
COMS 4232: Advanced Algorithms Jan 18, 2023

Self-Evaluation Test: Solutions

Instructor: Alex Andoni

This is a self-evaluation test for you to confirm that you have the sufficient background for the class,

and identify potential parts to brush up before the class. You are expected to understand and solve all

problems on this test. You do not have to turn in solutions.

The main prerequisite for the class is mathematical maturity, i.e., being able to follow and write

rigorous mathematical proofs, of both combinatorial and analytical flavors. In terms of concrete topics,

you should be comfortable with linear algebra, minimal probability theory, some basic algorithmic notions.

As a result, the problems below are partitioned by category.

1 Math

1.1 Norms

For a vector x ∈ Rn, and an integer p ∈ (0,∞], the p-norm of x is defined as ‖x‖p = (
∑n

i=1 |xi|p)
1/p.1

Prove the following:

• ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2, and this is tight (i.e., each inequality becomes an equality for some non-zero

x);

– For ‖x‖2 ≤ ‖x‖1:
Let ei denote the vector of 0s with a unique 1 in the ith coordinate. So, for x = (x1, . . . , xn)

we have x =
∑n

i=1 xi ·ei. Moreover for each product in the sum, ‖xi ·ei‖2 =
√∑n

j=1 |xi · eij |2 =√
0 + · · ·+ 0 + |xi|2 + 0 + · · ·+ 0 = |xi|.

Then, by the triangle inequality:

‖x‖2 ≤
n∑

i=1

‖xi · ei‖2

=
n∑

i=1

|xi|

= ‖x‖1

To see that this is tight for any dimension n, consider x = (a, 0, . . . , 0) ∈ Rn for any a > 0.

Then, ‖x‖2 =
√
|a|2 + 0 + · · ·+ 0 = a and ‖x‖1 = |a|+ 0 + · · ·+ 0 = a.

– For ‖x‖1 ≤
√
n‖x‖2:

1For p =∞, ‖x‖∞ is formally defined to be maxi∈[n] |xi|, which can be seen as the limit as p→∞.

1

By Cauchy-Schwarz (applied for second line below):

‖x‖21 =

(
n∑

i=1

|xi|

)2

=

(
n∑

i=1

1 · |xi|

)2

≤

(
n∑

i=1

12

)(
n∑

i=1

|xi|2
)

= n‖x‖22

Therefore, ‖x‖1 =
√
‖x‖21 ≤

√
n‖x‖22 =

√
n‖x‖2. To see that this is tight for any dimension

n, consider x = (a, . . . , a) ∈ Rn for any a > 0. Then, ‖x‖1 = n ·a and ‖x‖2 =
√
n · a2 =

√
n ·a.

• when p = log2 n, ‖x‖p is a 2 approximation to ‖x‖∞ (i.e., ‖x‖∞ ≤ ‖x‖p ≤ 2‖x‖∞).

– For ‖x‖∞ ≤ ‖x‖p:
By definition ‖x‖∞ = maxi |xi|. Note that maxi |xi|p ≤

∑n
i=1 |xi|p because all summands are

non-negative. Therefore, (maxi |xi|p)1/p ≤ (
∑n

i=1 |xi|p)
1/p because the pth root function is

monotonically increasing on non-negative numbers. Putting it all together we get,

‖x‖∞ =

(
max

i
|xi|p

)1/p

≤

(
n∑

i=1

|xi|p
)1/p

= ‖x‖p.

Again, to see this is tight consider x = (a, 0, . . . , 0) ∈ Rn for any a > 0.

– For ‖x‖∞ ≤ 2‖x‖∞:

Notice that
∑n

i=1 |xi|p ≤
∑p

i=1 (maxj |xj |)p = n‖x‖p∞. Also, by the definition of p we have

n1/p =
(
2log2 n

)1/p
= (2p)1/p = 2.

