics. There

will be a project proposal due. It will be of 1–4 pages long (exact details tbd).

Topic: the topic of your project must be within the scope of Theoretical Computer Science, and

preferrably algorithmic. In particular, the focus is on algorithms with provable guarantees (for the

implementation type, you may compare such theoretical guarantees with heuristics though). More details

and suggestions will be given later in the class.

10 Calendar (tentative)

Below is the schedule of assignments. Information regarding what each lecture covers will be periodically

updated on the course website.

5



Lecture Date HW out HW/P due

1 9/6

2 9/11

3 9/13 HW1 out

4 9/18

5 9/20

6 9/25

7 9/27 HW2 out HW1 due

8 10/2

9 10/4

10 10/9

11 10/11 HW2 due

12 10/16

13 10/18

14 10/23

15 10/25 HW3 out Proj proposal due

16 10/30

17 11/1

11/6 NO CLASSES

18 11/8

19 11/13

20 11/15 HW3 due

21 11/20

11/22 NO CLASSES: Thanksgiving

22 11/27

23 11/29

24 12/4

25 12/6 Project presentations

26 12/11 Project presentations

5/10 Final projects due Project due

6


	Basic Information
	Course Description
	Prerequisites
	Evaluation and Grading
	Scribing
	Homeworks
	Collaboration and Academic Honesty
	Homework Submission Guidelines
	Final Project
	Calendar (tentative)

