Lecture 4 1/27/22

Perfect Hashing

Goal: Dist. with $O(n)$ space
$O(1)$ query time deerm.

Contrast: last time $O(1)$ expected.

Question: what if build a hash table
with random h.f. with no collision.

$C_x = \# \{y \in S \mid y \neq x \text{ and } h(y) = h(x)\}$.

$C = \sum_{x \in S} C_x =$ # pairwise col. $x, y \in S$.

Suppose we want $C = 0 \Rightarrow$ all buckets
have size $O(1)$.

$\mathbb{E}[C^3]$ when we have m buckets.

$h : U \rightarrow [m^3]$.

$\mathbb{E}[C^3] = \mathbb{E}\left[\sum_{x \in S} C_x \right] = \sum_{x \in S} \mathbb{E}[C_x^3]$.

$\leq \sum_{x \in S} \frac{n}{m}$

$= \frac{n^2}{m}$.

SCU

$n = 181$

$m = \frac{\text{table size}}{\text{size}}$
By Markov bound: \(C \leq 4 \ln \left(1 + \frac{1}{4} \right) \) with prob \(\geq 1 - \frac{1}{4} \).

Set \(m = 8n^2 \Rightarrow C \leq \frac{1}{2} \) with prob \(\geq 1 - \frac{1}{4} \).

\(\Rightarrow C = 0 \)

Algo:

1. **repeat until success**
2. pick random \(h \in \mathcal{H} \), \(m = 8n^2 \)
3. compute \(C \)
4. if \(C > 1 \), repeat.
5. if \(C = 0 \), success.
6. build hash table \(H \) with last \(h \).

Algo has space \(O(m+n) = O(n^2) \)

q.t.: \(O(1) \) determin.

Preprocessing: proportional to \# repeats:

\[
\mathbb{E} [\text{\# repeats}] \leq 1 + \frac{3}{4} + 2 \cdot \frac{1}{4} + \frac{3}{4} + 3 \left(\frac{1}{4} \right)^2 + \ldots
\]

\[
= 1 + \frac{1}{4} + \left(\frac{1}{4} \right)^2 + \ldots
\]

\[
= \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}.
\]

Cor: can obtain \(O(n^2) \) space, \(O(1) \) deter. q.t.

Perfect Hashing
Idea: use standard hashing, \(m = 2n \). + 2nd level hash where we split non-empty buckets using quadratic-space hash.

\[h \]

\[m_i = 8n_i^2 \]

\[n_i = \# \text{clw's going bucket } i \]

Algo PH:

Pick a random h.f. \(h : U \to 1m3, m = 2n \).

For \(i = 1 \ldots m \):

- build 2nd level hash table of size

 \[m_i = 8n_i^2 \] (using Cor)

 where

 \[n_i = |S \cap h^{-1}(i)| = \# \text{clw's in bucket } i \]

 store \(S \cap h^{-1}(i) \) in the 2nd level h.t.

Query time: look-up \(h(x) \), then look-up hash table corresponding to \(i = h(x) \).

Obs: query time is \(O(1) \) def.

Question: what about space?
Claim: in expectation, size of 2nd level hash tables is \(O(n) \).

\[n_i + n_i(n_i - 1) = n_i^2 \]

pf: \(\sum_{i=1}^{m} n_i = \sum_{i=1}^{m} 8n_i^2 \).

\[
\begin{align*}
\mathbb{E} \left[\sum_{i=1}^{m} n_i^2 \right] &= \mathbb{E} \left[\sum_{i=1}^{m} n_i + n_i(n_i - 1) \right] \\
&= \mathbb{E} \left[\sum_{i=1}^{m} n_i \right] + \mathbb{E} \left[\sum_{i=1}^{m} n_i(n_i - 1) \right] \\
&= \mathbb{E} \sum_{i=1}^{m} n_i + \mathbb{E} \left[\sum_{i=1}^{m} n_i(n_i - 1) \right] \\
&= n + \mathbb{E} [C] \\
&= n + n^2/m = n + \frac{n^2}{m} = O(n).
\end{align*}
\]

Conclusions: PH algo obtains \(O(1) \) def. q.t.

\(O(n) \) space \(\exp \)

\(O(n) \) preproc. \(\exp \)

Remark: can have \(O(n) \) def. space bound by repeating \(\Sigma \) lev hashing until \(\Sigma n_i^2 \leq O(n) \).

Remark: dynamic Dct.: can \(\omega \) obtain \(O(1) \) def. query/update time?
Stream & Sketching

Motivation:

Goal: store statistic on data, as streams to be used later.

Distinct element count.

Stream: elements from universe $\mathbb{U} = \{1, \ldots, n\}$.

E.g.: \mathbb{U} = all possible IPs.

Problems: report how many different elements we have seen in the stream.

Stream length: m.

Goal: store as little info as possible.

Solution 1: store entire stream: $O(m)$ space.

Solution 2: store a table $T[1..n]$.

\textit{OPEN.}
Can we obtain space $\ll \min \{n, m\}$?

No unless we allow approx + random.

Algo: approx + random. [Flajolet - Martin]

- pick a random hash func. $h: [n] \rightarrow [0, 13].$
- store a reg. z, initial $z = 1$.
- when see i in the stream:
 $$z = \min \{z, h(i)\}.$$
- $\text{Est} = \frac{1}{z} - 1.$

Note: $z = \min h(i)$ hash function value $h(i)$ among i's in the stream.

Claim: $\mathbb{E}[z] = \frac{1}{d+1}$, $d = \# \text{distinct els'.}$

Pf: $z = \min$ of d random #'s $a_i \in [0, 13].$

Experiment: pick $a \in [0, 13].$

$$\mathbb{E}\left[\frac{1}{z}\right] = \mathbb{E}\left[\frac{1}{\mathbb{E}[rac{1}{a}]}\right]$$
\[P_1 \left(a \leq 2 \right) \]

\[\Rightarrow 2) \quad \text{Prob. that } a \text{ is } \min \left\{ \alpha_1, \alpha_2, \ldots, \alpha_d, q \right\} = \frac{1}{d+1} \]

\[\Rightarrow \mathbb{E} \left[E2 \right] = \frac{1}{d+1} \cdot \mathbb{E} \left[E \right]. \]

\[\forall \frac{1}{2} \neq \forall \mathbb{E} \left[E \right]. \]