So,

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

≤ (n‖x‖p∞)1/p = n1/p‖x‖∞ = 2‖x‖∞

In the spirit of above, how can you relate the 10-norm of x to the 5-norm of x?

‖x‖10 ≤ ‖x‖5 ≤ n1/10‖x‖10. In general, to prove relations between p-norms, use Holder’s inequality,

a generalization of Cauchy Schwarz. In this particular case we can just apply the `1 and `2 relation for

the vector y where yi = |xi|5.

1.2 Runtime of Merge-Sort

Merge-Sort is an algorithm for sorting n numbers, which proceeds as follows. Suppose the input is an

array A[1 . . . n] of length n (which, for simplicity, assume is a power of 2). We partition the array into

two, A[1 . . . n/2] and A[n/2 + 1 . . . n]. We sort each part recursively and then merge the 2 (sorted) parts.

2

It is known that the latter merge operation can be accomplished in time O(n).2 The base case of the

Merge-Sort is when n = 1, in which case we do nothing (the array is already sorted).

Here, you are to determine whether the following statement/proof is correct or not (why or why not).

Claim 1. The runtime of the above MergeSort algorithm is O(n).

Proof. Let T (n) be the runtime of Merge-Sort on an array of length n. Then, by the above description

we have that:

T (n) = 2 · T (n/2) +O(n),

corresponding to the two recursive calls and the merge operation respectively.

We prove the claim that T (n) = O(n) by induction. Indeed, we have that:

T (n) = 2 · T (n/2) +O(n) = 2 ·O(n/2) +O(n) = O(n).

This completes the proof of the claim.

The claim and the proof are wrong (in fact, T (n) = Θ(n · log n) for Merge-Sort). The error is due to

a sloppy use of the O(·) notation.

Using the definition of O(n), the claim ask to prove that: there exists n0, c such that T (n) ≤ cn for

n ≥ n0. So suppose this were true inductively for T (n/2). In particular, whenever n ≥ 2n0, we have

T (n/2) ≤ cn/2. Now using the recurrence we have T (n) = 2T (n/2) +O(n) = 2cn/2 +O(n), where O(n)

is the runtime of the merge operation, which consider to be, say, ≤ 10n. While the above sum is indeed

≤ cn+ 10n = (c+ 10)n = O(n), this is not enough for the inductive hypothesis for n! In particular, the

inductive hypothesis is that T (n) ≤ cn. In particular the implicit constant of the O(·) notation grows

with the number of iterative steps.

2 Linear algebra

2.1 Quadratic forms

Let A be a n-by-n symmetric matrix whose maximum eigenvalue is 42. What is the minimum and

maximum possible value for the quadratic form xTAx, where x ∈ Rn are unit-norm vectors?

Recall that this means that there exists a matrix U and diagonal matrix Σ (with the eignvalues,

σ1, σ2, . . ., on the diagonal in descending order) such that A = UΣUT . Note that because U is uni-

tary, for any unit-norm x, uT = xTU is a unit-norm vectors (and furthermore any uT is realizable).

Therefore, the maximum and minimum possible values are maxu:‖u‖2=1

∑n
i=1 σiuiui = maxi σi = 42 and

minu,v:‖u‖2=1

∑n
i=1 σiuiui = mini σi. For arbitrary matrix A, the argmin can be as low as desired.

For the second part, we note that A2 = UΣ2UT and hence argmax is 422 and argmin is mini σ
2
i ≥ 0.

Hence the lowest it can ever be is 0.

2.2 Linear systems

Suppose A is a n-by-n real matrix and b ∈ Rn. For the unknown vector x ∈ Rn, describe what are the

possible sets of solutions for the following:

2Remember that O(f(n)) is the set of functions g : N→ N such that there exist c > 0 and n0 ∈ N such that, for n ≥ n0,
g(n) ≤ c · f(n).

3

• Ax = b;

The solution set here is either an affine subspace of Rn or empty. If Ax = b has at least one

solution, v : Av = b, (i.e. is consistent), then this affine subspace has the same dimension of as

ker(A) (if x ∈ ker(A), then A(x + v) = Ax + Av = 0 + b). Otherwise, the system is inconsistent

(i.e. rank(A) < rank([A|b])) and it is simply the empty set.

• argminx∈Rn ‖Ax− b‖2.

The set S = {y : y = Ax − b} is again an affine subspace of Rn (but, unlike above, it cannot be

empty). But more importantly, S is convex. Additionally, ‖ · ‖2 is a convex function. Therefore

this is a convex optimization problem and it has a unique minimizer. Or in other words, set always

consists of a single vector y∗ ∈ Rn, the shortest one in S. Hence the set of solutions to argmin is

the set of x’s satisfying Ax− b = y∗. This set is either a singleton or an affine subset as per above

(note that, in constrast to above, there’s always at least one solution x).

To give a better idea of what’s asked, consider the “Ax = b” case when n = 1 (i.e., just a simple

equation). Here’s the answer for this case:

The possible sets of solutions are: 1) there may not be a solution (empty set), 2) may be exactly one

solution, or 3) any x ∈ R is a solution.

The above 3 cases correspond to when 1) A = 0, b 6= 0, 2) A 6= 0, 3) A = b = 0.

3 Probability

3.1 Hashing

A function h : U → [m], where U is a discrete set (e.g., integers of O(log n) bits), and m ∈ N, is called

a hash function with m buckets. (One can see this as assigning one of the m buckets to each possible

item from U .) Most common hash function is a random hash function: each h(i), i ∈ U , is chosen iid at

random from [m].

Below, consider a set S ⊂ U of size n.

• Let h be a random hash function with m = n. What is the expected size of a bucket, i.e., |h−1(i)∩S|
for any i ∈ [m] ?

For x ∈ S, Xx denote the indicator random variable for h(x) = i. Because h is random, E[Xx] =

Prh[h(x) = i] = 1/m for all x ∈ S. Moreover, size of the ith bucket is simply the sum over all Xx’s.

Then, via linearity of expectation, the expected load of i is E[
∑

x∈S Xx] =
∑

x∈S E[Xx] = n/m.

• A collision is an event where distinct x, y ∈ S satisfy h(x) = h(y). What is the expected number

of collisions among elements of S under h? (To give an example, if one has precisely three distinct

items x, y, z ∈ S falling into the same bucket, they generate 3 collisions: (x, y), (y, z), and (z, x)).

For x 6= y ∈ S, let Zx,y denote the indicator random variable for the event that h(x) = h(y). Then

E[Zx,y] = Prh[h(x) = h(y)] = 1/m — fix any h(x), then because y 6= x and h is a random function

4

there is a 1/m probability h maps y to h(x). By linearity of expectation, we can count collisions

by simply summing Zx,y over distinct pairs. We have that the expected number of collisions is

E[
∑

x,y∈S:x 6=y

Zx,y] =
∑

x,y∈S:x 6=y

E[Zx,y] =

(
n

2

)
/m =

n(n− 1)

2m

. When n = m, this is Θ(n) collisions.

A family H of hash functions h is k-wise independent if for any distinct a1, . . . ak ∈ U and (not

necessarily distinct) q1, . . . qk ∈ [m], we have that

Pr
h∈H

[h(a1) = q1 ∧ . . . ∧ h(ak) = qk] = 1/mk.

Note that the aforementioned random hash function is |U |-wise independent (or, to be more precise, the

family H of all functions h : U → [m] is |U |-wise independent).

• How do the estimates from above change if our hash function h is chosen from some 2-wise inde-

pendent hash family H2?

Nothing changes. Note that in both of the above we are simply using linearity of expectation to

reduce computation of the big expectation to the expectation of our indicator variables. So, it

is simply a matter of showing that the expectations of Xx and Zx,y are unchanged if h is chosen

from pairwise independent family (instead of randomly). Then via inclusion-exclusion, E[Xx] =∑m
j=1 Pr[h(x) = i ∧ h(y) = j] = 1/m and E[Zx,y] =

∑m
i=1 Prh[h(x) = h(y) = i] = 1/m.

4 Algorithms

4.1 Graphs

A graph G has n nodes and m edges. Suppose that m = n/2 (assuming n is even). What is the smallest

and the largest number of connected components that G can have?

First, note that any graph with n/2 to edges can be constructed iteratively in n/2 rounds where in

each round first exactly two nodes are added followed by exactly one edge.

• The minimal graph has n/2 connected components:

Suppose not, then let G be a counter example of minimal size, n, with c∗ < n/2 connected compo-

nents. Consider the iterative construction of G, in the last step nodes {v1, v2} are added with edge

e. By the minimality of G, the graph G′ where v1, v2 and e have been removed from G must have

≥ (n − 2)/2 = n/2 − 1 connected components. Now consider adding v1, v2, e to G′. After adding

v1, v2 there are n/2 − 1 + 2 = n/2 + 1 connected components as both vertices are new. However,

at best, e can connect at most two components into one leaving n/2 + 1 − 1 = n/2 components

remaining. This contradicts our assumption on G.

The bipartite graph with V = ({a1, . . . , an/2}, B = {a1, . . . , an/2}) and E = {(ai, bi) : i ∈ [n/2]}
demonstrates that this is tight.

5

• The maximal graph has n− d1+
√
1+4n
2 e+ 1 connected components:

Again, we will show that the greedy construction that yields a (partial) k-clique alongside n − kn
isolated nodes where kn is the smallest number of nodes that can contain n/2 distinct edges, kn :=

argmink∈N

(
k
2

)
≥ n/2) is optimal. Solving for kn via the quadratic formula we get kn = d1+

√
1+4n
2 e.

By the above, when considering an iterative construction of a graph G, after each round there are

2 options: (a) the number of connected components increased by 1 (the edge joined two connected

components, after adding two the via isolated nodes), (b) the number of connected components

increased by 2 (the edge was within a pre-existing connected component).

Suppose not, then let G be a minimal counter-example (on n nodes) with c∗ > n−kn +1 connected

components (for kn defined as above). Note that kn is monotonically increasing (with slope at

most 1/2 for n ≥ 2). At most 2 components were added in the last round of constructing G, so

the penultimate G′ (on n − 2 nodes) has at least c∗ − 2 > (n − kn + 1) − 2 ≥ (n − 2) − kn−2 + 1

components, which contradicts the minimality of G.

4.2 Alice tells Bob

Consider Alice holds a number n and wants to communicate it to Bob approximately using minimal

possible communication. In particular, Bob should be able to output some n′ satisfying n ≤ n′ ≤ 2n.

How many bits does Alice need to send to Bob to achieve this goal? (Answer up to O(·) is enough.)

The answer is O(log log n) bits suffice as shown by the following protocol.

• Alice: On input n, send the index of the most significant bit of n, msb(n) (i.e. the unique number

m such that 2m ≤ n < 2m+1). (Note that the length of the binary representation of n is at most

log n. Therefore, the largest index of this representation is can be represented with log log n bits.)

• Bob: Upon receiving a binary representation of a number m, output 2m.

Does the answer change if it’s a “dialogue” — Alice and Bob sequentially communicate to each other

a number of bits (think of it as if Bob can “ask questions”) — and the “total communication” is the total

number of bits exchanged ?

Interaction does not help in this case and the complexity remains the same because Alice can simply

simulate a virtual Bob in her head (because Bob has no input, so Alice knows everything about him). In

particular, suppose there was a cheaper (deterministic) interactive protocol. Then, we can compile this

into a non-interactive protocol by having Alice simulate the entire interaction and send the transcript to

Bob. Bob then plays the transcript for himself and outputs in accordance with the interactive protocol.

6

